
Multi-Object Tracking for Autonomous
Systems and Surveillance Systems

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 2

This ebook provides an overview of multi-object tracking. It covers the fundamental ideas without diving too deep into the mathematics.
Hopefully, this approach makes learning the mathematics and implementing your own algorithms easier.

Topics
1. Introduction: Understanding tracking filters, measurement noise, prediction errors, and process noise
2. Single-object tracking: Using a tracker to determine position and motion of a remote object
3. Multi-object tracking: Overcoming the challenges of tracking several objects at once

By the end you should have a solid understanding of how multi-object trackers contribute to the success of autonomous systems and surveillance
systems.

Preface

Part 1: Introduction

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 4

Multi-Object Tracking

Perception is a critical component of both autonomous systems and surveillance systems. Multi-object tracking and sensor fusion are at the heart
of perception systems. The goal of an autonomous system is to operate within an environment without human interaction. This means that the
system needs to be able to maintain situational awareness just as a surveillance system does.

Autonomous System Surveillance System

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 5

The Many Algorithms of Multi-Object Tracking

At the core of multi-object tracking is the ability to estimate the motion of each object separately.

The basis for this estimation is the use of an estimation filter. Other types of estimation filters are used in tracking, and we will cover some of
them, but first let’s understand the most fundamental and simple filter: the Kalman filter.

We’re going to approach the Kalman filter at a high level
and provide some insight into how the filter is able to
estimate state by combining measurements and models.

If you’d like a more in-depth explanation of the filter, check
out the Understanding Kalman Filters video series.

https://mathworks.com/videos/series/understanding-kalman-filters.html

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 6

The Kalman Filter

A Kalman filter is part of a class of estimation filters that use a two-step process to estimate
state: prediction and correction.

If a system can be described with a linear model and the probability distribution of the process noise and measurement noise is Gaussian, then a
linear Kalman filter will produce the optimal state estimation.

In practice, though, most real systems are not truly linear and noise might not have a perfect Gaussian probability distribution, which means
the result of a linear Kalman filter is rarely absolutely optimal for real systems. However, they still work very well for many real-life problems,
and understanding linear Kalman filters can help you to better understand their nonlinear counterparts such as the extended Kalman filter, the
unscented Kalman filter, and the particle filter.

𝜇=0

Gaussian noise distributionLinear system model

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 7

How do we know state?

Let’s walk through a simple math approach to understanding the linear
Kalman filter.

Think about how we as humans estimate the state of something. For example, how
do we know the velocity of a vehicle, the voltage of an electrical circuit, or the time
of day?

The obvious answer is that we measure it directly with a sensor like we do with
a speedometer, a voltmeter, or a clock. Similarly, we may derive the state from
measuring other quantities. This would be the case if we estimated velocity using
the difference between two successive position measurements and the time
difference in which they were taken.

But, as humans, we have other knowledge that we use to challenge the validity
of our measurements. If your watch says it’s 4:37 p.m. and about a minute later it
says 6:15 p.m., you wouldn’t trust that result. We have a general understanding of
the passage of time and how the universe should behave, and this extra knowledge
allows us to make a prediction of how the state of a system should change over
some time horizon.

Measure

Predict

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 8

Combining a Prediction and a Measurement

Our ability to predict isn’t perfect; it’s subject to error. This error comes from us having the wrong mental model of the system behavior and from
not knowing and accounting for every external input that can influence the system state. Therefore, it’s not wise to base the state of the system
solely on our prediction of what it should be. In fact, the further we predict into the future, the less certain we are in the answer. If you thought an
hour had passed but according to your watch it’s only been 54 minutes, then you are probably more inclined to believe your watch and discount
your prediction.

This is exactly the thought process behind how we typically balance
the results from a noisy sensor and a flawed prediction to get a more
accurate and more reliable estimate of system state. The further we
predict into the future, the less confidence we have in the prediction
and the more we trust the measurement. Predictions over shorter
periods, however, are treated with more confidence and can be used
to challenge a measurement from a sensor.

This is what a Kalman filter does.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 9

How Estimation Filters Work

Kalman filters and other estimation filters can estimate the future state of a system because we give them a mathematical model. Using this
model, the filter propagates the state forward each time step. At some point, the true state is measured with a noisy sensor. Now, we have a
predicted state and a measured state, which are likely different. The question is, which one is correct? Well, since they both have uncertainty, the
question really is, how can we combine the two based on their relative uncertainties?

A Kalman filter determines how much trust, or weight, to apply to both the prediction and the measurement so that the corrected state is placed
exactly at the optimal location between the two. This balancing act hinges on a mathematical representation of uncertainty, which we get in the
form of covariance.

state at last
time step

predicted path

using a model

Prediction at future
time step

Corrected state

Measured state

Sensor
Sensor

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 10

Measurement Noise

The measurement noise covariance matrix, R, captures the expected uncertainty
that you have with the sensor measurements. The uncertainty in a measurement is
pretty easy to understand. There is a true state that we want to know the value of,
but unfortunately we have to measure it with a noisy sensor.

If we measured the state several times, we would see different results from the
sensor due to the random noise.

If the noise had zero mean, then the group of measurements would all be centered
around the true state. If the noise was Gaussian, then the measurements would
follow a normal probability distribution where the width of the distribution, or the
amount of noise in the sensor, is the variance.

For example, in radar, the measurement noise will vary between range and cross-
range measurements. As the range from the radar increases, the cross-range
measurement noise increases as well. Understanding the accuracy of a sensor is
best understood through a combination of modeling and field testing.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 11

Prediction Error

Let’s look at the uncertainty in predicting the state. Remember, to predict we start at an initial state and then use a mathematical model to
propagate that state into the future. There is uncertainty in this initial state before we even start the prediction process. This is captured in the
prediction error covariance matrix. This means that even with a perfect model, this starting uncertainty will never go away and the final prediction
will also have uncertainty associated with it. Imagine an airplane that is traveling exactly 400 mph and you are asked to predict where it will be in
one hour. You know that it will be 400 miles further than the starting position, but if you were uncertain of the starting position, then you’d have the
same amount of uncertainty in your answer.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 12

Process Noise

If the model isn’t perfect (which it never is!) the act of predicting causes additional uncertainty. The further into the future we have to predict, the
more uncertain it becomes and so the prediction error covariance grows over time. We specify how the uncertainty grows with the process noise
covariance matrix, Q. This matrix captures the uncertainty that comes from model discrepancies and unknown inputs into the system.

If the model is linear (or has been linearized prior to running it), a Gaussian probability distribution maintains its Gaussian shape throughout the
prediction. Therefore, the final prediction uncertainty is still Gaussian in nature. This is why Gaussian distributions are so important for
Kalman filters!

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 13

Managing Uncertainty

We can now frame all of these uncertainties into a single
coherent workflow.

1. Start with an initial state and its associated error covariance.
2. Propagate the state and error covariance into the future with a

model of the system. The error covariance grows based on the
specified process noise covariance.

3. Continue propagating the prediction each time step. The error
covariance will continue to grow, but it will maintain its
Gaussian shape.

4. When a measurement is available, it will have its own error with a
Gaussian distribution that is specified by the measurement
noise covariance.

Measurement

Prediction

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 14

Combining a Prediction and a Measurement

At this point, we have a predicted state with an uncertainty described by the prediction error covariance and we have a measured state with an
uncertainty described by the measurement noise covariance. Now, we’re back to our question of how to optimally combine these two estimates.
Here’s where the magic of the Kalman filter happens. To get the optimal corrected state, all we need to do is combine the two Gaussian
distributions together.

The combination of two Gaussian distributions is a third Gaussian
distribution! The resulting distribution represents the optimal corrected
state (the mean of the distribution) and the uncertainty in the result
(the covariance of the distribution). Lower covariance means you have
more confidence in the estimated state.

So, now we can think of a Kalman filter as an algorithm that just combines a prediction and its error distribution with a measurement and its
error distribution.

Optimal error covariance

Optimal state estimate

Part 2: Single-Object Tracking

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 16

Applying This Approach to Tracking

This brings us to single-object tracking. Figuring out where another object is isn’t all that different from figuring out where you are. We’re simply
trying to determine state, such as position or velocity, by fusing the results from sensors and models. The part that makes tracking harder is that
we usually have to do it with less information.

Next, we have to look at how the two steps of an estimation filter, prediction and correction, get more challenging when applied to a
tracked object.

What is the state of a remote object?What is the state of my system?

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 17

Measuring a Remote Object

Let’s start with the differences in the correction step. With tracking, measurements need to come from sensors such as a radar station or a
camera vision system. The types of sensors don’t fundamentally change the nature of the correction step. The idea is that we want to make a
measurement of the system state in a way that could be used to correct the uncertain predicted state. What generates that measurement isn’t as
important as the quality of the measurement and the update rate of the sensor.

There are many challenges in obtaining remote measurements. Some of the most common categories are:

• Inaccurate position measurements of detected objects
• Inaccurate estimates of the number of detected objects (e.g., two objects sensed as one because the sensor was unable to distinguish

between them)
• Missed detections due to occlusion and other scenario conditions and sensor limitations
• False positives (due to clutter)

Inaccurate Measurements Ambiguous Measurements Target Occlusion False Alarms

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 18

Predicting the Future State of a Tracked Object

It’s challenging to predict the future state of an object that you don’t
have control over.

Let’s demonstrate the prediction problem with a thought exercise.
Imagine an airplane that entered a radar station from the lower right,
and every few seconds the aircraft location is updated. This is all of the
information that you, or an estimation filter, have access to, and you
want to predict where the airplane will be at the next detection. You are
acting as the prediction step in the Kalman filter. Do you have a guess,
and how confident are you in that guess?

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 19

Predicting the Future State of a Tracked Object

It’s probably around the red X, right? It’s been moving at a pretty consistent velocity
before this so it makes sense that it’ll continue on this trajectory.

Now, what if the last few measurements looked like on the right
instead? You’d probably assume that the airplane was currently turning
and you’d have more confidence in a prediction that continued that
trend. And if the measurements after this continued along a straight
line, we might assume the object stopped turning and began to move
at a constant velocity again. So, we tend to look at some window of
past behavior to predict what the future behavior will be. How could we
code this kind of intuition into a filter?

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 20

The Anatomy of Prediction

Consider that motion comes from three things:

• The dynamics and kinematics of the system that carries the current state forward. The airplane already has some velocity, and it would
continue to move forward in a fairly predictable manner based on the physics of the plane traveling through the air.

• The commanded and known inputs into the system that add or remove energy and change the state. This would be things like adjusting the
engines or control surfaces. If the pilot rotates the control wheel to the right, you could predict that the state of the plane also moves to
the right.

• The inputs into the system that are unknown or random from the environment. This includes things like wind gusts and air density changes.

We need to take into account these three things when predicting a future state. The first and third bullet points are pretty much the same whether
you’re tracking an object or determining the state of your own system; however, the second bullet point is much harder for a tracked object. To
understand why, we have to talk about cooperative and uncooperative objects.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 21

Cooperative vs. Uncooperative Objects

If you were the one flying the plane, and you knew that you didn’t command any adjustments to the airplane—no control inputs—then you could
expect, with reasonable certainty, that the plane would maintain its current speed and direction.

A cooperative object will also share this type of information with the
tracking filter. Therefore, if you were tracking a cooperative airplane
the filter would still have access to the control inputs and the prediction
would be better off for it. In this way, tracking a cooperative aircraft is
pretty similar to determining the state of an aircraft that you’re flying
yourself.

Uncooperative objects, however, don’t share their control inputs and so
we have to find a different way to handle the state changes that come
from these additional unknown inputs.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 22

Addressing the Prediction Problem

The mathematical model of the system takes into account the dynamics (state transition matrix, F) and how the control inputs contribute (B
matrix). The unknown inputs are accounted for by setting the process noise (not shown in the equation).

We now know that for an uncooperative tracked object, the control inputs, uk, are unknown as well. Therefore, we’ve increased the number of
unknowns in our system and necessarily should have less confidence in our prediction. The airplane could turn or slow down or speed up; we
just don’t know. We can account for this increase in unknowns by increasing the process noise. This would cause the Kalman filter to trust the
prediction less and, in turn, trust the correction measurement more. This makes sense, right? If we have a hard time predicting where the airplane
will be, why not just believe the radar measurement when we get one and basically ignore most of the useless prediction?

Degrading the prediction diminishes the usefulness of the estimation filter, and in some situations we don’t have to do that because we can guess
how the object is maneuvering. We can use this guess to reduce some of the uncertainty that came from not knowing the control inputs.

Process noise (Qk) =
model uncertainty

Process noise (Qk) =
model uncertainty + control inputs

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 23

We Already Did This

Guessing the maneuver is essentially what we did when
we tried to predict where an airplane would be at the
next radar update. We mentally changed the internal
model in our head to switch between a constant velocity
and a constant turn depending on what the previous
measurements indicated. So, as long as we understand all
of the different types of motion an object can perform, then
we have a complete collection of mental models that we
can jump between.

Some motions, however, can be described as the combination of
two different motions. Something like a large radius turn could be the
combination of a smaller radius turn and moving in a straight line.
In this way, we don’t need a model for every single possible motion,
just enough models that can be used as the building blocks for every
expected motion.

This is how a human might approach the problem, but how do we give
our filter this capability?

Guessing a constant
velocity model

Guessing a constant
turn model

Constant velocity motion

Actual motion can be described
as a blend of constant velocity
and a tighter constant turn

Constant small radius motion

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 24

Additional Motion Models

The answer is to run more than one prediction model at a time. Basically, we can think of this as running several simultaneous Kalman filters,
each with a different prediction model and process noise. The idea is to have one model for each type of building block motion for the tracked
object. These would be models such as constant velocity, constant acceleration, or constant turning.

Each model predicts where the object will be if it follows that particular
motion. Then, when a measurement is available, it is compared with
each prediction individually. From this, claims can be made as to which
model most likely represents the true motion, and we can place more
trust in that model for the next prediction cycle. Of course, the filter
doesn’t have to trust one model fully. The result could be a blend of the
models, where the weights are based on the likelihood that that model
is correct.

Predict turning left

Predict straight

Measurement

Predict turning right
Initial estimate

Most likely models

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 25

Blending the Models

In this block diagram, each filter operates independently of the others to propagate the system state forward. The outputs of the set of filters
are blended to generate the estimated state of the system based on each model’s likelihood that it’s capturing the correct motion. When a
measurement is available, that measurement is used not only to correct the state in every filter but also to adjust the model likelihoods.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 26

The Transition Problem

his is the general idea behind multiple model algorithms, but there is still one more step to get to interacting multiple models. The problem we
have with the current way the filters are set up is that each one is operating on its own, isolated from the others. This means that for a model
that doesn’t represent the true motion, it’s going to be maintaining its own bad estimate of the system state and state covariance. Then, when
the object changes motion, and there is a transition to a new model, the filter is going to take some time to converge again. Furthermore, if the
underlying filter uses a nonlinear model, it may never converge. We are running the risk that every time there is a transition to a new motion, the
transient period will be longer than necessary while the filter tries to catch up.

Transient period when switching to a new motion model

Tracking error

Time

Model 1 Model 2 Model 1 Model 2 Model 1

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 27

Interacting Multiple Models (IMMs)

To fix this, we allow the models to interact. After a measurement, the overall filter gets an updated state and state covariance based on the
blending of the most likely models. At that point, every filter is reinitialized with a mixed estimate of state and covariance based on their probability
of “switching to” or “mixing with” each other. This is constantly correcting each individual filter to reduce its own residual error, even when it
doesn't represent the true motion of the object. In this way, an IMM filter can switch to an individual model without having to wait for it to
converge first.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 28

More Models!

You might be tempted to just run an IMM with dozens of models, something that could cover
every possible motion scenario, right? Well, the problem with this is that for every model you
run, you pay a price—namely, the computational cost of running a pile of predictions. And if it’s
a high-speed, real-time tracking situation, you may have only milliseconds to run the full filter. In
addition, there is also the pain of having to set up all of these filters and get the process noise
right.

Let's say computational speed is not a problem; you only care about accuracy. Well, having too
many models can hurt accuracy too. It increases the number of transitions between models,
and it’s harder to determine when that transition should take place if there are a lot of models
that represent very similar motions. Both of these contribute to a less optimal estimation.

So, unfortunately, you still have to approach this filter in a smart way and try to find the smallest
set of models that can adequately predict the possible motions for the object that you’re
tracking. Practically speaking, this tends to be less than 10 models, usually around just three or
four.

Models, all the way down!

Part 3: Multi-Object Tracking

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 30

Multiple-Object Tracking

What we’ve covered so far has addressed tracking a single object; however, we can apply that knowledge and build on it to track multiple objects
at the same time. Multi-object tracking is important for many applications including autonomous systems and surveillance systems. At first glance,
it doesn’t seem like tracking multiple objects is that much harder than tracking a single object. For example, can’t we just take the tracking
algorithm like the IMM from the last section and apply one to each object?

Yes, but unfortunately that’s not enough. We need to consider some additional things with multi-object tracking, and that’s what we’re going
to talk about in this section.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 31

The Difficulty of Multi-Object Tracking

Most of the difficultly in multi-object tracking comes down to dealing
with uncertainty. We have uncertainty in our predictions of the
paths that the objects are taking, and we have a set of uncertain
measurements or observations of the objects.

In the last section, we looked at tracking an airplane with a radar
station by predicting where the airplane would be in the future and
then correcting it with a noisy radar measurement. If we expand
this to multiple airplanes, we have an imperfect prediction for each
of them that we need to correct with their corresponding uncertain
measurement. This can be difficult in practice when the tracked objects
are clustered near each other or are unpredictably appearing and
disappearing within the tracked area.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 32

Data Association

This brings us to our first problem. We don’t want to correct the prediction of one object using the measurement from a different object. But if
there’s no identifying information that comes with the detection, such as an airplane tail number or some other unique signature, how do we
know which object we’ve just detected? For example, if all of the airplanes we are tracking have similar radar cross-sections, and this is all of the
information we have access to, how can we match an arbitrary detection with the appropriate tracked object?

If the objects are sparsely distributed and the observations are
relatively reliable, it would be a simple matter to claim that an
observation is of the predicted object that it’s closest to. In this case,
we would just assign the measurement to the nearest object and run
the estimation filter for it like we would when tracking a single object.

The tricky part, however, comes when predicted objects are close
enough to each other or our uncertainty is great enough that a
measurement could be of more than one object. Now we have some
figuring out to do. This is the data association problem. We have to
associate the detections with the right objects.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 33

Track Maintenance

The other problem that we need to consider is that the number of objects being tracked is not fixed. Sometimes tracks need to be created or
removed based on what we observe. This is the track maintenance problem.

We may add a new track when an airplane flies into the radar range,
and similarly we may delete a track when one flies out. But track
creation and deletion doesn’t just happen along the edge of the field of
view of the sensors: objects may appear and disappear anywhere. For
example, an airplane may take off or land within the radar range.

Or, as another example, if a self-driving car is tracking pedestrians as it
drives down a busy street, it has to be aware of new people and track
their walking direction as they come into view in front of the car and it
no longer has to care about the pedestrians that it has already passed.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 34

Uncertainty Complicates Track Maintenance

A basic way to approach track maintenance is to add a track whenever there is a detection that doesn’t match an existing object and to delete
a track if an existing object is not detected. It’s unfortunately not this straightforward, because remote sensors make their observations in a
probabilistic manner. Sometimes sensors have false positive measurements: they detect something that isn’t actually there. And, sometimes,
sensors fail a few times in a row to detect an object that is actually there. So, we need to be careful not to create tracks prematurely, which
clutters our view of what’s actually there, or to delete tracks prematurely.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 35

Overview of the Approach

These are the two questions that we want to answer in this section. When tracking multiple objects:
1. What are some ways that we can approach data association?
2. What are some ways that we can address track maintenance?

To answer these questions, we’re going to walk through each element of the multi-object tracking flow chart.

It’s important to note that while your particular tracking algorithm might not result in a functional structure that looks exactly like this, each of these
elements will almost certainly be present in your approach somewhere.

Figure adapted from Design and Analysis of Modern Tracking Systems by Samuel Blackman and Robert Popoli (Artech House Radar Library).

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 36

Observations

An observation, also known as a detection, occurs when the sensor
measures an object. The observation may contain measured quantities
like range, range rate, or elevation—values that represent the
kinematic nature of the object. But observations could also contain
measured attributes such as target type, ID number, and object shape.
For example, you might get the tail number of an aircraft or some
other identifying information with a radar measurement. Receiving a
tail number is pretty unambiguous for data association: just match the
observation ID with the track ID.

However, other types of attributes require some interpretation. For
example, you might collect micro-Doppler radar fluctuations and from
that be able to determine the type of aircraft you’re tracking, and the
uncertainty in the observation depends on the degree of separation
between the two objects. A helicopter might look completely different
from a jet aircraft because of the large rotating propellers, whereas a
bird and a model airplane might have similar Doppler signatures.

Time Time

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Doppler radar fluctuations

Helicopter? Jet aircraft?

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 37

Types of Observations

Other things to consider with observations is that if the tracked object is a point target, the sensor would report at most one detection. So, we
have to associate one detection with one object. But if the target object is large and the sensor has sufficient resolution, there may be more than
one detection per target and we need to consider this when determining how we’re going to handle associating this data. Also, if the resolution of
the sensor is low, two objects may exist within a single detection. In this case, both objects have been observed, so we don’t want to stop tracking
either of them, but they show up as only a single detection. Our track deletion algorithm will have to handle these situations.

For the rest of this section, we’re only going to talk about point targets—the case where we expect one detection for each tracked object.

Point targets Extended objects Merged detection

One-to-one Many-to-one One-to-many

One detection

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 38

Assignment

Assignment is the process of matching an observation to a tracked object (a track). Possibly the simplest assignment algorithm to think about is
the global nearest neighbor (GNN). This algorithm simply assigns a track to the nearest observation, accounting for all the observations
and tracks.

The interesting thing here is that it’s not necessarily the nearest Euclidean or geometric distance but the nearest probabilistic distance. One such
probabilistic metric is the Mahalanobis distance. Let’s look at why something like the Mahalanobis distance is a better indication of how "near" an
observation is to a track.

Nearest neighbor

Nearest neighbor

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 39

Probabilistic Distance

With a probability distribution, like we have with both our predictions and our measurements, the lowest Euclidean distance doesn’t always
indicate that a prediction and a measurement are the best fit. This is because we have more confidence in our predictions and measurements in
the directions with lower standard deviations.

For example, in this simple image, we have a prediction for the location of two
objects and a single detection that lies between them. If we used Euclidean
distance, we’d assume that the detection is of Object 2 since it’s closer

But if we look at the probability distributions of the two predictions, we can see that
it’s more probable that the detection is of Object 1. This is what the Mahalanobis
distance does for us. It’s the distance normalized by the standard deviation.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 40

Global Nearest Neighbor

It’s easy to see why an algorithm like the GNN works well when the
tracked objects are sparse relative to the uncertainty of the prediction
and observation.

For clustered objects, however, we can no longer be certain that the
nearest probabilistic distance is the right assignment. In fact, we often
can’t figure out any way to perfectly match one observation to one
track in these situations. Therefore, we need to investigate other types
of assignment algorithms.

GNN works well with sparse objects.

GNN doesn’t work well for clustered objects.

??

??

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 41

Joint Probabilistic Data Association

We saw how GNN works well for sparsely distributed objects, but for clustered objects the joint probabilistic data association algorithm (JPDA) will
be better. The JPDA doesn’t make a hard assignment between one observation and one track. Instead, it makes a weighted combination all of
the neighboring observations, with more probable observations being weighted more heavily than further ones. This is an improvement over GNN
because if there are two observations that could be the object, the JPDA won’t fully commit to one, possibly the wrong one. So, if the tracked
objects are clustered near each other, and the observations are all clustered near them too, this algorithm can handle that by blending a few of
them together rather than jumping around between wrong and right detections.

JPDA doesn’t commit to a single observation.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 42

Other Assignment Algorithms

There are more assignment algorithms than just these two, and you can create your own based on your tracking situation. However, the bottom
line with all of these algorithms is that you are trying to figure out how best to associate an observation with a track.

If you'd like to learn more about assignment algorithms, check out the Sensor Fusion and Tracking Toolbox documentation.

https://www.mathworks.com/help/fusion/multi-object-trackers.html

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 43

Deleting a Track

Not all observations get assigned, and not all tracks have observations. This is where track maintenance algorithms are used to delete and
create tracks. As we said before, we have to be careful here so we don’t do anything prematurely. Let’s start with one way to delete a track in a
conservative way. Rather than saying an object is gone as soon as we miss a single observation, we could delete a track only if it has not been
assigned to a detection at least M times during the last N updates. In this case, M and N are parameters that you can tune to your situation. So,
you might decide to delete a track if it hasn’t been detected at least three times in the last five updates.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 44

Creating a Track

Creating a track is a little trickier because you don’t know if a single un-assigned observation is a new object right away, but you still have to pay
attention to it so you can figure out over time if it’s worth tracking. One way to handle this is to create a tentative track—one that you maintain but
you don’t treat like a real object. Once the tentative track has been detected M times in the last N updates, you move the track to confirmed. You
can remove a tentative track with the same logic as removing a confirmed track. So in this way, you may have dozens of tentative tracks that you
are maintaining due to false positive measurements, but are deleted before they ever become confirmed.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 45

Running the Estimation Filters

With the tracks created and removed and with the observations assigned, we can run a set of estimation filters—one filter for each tracked object.
This part is identical to single-object tracking where we had choices like the interacting multiple model filter or the single model Kalman filter. The
predicted state of each tracked object that is assigned an observation (both tentative and confirmed objects) gets updated with its respective
observation. After that, the whole process starts anew. We get more observations, they are assigned to tracks, tracks are created and deleted,
and the filters run again.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 46

Gating

It would be a computational challenge to look at every observation and consider how likely it is to be assigned to every track. Therefore, we may
choose to ignore observations outside of a defined region for each track. This is called gating, and it’s a screening mechanism that determines
which detections are valid candidates to look at for assignment and which should be ignored.

For example, with JPDA, an observation that is far away from the
tracked object would statistically contribute very little to the overall
solution, so why spend the computational resources to calculate this
minuscule amount? If you’re tracking dozens or hundreds of objects,
this could be extremely wasteful. By ignoring observations outside of a
specific region—outside of this gate—we can speed up the assignment
process.

In this way, gating impacts the assignment algorithms so that they
consider only the observations that are worth looking at.

Ignore observations
outside of gate

Gate

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 47

Evaluating Tracking Performance

Before you start your own multi-object tracking system design, it is essential to devise a method to evaluate performance against ground-truth
scenarios. You can build these types of scenarios in MATLAB® and Sensor Fusion and Tracking Toolbox™.

You can use sensor models to augment data from real sensors and build scenarios to focus testing on the edge cases that stress your algorithm
performance.

Synthesizing sensor data and developing tracking scenarios for system verification.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/sensor-fusion-and-tracking.html

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 48

Evaluating Tracking Performance continued

With ground-truth scenarios available, the analysis of track metrics, including positional accuracy and the quality of data association, is possible.
The accuracy of the assignment and metrics are evaluated by comparing the state of the tracking results with the ground truth.

Integrated metrics like the optimal subpattern association (OSPA)
and the generalized optimal subpattern association (GOSPA) are
frequently used by the autonomous systems community as a measure
of tracker performance.

The main benefit of using integrated metrics is that they support
automated testing, which is crucial in running the many thousands
of test cases needed for verification and validation of autonomous
systems. The integrated metrics provide a single score that can easily
be compared with test criteria to provide a pass/fail result. In addition,
if configured correctly, both OSPA and GOSPA can be broken into their
components to enable quick investigation of failures.

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 49

Just the Beginning

As you can see, multi-object tracking, along with sensor
fusion, is at the heart of the perception component of
autonomous and surveillance systems. This helps makes
it an interesting and rewarding topic to learn.

Explore examples to get started.

https://www.mathworks.com/help/fusion/examples.html

Multi-Object Tracking for Autonomous Systems and Surveillance Systems | 50

Glossary

Clutter: Undesirable detections typically returned from environmental conditions in a sensor’s field of regard.

Detection/observation: Observed or measured quantities reported from a sensor. These may contain measured kinematic quantities (e.g., range, line of
sight, and range-rate, and for extended objects shape and orientation) and measured attributes (e.g., target type, identification number), in addition to the
time the measurements are obtained.

False alarm: A detection that the sensor reports where a true object does not exist. False alarms introduce additional possible assignments and therefore
increase the complexity of data assignment.

Gating: Screening mechanism used to determine which detections are valid candidates to update existing tracks. Gates help to reduce unnecessary
computations in track-to-detection assignment.

Sensor resolution: Determines the sensor’s ability to distinguish between detections from two targets.

Track confirmation: The use of new detections to confirmation that a new track is estimating a real object. This is done by a track logic; for example,
M-out-of-N logic.

Track deletion: Deletion of a track if it is not updated within some reasonable time.

Track initiation: Creation of a new track. When a detection is not assigned to an existing track, a new track might need to be created. Usually, a track is
initiated as tentative, indicating that the tracker cannot ascertain whether it estimates a real object or a false alarm.

Track logic: Algorithm used by the tracker to define the rules of confirmation and deletion of tracks.

Track maintenance: A multi-object tracker function that includes track initiation, confirmation, and deletion.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for
a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. 7/20

Learn More

Sensor Fusion and Tracking Toolbox – Product Overview
Understanding Sensor Fusion and Tracking – Video Series
Multi-Object Trackers – Documentation

https://www.mathworks.com/products/sensor-fusion-and-tracking.html
https://www.mathworks.com/videos/series/understanding-sensor-fusion-and-tracking.html
https://www.mathworks.com/help/fusion/multi-object-trackers.html

