主要内容

圆柱杆中的热分布

This example shows how to simplify a 3-D axisymmetric thermal problem to a 2-D problem using the symmetry around the axis of rotation of the body.

该示例分析具有圆形横截面的棒中的传热。杆的底部有一个热源,顶部有一个固定温度。杆的外表面由于对流而与环境交换。此外,由于放射性衰减,杆本身会产生热量。目的是找到杆中的温度作为时间的函数。

模型的几何形状,材料特性和边界条件都必须与旋转轴对称。该工具箱假设旋转轴是通过的垂直轴r= 0.

稳态解决方案

First, compute the steady-state solution. If the final time in the transient analysis is sufficiently large, the transient solution at the final time must be close to the steady state solution. By comparing these two results, you can check the accuracy of the transient analysis.

创建一个用于解决轴对称问题的稳态热模型。

thermalmodel = createpde('thermal','steadystate-axisymmetric');

The 2-D model is a rectangular strip whosex-dimension extends from the axis of symmetry to the outer surface andy-dimension extends over the actual length of the rod (from-1.5 m to 1.5 m). Create the geometry by specifying the coordinates of its four corners.

g = decsg([[3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');

Include the geometry in the model.

geometryFromEdges(thermalmodel,g);

用边缘标签绘制几何形状。

figure pdegplot(thermalmodel,'edgelabels','on') axisequal

图包含一个轴对象。轴对象包含5个类型行的对象,文本。

The rod is composed of a material with these thermal properties.

k = 40;%导热,W /(m*C)Rho = 7800;% Density, kg/m^3cp = 500;百分比特定热量,w*s/(kg*c)q = 20000;%热源,w/m^3

For a steady-state analysis, specify the thermal conductivity of the material.

Thermalproperties(热模型,'ThermalConductivity',k);

Specify the internal heat source.

InternalHootSource(ThermalModel,Q);

Define the boundary conditions. There is no heat transferred in the direction normal to the axis of symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is kept at a constant temperatureT= 100°C.

thermalBC(thermalmodel,'Edge',2,'Temperature',100);

指定外边界上的对流边界条件(边3)。外边界的周围温度为100°C, and the heat transfer coefficient is 50 W / ( m C ) .

thermalBC(thermalmodel,'Edge',3,...'ConvectionCoefficient',50,...'AmbientTemperature',100);

杆底部的热通量(边缘4)为 5000 W / m 2 .

thermalBC(thermalmodel,'Edge',4,'Heatflux',5000);

Generate the mesh.

msh = generateMesh(thermalmodel); figure pdeplot(thermalmodel) axisequal

图包含一个轴对象。The axes object contains 2 objects of type line.

Solve the model and plot the result.

result = solve(thermalmodel); T = result.Temperature; figure pdeplot(thermalmodel,'XYData',t,'轮廓','on') axisequaltitle'Steady-State Temperature'

图包含一个轴对象。带有标题稳态温度的轴对象包含12个类型补丁的对象。

Transient Solution

Switch the analysis type of the model to transient-axisymmetric.

hythmodel.analysistype ='transient-axisymmetric';

Specify the thermal conductivity, mass density, and specific heat of the material.

Thermalproperties(热模型,'ThermalConductivity',k,...'MassDensity',rho,...'femificheat',cp);

指定杆中的初始温度为0°C.

thermalIC(thermalmodel,0);

Compute the transient solution for solution times from t = 0 to t = 50000 seconds.

tfinal = 50000;tlist = 0:100:tfinal;结果= solve(ThermalModel,tlist);

将温度分布绘制为t = 50000秒。

t =结果。图pdeplot(热模型,'XYData',T(:,end),'轮廓','on') axisequaltitle(sprintf([瞬态温度的...' at Final Time (%g seconds)'],tfinal))

图包含一个轴对象。The axes object with title Transient Temperature at Final Time (50000 seconds) contains 12 objects of type patch, line.

Find the temperature at the bottom surface of the rod: first, at the center axis and then on the outer surface.

Tcenter = interpolateTemperature(result,[0.0;-1.5],1:numel(tlist)); Touter = interpolateTemperature(result,[0.2;-1.5],1:numel(tlist));

将杆左端的温度绘制为时间的函数。杆的外表面以100的恒定温度暴露于环境°C. When the surface temperature of the rod is less than 100°C,环境加热杆。外表面比内轴温暖。当表面温度大于100时°C,环境冷却杆。外表面比杆的内部凉爽。

figure plot(tlist,Tcenter) hold情节(tlist,touter,'--') 标题“底部的温度随时间的函数”XLABEL'Time, s'ylabel'Temperature, C'网格legend(“中心轴”,'Outer Surface','地点','东南')

图包含一个轴对象。The axes object with title Temperature at the Bottom as a Function of Time contains 2 objects of type line. These objects represent Center Axis, Outer Surface.