Control Algorithm Modeling Guidelines
Using MATLAB®, Simulink®, and
Stateflow®

Version 5.0

MathWorks Advisory Board (MAB)

History

Date Revision

February 2001 Initial document Release, Version 1.00

April 2007 Version 2.00, Update release

July 2011 Version 2.20, Update release

August 2012 Version 3.0, Update release

March 2020 Version 5.0, MAAB guidelines revised and reintroduced as
the MathWorks Advisory Board (MAB) Modeling Guidelines

Trademarks
MATLAB, Simulink, and Stateflow are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/trademarks

Table of Contents

1. Introduction
1.1. Purpose of the guidelines

1.2. Guideline template

Rule ID

Sub ID Recommendations
MATLAB® Versions

Sub ID
Title

Description
Custom Parameters

Rational
See Also

2. Naming Conventions

2.1. General Conventions

ar_0001: Usable characters for file names
ar_0002: Usable characters for folder names

jc_0241:
jc_0242:

2.2. Content Conventions
jc_0201:
jc_0231:
jc_0211:
jc_0243:
jc_0247:
jc_0244:
jc_0222:
jc_0232:
jc_0245:
jc_0246:
jc_0795:
jc_0796:
jc_0791:
jc_0792:
jc_0700:

Length restriction for model file names
Length restriction for folder names

Usable characters for subsystem names
Usable characters for block names

Usable characters for Inport block and Outport block
Length restriction for subsystem names

Length restriction for block names

Length restriction for Inport and Outport names
Usable characters for signal/bus names
Usable characters for parameter names
Length restriction for signal and bus names
Length restriction for parameter names

Usable characters for Stateflow data names
Length restriction for Stateflow data names
Duplicate data name definitions

Unused data

Unused data in Stateflow block

na_0019: Restricted Variable Names

3. Simulink

3.1. Configuration Parameters
jc_0011:
jc_0642:
jc_0806:
jc_0021:

3.2. Diagram appearance

Optimization parameters for Boolean data types
Integer rounding mode setting

Detecting incorrect calculation results

Model diagnostic settings

na_0004: Simulink model appearance settings
db_0043: Model font and font size

jm_0002: Block resizing

db_0142: Position of block names

11
12
13
13

14
15
17
19
19
19
20
20
21
22
22
23
23
24
24
25

26
26
27
28

28
30
30
31

jc_0061:

Display of block names

db_0140: Display of block parameters

jc_0603:
jc_0604:

Model description
Using Block Shadow

db_0081: Unconnected signals / blocks
db_0032: Signal line connections
db_0141: Signal flow in Simulink models

jc_0110:
jc_0171:
jc_0602:
jc_0281:

Direction of block

Clarification of connections between structural subsystems
Consistency in model element names

Trigger signal names

db_0143: Usable block types in model hierarchy
db_0144: Use of subsystems

jc_0653:

Delay block layout in feedback loops

hd_0001: Prohibited Simulink sinks

32
33
34
35
36
37
38
41
42
44
46
49
50
52
53

K TS 1T 1 - | SOOI 54
na_0010: Usage of vector and bus signals

jc_0008:
jc_0009:

Definition of signal names
Signal name propagation

db_0097: Position of labels for signals and busses
na_0008: Display of labels on signals

na_0009: Entry versus propagation of signal labels
db_0110: Block parameters

db_0112: Usage of index

jc_0645:
jc_0641:
jc_0643:
jc_0644:

3.4. Conditional subsystem relations

Parameter definition for calibration
Sample time setting

Fixed-point setting

Type setting

db_0146: Block layout in conditional subsystems

jc_0640:
jc_0659:

Initial value settings for Outport blocks in conditional subsystems
Usage restrictions of signal lines input to Merge blocks

na_0003: Usage of If blocks

jc_0656:

Usage of Conditional Control blocks

54
54
55
61
62
63
64
64
68
69
69
70

71
72
74
75
76

jc_0657: Retention of output value based on conditional control flow blocks and Merge blocks 77

3.5. Operation blocks

na_0002: Appropriate usage of basic logical and numerical operations

jc_0121:
jc_0610:
jc_0611:
jc_0794:
jc_0805:
jc_0622:
jc_0621:
jc_0131:
jc_0800:
jc_0626:
jc_0623:
jc_0624:
jc_0627:
jc_0628:
jc_0651:

3.6. Other blocks

Usage of add and subtraction blocks

Operator order for multiplication and division blocks
Input sign for multiplication and division blocks
Division in Simulink

Numerical operation block inputs

Usage of Fcn blocks

Usage of Logical Operator blocks

Usage of Relational Operator blocks

Comparing floating-point types in Simulink

Usage of Lookup Table blocks

Usage of continuous-time Delay blocks and discrete-time Delay blocks
Usage of Tapped Delay blocks/Delay blocks
Usage of Discrete-Time Integrator blocks

Usage of Saturation blocks

Implementing a type conversion

db_0042: Usage of Inport and Outport blocks

jc_0081:

Inport/Outport block icon display

81
84
86
88
88
89
96
96
97
98
98
99
100
101
104
104

na_0011: Scope of Goto/From blocks 109

jc_0161: Definition of Data Store Memory blocks 109
jc_0141: Usage of Switch blocks 109
jc_0650: Block input/output data type with switching function 110
jc_0630: Usage of Multiport Switch blocks 111
na_0020: Number of inputs to variant subsystems 113
na_0036: Default variant 114
na_0037: Use of single variable for variant condition 115
A, SEALETIOW .. 116
4.1, Stateflow DIOCKS/AAta/EVENTScocveiiii e 116
db_0122: Stateflow and Simulink interface signals and parameters 116
db_0123: Stateflow port names 117
db_0125: Stateflow local data 118
db_0126: Defining Stateflow events 122
jc_0701: Usable number for first index 124
jc_0712: Execution timing for default transition path 126
jc_0722: Local data definition in parallel states 127
4.2, StAtEflOW GIAGTAIM ...ttt sttt be e e sa b e e e sbb e e sabeesabe e e sabeesbeeanneeas 128
jc_0797: Unconnected transitions / states / connective junctions 128
db_0137: States in state machines 130
jc_0721: Usage of parallel states 131
db_0129: Stateflow transition appearance 132
jc_0531: Default transition 135
jc_0723: Prohibited direct transition from external state to child state 142
jc_0751: Backtracking prevention in state transition 144
jc_0760: Starting point of internal transition 145
jc_0763: Usage of multiple internal transitions 147
jc_0762: Prohibition of state action and flow chart combination 150
db_0132: Transitions in flow charts 152
jc_0773: Unconditional transition of a flow chart 154
jc_0775: Terminating junctions in flow charts 157
jc_0738: Usage of Stateflow comments 158
4.3. Conditional tranSitionN / ACIONc.eiiiii it 160
jc_0790: Action language of Chart block 160
jc_0702: Use of named Stateflow parameters/constants 161
jm_0011: Pointers in Stateflow 162
jc_0491: Reuse of Stateflow data 163
jm_0012: Usage restrictions of events and broadcasting events 165
jc_0733: Order of state action types 169
jc_0734: Number of state action types 170
jc_0740: Limitation on use of exit state action 171
jc_0741: Timing to update data used in state chart transition conditions 172
jc_0772: Execution order and transition conditions of transition lines 173
jc_0753: Condition actions and transition actions in Stateflow 175
jc_0711: Division in Stateflow 177
db_0127: Limitation on MATLAB commands in Stateflow blocks 180
jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow 182
na_0001: Standard usage of Stateflow operators 183
jc_0655: Prohibition of logical value comparison in Stateflow 186
jc_0451: Use of unary minus on unsigned integers 187
jc_0802: Prohibited use of implicit type casting in Stateflow 188
jc_0803: Passing values to library functions 190
T - o= o [T ot £ o) 4o o F U TP OPPTOUPRTUUPTPPR 192

4.5.

5.1.

5.2.

53.

71.

7.2,

7.3.

7.4,

7.5.

7.6.

jc_0732: Distinction between state names, data names, and event names
jc_0730: Unigue state name in Stateflow blocks

jc_0731: State name format

jc_0501: Line breaks in state labels

jc_0736: Uniform indentations in Stateflow blocks

jc_0739: Describing text inside states

jc_0770: Position of transition label

jc_0771: Comment position in transition labels

jc_0752: Condition action in transition label

jc_0774: Comments for through transition

Y TR oLl E= T L=To LU F T

jc_0511: Return values from a graphical function

jc_0804: Prohibited use of recursive calls with graphical functions
na_0042: Usage of Simulink functions

na_0039: Limitation on Simulink functions in Chart blocks

MATLAB o

MATLAB ADPEAIANCEeiiieieiiieiiitieeeeeeeeeeeeeeeeeeeetees

na_0018: Number of nested if/felse and case statements
na_0025: MATLAB Function headers

MATLAB Data and OPerationsSc.uuviiieeeeiiiiiiieieee e e ssieree e e e e e s s st e e e e e e s s nanrreneeaeeenns

na_0024: Shared data in MATLAB functions
na_0031: Definition of default enumerated value
na_0034: MATLAB Function block input/output settings

MATLAB USAQ .ttt e e ettt e e e e ettt et s e e et e eerabenaeeaaaeenes

na_0016: Source lines of MATALAB Functions

na_0017: Number of called function levels

na_0021: Strings in MATLAB functions

na_0022: Recommended patters for Switch/Case statements
jc_0801: Prohibited use of the /* and */ comment symbols

GlOS S AIY et aeeaerana

Determining Guideline Operation RUleS..........ccccceeveiieiiviieiiiineenn.
Process Definition and Development ENVironment..........ccccoooviiiiiiiiiieeniniiiiceeeeene
MATLAB/SIMUIINK VEISION ..oeiiiiiiiiiiit et
MATLAB/SIMUIINK SEHNGS wovviiiiiiciieee e e e e e e e e e e
USADIE BIOCKS ...ttt

Using Optimization and Configuration Parameters.........ccccccceeeiviiciiieeeee e s

Optimization parameters
Configuration Parameters

Applying Guidelines fOr @ ProjJeCT.......coi e

Using the model analysis process when applying guidelines
Adoption of the guideline rule and process settings

Setting the guideline rule application field and the clarifying the exclusion condition

Parameter recommendations in the guidelines

6

192
193
194
194
195
197
199
201
204
204

214
214
215
216
217

222
222

222
223
223
223

8.

8.1.

8.2.

8.3.

9.1.

9.2.

9.3.

9.4.

9.5.

Verifying adherence to the guidelines
Modifying adherence to a guideline

Model Architecture EXplanationcccoooieiiiriiiiiiiiieee e e e

Roles of SIMUliNK and StatEflOWcouueiiee e e e e

Hierarchical Structure of a Controller MOdel ...
Types of Hierarchies
Top Layer
Function Layers and Sub-Function Layers
Schedule Layers
Control Flow Layers
Selection Layers
Data Flow Layers

Relationship between Simulink Models and Embedded Implementationccccccoeevvvneee..

7] =T o [o3 =2 USRS

SIMUIINK FUNCLIONS oottt sttt ettt e e sttt e e st e e e e snbbe e e e anneeeas
SEAtEfIOW FUNCLIONS ittt ettt e ettt e e e nbbe e e e snseeeas
T A =TT 4 Lo o [PPSR PSPPSR
Y TEST o= E= T =T o T PR PP PRSPPI

Modeling Knowledge / Usage Patternsccuvieiiiei it e et e e e e e snrnanee e
Appendix 1: Simulink Patterns for If, elseif, else Constructs
Appendix 2: Simulink Patterns for Case Constructs
Appendix 3: Simulink Patterns for Logical Constructs
Appendix 4: Simulink Patterns for Vector Signals
Appendix 5: Using Switch and if-then-else Action Subsystems
Appendix 6: Use of if, elseif, else Action Subsystem to Replace Multiple Switches
Appendix 7: Usage Rules for Action Subsystems Using Conditional Control Flow
Appendix 8: Tests for Information From Errors
Appendix 9: Flow Chart Patterns for Conditions
Appendix 10: Flow Chart Patterns for Condition Actions
Appendix 11: Flow Chart Patterns for if Constructs
Appendix 12: Flow Chart Patterns for Case Constructs
Appendix 13: Flow Chart Patterns for Loop Constructs
Appendix 14: State Machine Patterns for Conditions
Appendix 15: State Machine Patterns for Transition Actions
Appendix 16: Limiting State Layering
Appendix 17: Number of States per Stateflow Container
Appendix 18: Function Call from Stateflow
Appendix 19: Function Types Available in Stateflow

226
226
227
228
229
230
231

251
251
252
253
255
256
260
263
264
265
266
268
268
270
270
271
271
272
272

1. Introduction

1.1. Purpose of the guidelines

MathWorks Advisory Board (MAB) guidelines stipulate important basic rules for modeling in Simulink
and Stateflow. The overall purpose of these modeling guidelines is to allow for a simple, common
understanding by modelers and consumers of control system models.

The main objectives of these guidelines are:
e Readability
- Improve graphical understandability
- Improve readability of functional analysis
- Prevent connection mistakes
- Comments, etc.
e Simulation and verification
- Mechanism to enable simulation
- Testability
e Code Generation
- Improve the efficiency of code generation (ROM, RAM efficiency)
- Ensure the robustness of generated code

Model runtime errors and recommendations that cannot be implemented are outside of the scope of
these rules.

The chapters of this document provide the following information:

Chapter 1 — Intent of these guidelines and an overview of the guideline template.

Chapters 2 through 5 — Guideline rules

Chapter 6 — Glossary

Chapter 7 — Process for evaluating and implementing guidelines for your project

Chapters 8 — Model architecture and operations that are required for advanced users.

Chapter 9 — Additional explanation and modelling information for Simulink/Stateflow functions, including
modeling patterns.

1.2. Guideline template

Guidelines are documented by using a standard template. Use of this template is recommended when
creating original guidelines.

Note: This template specifies the minimum requirements that are needed to understand a guideline.
New items can be added to the template as long as they do not duplicate existing information.

Rule ID: Title xx_nnnn: Title of the guideline (unique, short)
Sub ID NA-MAAB: X, Y, Z
Recommendations JMAAB: X, Y, z
MATLAB® Version All
RX, RY, RZ
RX and earlier
RX and later
RX through RY
Rule
Sub ID Description Custom Parameter
(Description of the guideline) (Parameter Name)
Xn [Correct] (Correctimage and comment in description)
[Incorrect] (Error image and comment in description)
Rationale

Sub ID Description

XN (Rationale)
See Also

e XYZ
Rule ID

A rule ID, which is used to identify the guideline, consists of two lower case letters and a four-digit
number. The letter and number combination is separated by an underscore. For example, xx_nnnn. A
rule ID is permanent and will not change.

Note: The two-letters in the rule ID identify the guideline author. db, jm, hd, ar are used for Ver 1.0
guidelines. na and jc are used for guidelines created from Ver 2.0 to present.

Sub ID Recommendations

Specifies guideline sub IDs that are recommended for use by the NA-MAAB (North American MathWorks
Automotive Advisory Board) and JIMAAB (Japan MathWorks Automotive Advisory Board) modeling
standards organizations. Each organization is a region-specific consortium of OEMs and suppliers; NA-
MAAB represents North America and Europe. JMAAB represents Japan.

MATLAB® Versions

MAB guidelines support all versions of MATLAB and Simulink products. When a rule applies only to a
specific version(s), the version is identified in the MATLAB Version field by using one of these formats:
e All — All versions of MATLAB

e RX, RY, RZ — A specific version of MATLAB
e RX and earlier — Versions of MATLAB until version RX
e RX and later — Versions of MATLAB from version RX to the current version
e RXthrough RY — Versions of MATLAB between RX and RY
Sub ID

Specifies the condition(s) of the rule. There can be multiple sub IDs per rule ID, which are designated as
either:
e Selectable — Consist of one lower-case letter (alphabetical order). The choice of whether to
adopt a selectable sub ID is left to the user.
e Mutually Exclusive — Consist of one lower case letter (alphabetical order) and a single-digit
number. When choosing to accept or reject a mutually exclusive sub ID, only one option can be
selected.

Example
xy_0000 — xy 0000a Selectable (user’s choice)
— Xy_0000bl Mutually Exclusive (if using, choose from xy_0000b1 or xy_0000b2)
— Xy_0000b2 Mutually Exclusive (if using, choose from xy_0000b1 or xy_0000b2)

Title
The title is unique and provides a brief description of the guidelines.

Description
The description uses figures and tables to provide details for the guideline rules.

This table identifies characters that are used in the description
Description content Explanation Example

[l (square brackets) Block name [Outport]

Block parameter name
{} (curly brackets) Stateflow parameter name {Display propagated signal}
Configuration parameter settings

9

wn

(double quotation marks)

Parameter setting value

uon

Custom Parameters

For rules that include custom parameters, the chosen value is specific for the project with regard to the

item being described.

Example of objects and values are provided in the description field. However, a project’s processes,
condition of the control target, and skill levels of the engineers should be comprehensively evaluated

when specifying a custom parameter.

Rational

The rationale provides reasoning for the use of the guideline with regard to readability, verification

efficiency, efficiency of code after code generation, etc.

See

This optional section is only available in guidelines that have additional reference information that may

Also

be helpful to better understand the guideline.

10

2. Naming Conventions

2.1. General Conventions

ar_0001: Usable characters for file names

Rule ID: Title ar_0001: Usable characters for file names

Sub ID NA-MAAB: a, b, c,d, e, f, g

Recommendations JMAAB: a, b, c,d, e, f, g

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Only these character types shall be used in file names: | File (extension)

- single-byte alphanumeric characters (a-z, A-Z, 0-9)
- single-byte underscore ()

Line breaks, single-byte spaces, double-byte
characters, and control characters shall not be used.

File types that are checked for model and MATLAB
files shall be set in the project settings.

[Incorrect]
MAB Model.slx Single-byte spaces are used.
JMAAB £%7E.m Double-byte characters are used.

NA-MAABModel.p
JMAAB(Model).mdl

b The file name shall not use numbers at the beginning. File (extension)

[Incorrect]
001_JMAABModel.slx

c The file name shall not use underscores at the File (extension)
beginning.
[Incorrect])
_JMAABModel.slx

Symbol characters are used.

d The file name shall not use an underscore at the end. File (extension)
[Incorrect])
MABModel_.slx
e The file name shall not use consecutive underscores. File (extension)

[Incorrect]
JMAAB__ Model.slx

f The file name shall not consist solely of a single File (extension)
reserved MATLAB word

[Incorrect]
ans.slx
double.slx
week.slx
zero.slx, etc.

g File names on the MATLAB path shall not be identical. | File (extension)

[Incorrect)
Files with the same name are saved to the folder that goes through the MATLAB path.

11

Rationale
Sub ID

abcf

de

- folder01
(& IMAABModel.slx
[*& sample.slx

- folderl2
[*& JMAABModel.shx
folder03

Description
- Readability is impaired.
- Deviation from the rule can cause unexpected issues.
- Readability is impaired.
- If there are multiple files with the same name, the one higher on the path is loaded.
As a result, unnecessary files might be included.
- Readability is impaired.
- Deviation from the rule can cause unexpected issues.

ar_0002: Usable characters for folder names

Rule ID: Title ar_0002: Usable characters for folder names
Sub ID NA-MAAB: a, b, c,d, e, f
Recommendations JMAAB: a, b, c, d, e, f
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Only these character types shall be used in folder -
names:

- Single-byte alphanumeric characters (a-z, A-Z, 0-9)
- Single-byte underscore ()

Line breaks, single-byte spaces, double-byte
characters, and control characters shall not be used.

[Incorrect]

a | IMAAB
IMAAB-Guidelines Symbol characters are used.
Model Folder Single-byte spaces are used.
EFILEE Double-byte characters are used.

The folder name shall not use numbers at the -
beginning.
[Incorrect]
4 IMAAB
01_ModelFolder

The folder name shall not use underscores at the -
beginning.

[Incorrect]
4 IMAAB
_ModelFolder

The folder name shall not use underscores at the end. -

12

[Incorrect]
4 IMAAB
ModelFolder_

e The folder name shall not use consecutive -
underscores.

[Incorrect]
4 IMAAB

Model_ Folder

f The folder name shall not consist solely of a single -
reserved MATLAB word.

[Incorrect]

a JMAAB

ans

double

weelk

Zero
Rationale
Sub ID Description
abedef | Readability is impaired.

- Deviation from the rule can cause unexpected issues.

jc_0241: Length restriction for model file names

Rule ID: Title jc_0241: Length restriction for model file names

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Model file name length shall be a maximum of 63 Maximum model file

characters (not including dots and extension). name length

Rationale

Sub ID Description
a - Possible that a long file name cannot be referred to in the model reference.

jc_0242: Length restriction for folder names

Rule ID: Title jc_0242: Length restriction for folder names

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Folder name length shall be a maximum of 63 Maximum folder name

13

Rationale
Sub ID
a

characters.

Description

length

- Possible that the full path name cannot be display in the user interface.

2.2. Content Conventions

jc_0201: Usable characters for subsystem names

Rule
Sub ID
a

Rule ID: Title
Sub ID Recommendations

MATLAB® Version

jc_0201: Usable characters for subsystem names

NA-MAAB: a, b, c, d, e, f

JMAAB: a, b, c, d, e, f

All

Description

Only these character types shall be used in structural -
subsystem names:
- Single-byte alphanumeric characters (a-z, A-Z, 0-9)
- Single-byte underscore ()

Line breaks, single-byte spaces, double-byte

characters, and control characters shall not be used.

[Incorrect]

Int Outl
Inl
Suksystem 01
In? Out?
HIUaTh
I3 Out3
SubsystenO1
Ind Cute
Ind Outd
Subsystern(MNo. 1]

Custom Parameter

’ - Uses single-byte spaces.

Dutl

Uses double-byte characters.

Uses symbol characters.

A structural subsystem name shall not use numbers at -

the beginning.
[Incorrect]

C1)r—»

In1

A structural subsystem name shall not use an

Outt——»(1)

N Subsystem

underscore at the beginning.

[Incorrect]

Ol

14

(T outtt——»(T)

In1 Ot 1
1 Subsystem

d A structural subsystem name shall not use an -
underscore at the end.

[Incorrect]

)i Yy E—e

I Ot
Subsystem.
e A structural subsystem name shall not use consecutive | -
underscores.

[Incorrect]

)i Yy E—e

In1 Out]
Subsystermn_ 01

f A structural subsystem name shall not consist solely of | -
a single reserved MATLAB word.

[Incorrect]

TD)—»{in outh——»(1)

I Ot
ars
Rationale
Sub ID Description
abf - Cannot generate code using the configured structural subsystem name.
cde - May not be able to generate code using the configured structural subsystem name.

jc_0231: Usable characters for block names

Rule ID: Title jc_0231: Usable characters for block names
Sub ID NA-MAAB: a, b, c, d, e, f
Recommendations JMAAB: a, b, c,d, e, f
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Only these character types shall be used for basic -
block names:
- Single-byte alphanumeric characters (a-z, A-Z, 0-9)
- Single-byte underscore ()
Exception: [Inport] and [Outport]

15

Line breaks and single-byte spaces shall not be
permitted when adding a new block name. However,
they shall be permitted when used initially as a block
name that is saved in the Simulink library.

Double-byte characters and control characters shall
not be used.

[Correct]
Block names registered in the Simulink library.
1-D T(u
—» int8 ——P —
Data Type Corversion
10 Lockup
Table

[Incorrect]

’ int8 Single-byte spaces are used.

comvert to int3

’ int8 Double-byte characters are used.
intSCZT R
—» int8 —

Data—Tyre—Conversion
Symbol characters are used.

—» int8 —

DataT ypeCor uintS—>intS)

Basic block names shall not use numbers at the -
beginning.
Exception: [Inport] and [Outport]

[Incorrect]

—> int8 —

N CorvertT olntB

Basic block names shall not use underscores at the -
beginning.
Exception: [Inport] and [Outport]

[Incorrect]

— int8 —

_CornvertT olntB

Basic block names shall not use underscores at the -
end.
Exception: [Inport] and [Outport]

16

Rationale
Sub ID

ab

ce

[Incorrect]

— int8 —

ConvertTolnts

Basic block names shall not use consecutive -
underscores.
Exception: [Inport] and [Outport]

[Incorrect]

—p int8 ——

Corvert] o__nt8

Basic block names shall not consist solely of a single -
reserved MATLAB word.
Exception: [Inport] and [Outport]

[Incorrect]

— double

daoukle

Description

- Deviation from the rule can make it difficult to maintain the integrity of the model
and code.

- Readability is impaired.

- Readability is impaired.
Underscores can be used to separate words. However, they are typically used
as word breaks and can cause misunderstanding in the description.

- Readability is impaired.

- Deviation from the rule can cause unexpected issues.

jc_0211: Usable characters for Inport block and Outport block

Rule ID: Title jc_0211: Usable characters for Inport block and Outport block

Sub ID NA-MAAB: a, b, c,d, e, f

Recommendations JMAAB: a, b, c, d, e, f

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Only these character types shall be used in [Inport] -

and [Outport] block names:
- Single-byte alphanumeric characters (a-z, A-Z, 0-9)
- Single-byte underscore ()

Line breaks, single-byte spaces, double-byte
characters, and control characters shall not be used.

[Incorrect]

17

¢

Single-byte spaces are used.
ot signal

g

Double-byte characters are used.

O

3
=+
onji
J

a

lhport—signal?
Symbol characters are used.

.

Signallinport)

b [Inport] and [Outport] block names shall not use
numbers at the beginning.

[Incorrect]

:

o1

C [Inport] and [Outport] block names shall not use
underscores at the beginning.

[Incorrect]

—

nport

:

_Inport

d [Inport] and [Outport] block names shall not use
underscores at the end.

[Incorrect]

:

Ihport

e [Inport] and [Outport] block names shall not use
consecutive underscores.

[Incorrect]

9

Ihport __signal

[Inport] and [Outport] block names shall not consist
solely of a single reserved MATLAB word.

[Incorrect]

:

(=g
Rationale
Sub ID Description
ab - Deviation from the rule can make it difficult to maintain the integrity of the model

and code.

18

ce Readability is impaired.
- Readability is impaired.
d - Underscores can be used to separate words. However, they are typically used
as word breaks and can cause misunderstanding in the description.
- Readability is impaired.
- Deviation from the rule can cause unexpected issues.

jc_0243: Length restriction for subsystem names

Rule ID: Title jc_0243: Length restriction for subsystem names

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Structural subsystem name length shall be a Maximum subsystem

maximum of 63 characters. name length

Rationale

Sub ID Description
a - Code generation may not be possible.

jc_0247: Length restriction for block names

Rule ID: Title jc_0247: Length restriction for block names
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Basic block name length shall be a maximum of 63 Maximum block name
characters. length
Exception: [Inport] and [Outport]
Rationale
Sub ID Description
a - Code generation may not be possible.

jc_0244: Length restriction for Inport and Outport names

Rule ID: Title jc_0244: Length restriction for Inport and Outport names
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Inport] and [Outport] name length shall be a Maximum Inport block
maximum of 63 characters. name length
Maximum Outport block

19

name length
Rationale
Sub ID Description
a - Code generation may not be possible.

jc_0222: Usable characters for signal/bus names

Rule ID: Title jc_0222: Usable characters for signal/bus names
Sub ID NA-MAAB: a, b, c,d, e, f
Recommendations JMAAB: a, b, c, d, e, f
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Only these character types shall be used in signal and -
bus names:
- Single-byte alphanumeric characters (a-z, A-Z, 0-9)
- Single-byte underscore ()
Line breaks, single-byte spaces, double-byte
characters, and control characters shall not be used.
b Signal and bus names shall not use numbers at the -
beginning.
C The signal or bus nhame shall not use underscores at -
the beginning.
d Signal and bus names shall not use underscores at the | -
end.
e Signal and bus names shall not use consecutive -
underscores.
f Signal and bus names shall not consist solely of a -
single reserved MATLAB word.
Rationale
Sub ID Description
ab - Deviation from the rule can make it difficult to maintain the integrity of the model
and code.
ce - Readability is impaired.
- Readability is impaired.
d Underscores can be used to separate words. However, they are typically used
as word breaks and can cause misunderstanding in the description..
f - Readability is impaired.
- Deviation from the rule can cause unexpected issues.

jc_0232: Usable characters for parameter names

Rule ID: Title jc_0232: Usable characters for parameter names
Sub ID NA-MAAB: d, e

Recommendations JMAAB: a, b,c,d, e, f

MATLAB® Version All

Rule

20

Sub ID

Rationale
Sub ID

ab

ce

Description

Only these character types shall be used in parameter
names:
- Single-byte alphanumeric characters (a-z, A-Z, 0-9)
- Single-byte underscore ()

Line break, single-byte space, double-byte
characters, and control characters shall not be used.
The parameter name shall not use numbers at the
beginning.

The parameter name shall not use underscores at the
beginning.

The parameter name shall not use underscores at the
end.

The parameter name shall not use consecutive
underscores.

The parameter name shall not consist solely of a
single reserved MATLAB word.

Description

Custom Parameter

- Deviation from the rule can make it difficult to maintain the integrity of the model

and code.
- Readability is impaired.
- Readability is impaired.

Underscores can be used to separate words. However, they are typically used
as word breaks and can cause misunderstanding in the description.

- Readability is impaired. Deviation from the rule can cause unexpected issues.

jc_0245: Length restriction for signal and bus names

characters.

[Correct]
) Ve sz GontrT Egpm o)

Custom Parameter

Rule ID: Title jc_0245: Length restriction for signal and bus names
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description
a Signal and bus name length shall be a maximum of 63 | Maximum signal name

length
Maximum bus name
length

21

[Correct])
The hierarchical signal name length
(full path bus_all.bus_name_finla.bus_name2.abcdefghijkimn) is less than or
equal to 63 characters.
bus_namel >
bus_name finla
bus_all
<abcdefghijklmn> oo
bus_name2
bus_name3
Rationale
Sub ID Description
a - Code generation may not be possible.

jc_0246: Length restriction for parameter names

Rule ID: Title jc_0246: Length restriction for parameter names

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Parameter name length shall be a maximum of 63 Maximum parameter

characters. name length

Rationale

Sub ID Description
a - Code generation may not be possible.

jc_0795: Usable characters for Stateflow data names

Rule ID: Title jc_0795: Usable characters for Stateflow data names
Sub ID NA-MAAB: a, b, c, d

Recommendations JMAAB: a, b, c, d

MATLAB® Version All

22

Rule
Sub ID Description Custom Parameter
a Stateflow data {name} shall not use underscores at the | -
beginning.
b Stateflow data {name} shall not use underscores at the | -
end.
c Stateflow data {name} shall not use consecutive -
underscores.
d Stateflow data {name} shall not consist solely of a -
single reserved MATLAB word.
Rationale
Sub ID Description
abed - Readability is impaired.
- Deviation from the rule may result in unintended code behavior.

jc_0796: Length restriction for Stateflow data names

Rule ID: Title jc_0796: Length restriction for Stateflow data names

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

a Stateflow data {name} shall be a maximum of 63 Stateflow data name

characters. character limit

Rationale

Sub ID Description

- Readability is impaired.

a - Deviation from the rule can result in unintended code behavior

jc_0791: Duplicate data name definitions

Rule ID: Title jc_0791: Duplicate data name definitions
Sub ID NA-MAAB: a, b, ¢
Recommendations JMAAB: a, b, ¢
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Data name definitions shall not be duplicated in the base -
workspace and model workspace.
b Data names shall not be duplicated in the base Types of data dictionary
workspace and data dictionary (sldd).
c Data name definitions shall not be duplicated in the Types of data dictionary
model workspace and data dictionary (sldd).
Rationale
Sub ID Description
abc - Duplicated data name can cause unintended model behavior.

23

jc_0792: Unused data

Rule ID: Title jc_0792: Unused data
Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The data dictionary (sldd) shall define only the data that Types of data dictionary
is used in the Simulink or Stateflow model.
b The model workspace shall define only the data that is -
used in the Simulink or Stateflow model.
Rationale
Sub ID Description
ab - Unused data can affect maintainability and operability.

jc_0700: Unused data in Stateflow block

Rule ID: Title jc_0700: Unused data in Stateflow block

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Configuration parameter {Unused data, events, -

messages} shall be set to “Warning” or “Error” to prevent
unused Stateflow data, events, and messages in the
Stateflow block.

[Correct]
'} 1.__
T¢
data=1;
vy Name Scope Porl Fezolve Signa DataType Size
! B 4] data Lacal uint® -1

[Incorrect]
Unused data is defined.

{
data=1; Mame Scope Forl Fezolve Signa DataType Size
v [si2] data Local uint 3 -1
() 4] datal Local uints -1
Rationale
Sub ID Description

24

- Unused data and events in the Stateflow block can affect maintainability and
reusability.

- Affects code as a declarative statement concerning unused data is inserted into the
generated code.

na_0019: Restricted Variable Names

Rule ID: Title na_0019: Restricted Variable Names

Sub ID NA-MAAB: a, b

Recommendations JMAAB: Not supported

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Reserved C variable names shall not be used as variable | -

names in MATLAB code.
For example, avoid using const, TRUE, FALSE,
infinity, nil, double, single, or enumin MATLAB

code.
b Variable names that conflict with MATLAB Functions, -
such as conv, shall not be used.
Rationale
Sub ID Description
ab - Improves readability of the code.

- Code generation may not be possible.

25

3. Simulink

3.1. Configuration Parameters

jc_0011: Optimization parameters for Boolean data types

Rule ID: Title jc_0011: Optimization parameters for Boolean data types

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Configuration parameter {Implement logic signals as -

Boolean data (vs. double)} shall be selected so that
optimization parameters are activated for logic signals.

Rationale
Sub ID Description
a Using Boolean data can reduce RAM capacity when using C code.

jc_0642: Integer rounding mode setting

Rule ID: Title jc_0642: Integer rounding mode setting

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a When block signal attribute parameter {Integer rounding -

mode} is set to “Simplest”, configuration parameter
{Production hardware signed integer division rounds to}
shall be set to “Floor” or “Zero”.

[Correct]
{Production hardware signed integer division rounds to} is set to “Zero”.
Block Parameters: Gain2 bt

Gain

Element-wise gain (y = K.*u) or matrix gain (y = K*u ory = u*K).

Main Signal Attributes Parameter Attributes

Output minimum: Output maximum:

(o I7 [O

Output data type: | Inherit: Same as input ~ >

[Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: | Simplest -

Saturate on integer overflow

" | Cancel Help Apply

26

See Also
- Sub ID a, see MISRA AC SLSF 008B

&% Configuration Parameters: sldemo_mdladv/Cenfiguration [Active) - X
Q, production hardware signed
Solver Hardware board: |None s
Data Import/Export Code Generation system target file: erttlc
Math and Data Types
» Diagnostics Device vendor: |Renesas = | Device type: (V850 -
Hardware Implementation v Device details
Model Referencing
Simulation Targst Number of bits Largest atomic size
v Code IGPTnerlat\on char: 8 short: 16 int: 32 integer: Char
Optimization
Report long: 32 long long: 64 float: 32 floating-point: |None
Comments double: 64 native: 32 peinter: |32
Identifiers size_t |32 pirdiff_t 32
Custom Code - -
Interf: . - , . - 2o T
nerace Byte ordering: |Little Endian - | Signed integer division rounds to
Code Style
Verification +| Shift right on a signed integer as arithmetic shift
Templates Support long long
Code Placement -
OK Cancel Help Apply
[Incorrect]

Configuration parameter {Production hardware signed integer division rounds to} is

set to “Undefined”.

< Ye : jc0642_0K/C (Active)
Select: Production hardware
Sab
aver Device vendor: Renesas ~ | Device type: vas0

Data Import/Export
v Optimization

Shift right on a signed integer as arithmetic shift

[support long long

Rationale
Sub ID Description
a - Prevents unintended rounding of divided signed integers.

Signals and Parsmeters Number of bits Largest atomic size
Stateflov char: 8 short: 16 int: 32
Diagnostics integer: Char
Hardware Implementation long: 32 long long: 64 float: 32
Model Referencing ~ floating-point: Nene
Simulation Target double: 64 native: 32 pointer: 32
Code Generation
Byte ordering: Little Endian ~ | Signed integer division rounds to: Undefined

jc_0806: Detecting incorrect calculation results

Rule ID: Title

Sub ID NA-MAAB: a, b, ¢
Recommendations JMAAB: a, b, c
MATLAB® Version All
Rule
Sub Description
ID
a Configuration parameter {Division by singular matrix}
shall be set to “Error”.
b Configuration parameter {Inf or NaN block output} shall
be set to “Error”.
c For R2010b to R2014a, configuration parameter {Detect

overflow} shall be set to “Error”.

jc_0806: Detecting incorrect calculation results

Custom Parameter

27

For R2014b and later, these configuration parameters
shall be set to “Error”:

e {Wrap on overflow}

e {Saturate on overflow}

Rationale
Sub Description
ID

abc - Allows detection of operations with invalid values.
See Also

- Sub ID a, see hisl_0005c

jc_0021: Model diagnostic settings

Rule ID: Title jc_0021: Model diaghostic settings
Sub ID NA-MAAB: a
Recommendations JMAAB: Not supported
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a These configuration parameters shall be set to “warning” -
or “error”:
e {Algebraic loop}
e {Minimize algebraic loop}
e {Multitask rate transition}
e {Inf or NaN block output}
e {Duplicate data store names}
¢ {Unconnected block input ports}
e {Unconnected block output ports}
e {Unconnected line}
o {Unspecified bus object at root Outport block}
o {Element name mismatch}
e (R2017a and earlier) {Mux blocks used to create
bus signals}
e (R2012a and earlier) {Invalid function-call
connection}
Rationale
Sub ID Description
a - Improves model workflow.
- Code generation may not be possible.

3.2. Diagram appearance

na_0004: Simulink model appearance settings

Rule ID: Title na_0004: Simulink model appearance settings

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

28

a Simulink model appearance settings shall conform with ‘ Display option
the project settings.
Example:
Model Browser unchecked
Screen color white
Status Bar checked
Toolbar checked
Zoom factor Normal (100%)
Background color white
Foreground color black
Execution Context unchecked
Library Links none
Linearization Indicators checked
Ref. Model I/0O Mismatch unchecked
Ref. Model Version unchecked
Sample Time Colors unchecked
Execution Order unchecked
Base Data Types unchecked
Alias Data Types unchecked
Signal Dimensions unchecked
Storage Class unchecked
Log & Testpoint checked
Viewers checked
Nonscalar Signals checked
' Rationale
' Sub ID | Description
| a | - Standard model appearance improves readability.
' See Also

| - Sub ID a, see MISRA AC SLSF 023A

29

db_0043: Model font and font size

Rule ID: Title db_0043: Model font and font size
Sub ID NA-MAAB: a, b, c, d
Recommendations JMAAB: a, b, c, d
MATLAB® Version All
Rule
Sub ID Description
a - Block name {font} and {font style} shall conform with the

project settings.
- Signal name {font} and {font style} shall conform with
the project settings.

b - Block name font {size} shall conform with the project
settings.
- Signal name font {size} shall conform with the project
settings.
c - State labels and box name {font} and {font style} shall

conform with the project settings.
- Transition labels and comment {font} and {font style}
shall conform with the project settings.

d - State labels and box name font {size} shall conform with
the project settings.
- Transition labels and comment font {size} shall conform
with the project settings.

Rationale

Sub ID Description
ac - Standard fonts improve readability.
bd - Standard font size improves readability.

See Also

- Sub ID ¢ and d, see MISRA AC SLSF 050B

Custom Parameter

Font
Font style

Font size

Font
Font style

Font size

jm_0002: Block resizing

Rule ID: Title jm_0002: Block resizing

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description

a Blocks shall be sized so that the block icon is visible and

recognizable.
[Correct]

The block icon is visible and recognizable.

tunable parameter value >)-) i > >inwtwd|
Constant pr 5 Yoo snal
) R Discrete)iﬂwl.SWE ﬂumﬁw'}
— Transfer Fen
) 1000 > [sinal))) .)input_sgndi
i From o) doutle)input_sgn 5
Data Type Conversion Subsystem

Custom Parameter

30

[Incorrect]
The block is too small, so the icon is neither visible nor recognizable.

-) nput signall
) nput sigal
Constant
Discrete T
. TransferFen 0|
) |
Fon 1 @ Subsystem
Gan Sum .
Deta Type Conversion
Rationale

Sub ID Description

- When a block is too small, the text and symbol displayed by the icon can be difficult

a to see, which impairs readability.

db_0142: Position of block names

Rule ID: Title db_0142: Position of block names
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The block name shall be positioned below the block. -
[Correct]
P Ini Outl @
Ini Outl
AAAA
»{in1 Outt > 2)
In2 Out2
BBBB
P int Outt
In3 Out3
CCcCC

[Incorrect]

31

In1 Outl
AAAA
BBBB
In2 Out2
CCCC
In3 Out3
Rationale
Sub ID Description
a - Consistent placement of the block name improves model readability because it is
easier to determine which name corresponds to the block.

jc_0061: Display of block names

Rule ID: Title jc_0061: Display of block names

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Block names shall be hidden for blocks that meet the Blocks with a clear type

following criteria: due their appearance

- Block type is evident from its visual appearance
- Uses the default block name (including instances
where only a number has been added at the end)
For blocks that do not meet the criteria, their name shall
be displayed.

Example of block names that are displayed

06z
In it
Y P e 4
; Engines peedFilter
FuelRate Monitor ne H Throttle Arbitration

Example of hidden block names

32

Ymndh XL b N/ub Y SP Mergs b

LV Y.

LY AT LY

S S

x b ;AND>

' N

>
b YaNp
3

——a

,

sample 1
LA] >> >< L] = " podel Mot Fourd =
Rationale

Sub ID Description
a - Improves model readability.

See Also

- Sub ID a, see MISRA AC SLSF 026A

db_0140: Display of block parameters

Rule ID: Title db_0140: Display of block parameters
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Block annotation shall display the block parameters that Block Parameters
are defined by the project.
[Correct]
1
YL b n
T states =resat
tzample=01
20 }
o Merge [
b zH1E }
tzample=—1 initid={10 4]

[Incorrect]

33

Rationale
Sub ID

a
See Also

20 }
ke
Y zH1G P b il ¢
Description

- Readability improves when block parameters are displayed.

- Sub ID a, see MISRA AC SLSF 026E

jc_0603: Model description

Rule ID: Title jc_0603: Model description

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a, b

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

a The model layer shall include a description of the layer. Description object
The layers that require descriptions are defined (by (Block type, etc.)

function and layer type) in the project. Layer being described
[Correct]

Model layer includes a description.

[Requirement]
Performs an increment process on the input signal Inl

1) P+
-
(0]

1+ utl Outl

Constant Add

[Incorrect]
The layer does not include a description.

I I
n

1T —p+ Out1

Constant Add

34

b The format of the layer description shall be consistent in Model description format

the model.
Rationale
Sub ID Description
a - When a descrippion is not @ncqued, the readapility of the control specifications is
reduced. Usability, maintainability, and portability also decreases.
b - Readability is impaired when the description format is not consistent.
See Also

- Sub ID a and b, see MISRA AC SLSF 022

jc_0604: Using Block Shadow

Rule ID: Title jc_0604: Using Block Shadow
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Block format property {Shadow} shall not be selected. -
[Correct]

A drop shadow is not applied to the blocks.

b} g: > Nt Out! P

i Add1
GainT Subsystem]
)
C1 D)—|_>:‘o\> N nt
[n2 r—=
Switchl Subsystermd

=) Mesk p

Out?

Terminator

Subsystermb

[Incorrect]
The block has a drop shadow.

35

Rationale
Sub ID

a

See Also

b} ;: } Y int Outl

i Add1
GainT Subsystemi
),
Mo=0 N int
>—|:|

Switch1 Subsysterm3

1P
In2
) = > Mesk

Outz Terminator]

Subsystemb

Description

- Difficult to determine if a port exists because it is hidden by the shading, which
impairs readability.

- Sub ID a, see MISRA AC SLSF 024A

db_0081: Unconnected signals / blocks

Rule ID: Title db_0081: Unconnected signals / blocks
Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The model shall not have signal lines that are not -
connected.
[Correct]
| - —
= 1 >
Giround : Terminator
Gain

[Incorrect]

I s o >

— #

Ground

36

b The model shall not have subsystems or basic blocks -
that are not connected.
[Correct]
] — |
— P 01 Dutl B —
Ground Terminator
Subsystem
[Incorrect]
P P In 0 % Nint out! [
Subsystem Subsystem1
Rationale
Sub ID Description
ab - Unconnected lines can have adverse effects, such as simulation errors or failure to
generate code.
db_0032: Signal line connections
Rule ID: Title db_0032: Signal line connections
Sub ID NA-MAAB: al/a2, b, c, e
Recommendations JMAAB: al/a2, b, c,d, e
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al Vertical and horizontal signal lines shall not cross over -
one another.
a2 (R2014a and later) When vertical and horizontal signal -

lines must cross, Simulink editor preference {Line
crossing style} shall be set to “Line hop”.

[Correct]
The vertical line hops over the horizontal line.
I » 1)
In Ot
—— 7]
Out?

e

Rationale
Sub ID

Signal lines shall not overlap with other signal lines. -
Signal lines shall not cross over blocks. -

Signal lines shall not split into more than two sub lines at -
a single branching point.

[Correct])

1 =

Constant Terminatar

5

Terminatard

Temminator2

[Incorrect]

Terminator

1]

Constant Terminatard

Tarminator?

Signal lines shall be resized vertically or horizontally as -
required for the model layout.

Description
- Difficult to understand the relationships between blocks when signal lines cross.
- In R2014a and later, the difference between crossing and branching is clarified.
- Difficult to understand the relationships between blocks when signal lines overlap..
- Difficult to understand the relationships between blocks when signal lines cross.
- Difficult to understand the relationships between blocks.
- Consistent application of signal lines improves readability.

db_0141: Signal flow in Simulink models

a

Rule ID: Title db_0141: Signal flow in Simulink models

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a, b, c

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

Signals shall flow from left to right. -

Exception:
Feedback loops can flow from right to left.

[Correct]

38

b

et
TmpDur Al TmpbutEd Tmpou B Ty SE—
OuputA
[UnE-2TR -[wl_abc] TmpOutAZ TmpOutE TmRDuEE
)—. nputh
Tmplut At ctie
Inputa, TmpDut D1 el
npE Tt A2 o i
ClE
InputE
) N - Tmem AT Tmput A3 Ottt
i OufgutC
ey TrpDhst TmplutAd Tmplut01 TmpDut C1
nputD
InputD: TmpTAut A Tmprut AS
e
InpuiE Tmplut A5 | B
frEs T TrpOut AT OutpulE
InputF- TmpCut D1
.—> hpat TmpDut s Tmelut AZ i @
s tF |
Inputc
Tmplut A5
e N Tmpt A2 — OutputF
InputH — Tmeut A7 CHiEl
Tmeut 01 < [cal efel
| Trmpluf
POUEAS —
Tmplut AS
-
Inputd
CiD
s pfren
nputl | TmptutAl TmpDurE1 P TmpCutE 1
apEL [cal abc] TmRlutAZ TmalutE
G ——b{wenn ChiE
Tmalut A1
Inputd [cal.sbc) Tmput D1
B Tl AZ From? —
Inpute: T
) N Tmplut A% #] Tmptut AT
Inputss Tmolut Ad TmplutAd Tmolut ol
Tl
InputD TmpDut AS TmpDut AS
(5 }—»{npee S ci s
InputE CapE R
fipil? Tmalut AT
InputF
Pt Tmatut A TmpTLAZ
Inputs
TmpOut AS Gotol
o) P Tmalut A3
Tmalut AT
InputH Ctin mpULA;
Tmalut D1
TmpDut AR
Tmplut A
hpstl
Input.
Cirl D
—— tutputn
Outputa
TrpDut E1
[T
Outpuis
[D P
Output
Trput &1
e {fomo
Outpul
| DutputE
CuiputE
TrpGut D1
@1— DutputF
CutputF
CwlE

Parallel blocks or subsystems shall be arranged from top

to bottom.
[Correct])

39

npat
Tmplut Al TmplutB1 TmpDutB1 Outputh —————— |
Outputa,
[UnE-2TR -[wl_abc] TmpOutAZ TmpOutE TmRDuEE
)—. nputh
Tmplut At (= 0=
InputA (a1 abc] TrmpCut Dt Dhrtpattt —’
utpu
R TmenA2 Fromt
ClE
Inpute
s TrpDut AT : TmpDur AT DutpetC|
fral Output
Input TmpDut_kd. Tmplut Ad Tmplut C1 Tmplut 21
(e —»frer
InputD; TrpDsAS Tmpout AS Ery —’
s hutpul
Ci
InpuiE Tmplut A5 |
. putF Ty | I OutpuiE
TmpCut D1
s TrpOut A [cal abc] Tmelut A2
’ From rmr| ()
Inputs AT
TmpDutA9] e OutputF
(2) ot
InputH o Tmplut AT Gt El
Tmeut 01 < [cal efel
Tmplut AR ferrey
Tmplut AS
s
Inputd
cHiD
st e f—()
G——+ee PR [t{imbiass Tt ' -
ouf] wAl Trotun 8 - - -~
) o [eal st Tl B o, 2
prrpren) # imen s lr—>_. [t
ppr] ramz oL
oo monnd
e TG L D
Dol
.] Tetnacr
D ke e e)
[. Gand
o L i |
::I (o=
as
wr|)
AR OualatF

EL

Signal lines shall not bend multiple times unnecessarily. -
[Correct]

(] ; # npatl
Iriput p TmpCut Al TrmpCut A1
] Tmpout Az Terminztor
(1 —»nms TmpCut At Ctrl B
Inputd,
e otz [forel
InputE Goto
-3 TptG Tmplut_A3] TmpDut AS
Inputc Trmphut_Ad] TmpCut_Ad TmpOut T4
hpatD

P Terminator
Inputh Tmplut_As | Tmplut_AS
@_> nputE Gt S
InpuE Trmplut_AG —
@_’ ety Tmplut Al —
InputF - —]
hputh Tmplut AF — Terminator?
InputE
- pa—— TrmpDut_Ad -
InputH

Clin

[Incorrect]

40

Rationale
Sub ID
abc

]] hput

o
Tt
_-e
S
e
D e o Fi
-
e
InputH

Trmplut_Ad

Trmplut_A2

Tmplut A3

Trplut_Ad

Tmplut AS

Tmplut_AS

Tmplut AT

TrmpQut_AS

Tmplut_A9

Input! Tmplut Al TmplutB1
] TmpDut AT Terminator
Ctd B

CHdln

[cal abel
Goto P Tmplut A3
P Tmplut_sd TrmpDut T
N Terminator
Gl
=
Terminator?
Description

- Deviation from the rules can impair readability.

jc_0110: Direction of block

Exception:

Rule ID: Title jc_0110: Direction of block
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description
a Blocks shall be arranged so the output is to the right.

When [Delay] is used in a feedback loop, the output can

be to the left.
[Correct]

Custom Parameter

The block is arranged so that the output is to the right. The output of [Delay] is to the

left.

In1

° L 4
Constant!
pll "=
Ll
—1
1 >+ Switch
Constant2 +
L
Gain

1

- il
Z

Unit Delay

41

[Incorrect]
The block is arranged so the output is to the left.

o] _’
Constant! Y
C1) p 7= »(1)

Ll
In1 Ot
—1
1 >+ Switch
Constant2 +
2 [1_ el
Z
Giainl Unit Delay
Rationale
Sub ID Description
a Signal flow can be difficult to understand if the direction of the signals is not
consistent.

jc_0171: Clarification of connections between structural subsystems

Rule ID: Title jc_0171: Clarification of connections between structural
subsystems

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a, b

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

a A minimum of one signal line shall connect two structural -
subsystems.

When a two-way signal connection exists between two
structural subsystems (A and B), each direction shall be
connected to at least one signal line.

Exception:
Using [Goto] and [From] to create buses or connect
signals to [Merge].

[Correct]

42

PedalPer
PedalPer FuelRast
| FucPiiRan FulPw FuelPW
FuelPTHRaw
FuelRast
e — [omPTEs] oy Pt FuelMode
EngRPMCor FuelMode
EngRPMCor] EngRPMCor
1 TorgE: FuelFault
Crane TraRequired
FuelF lter TotaTora
FuelReq
FuelFault TotalTorg
EngRPM SpkRast. >
EngRPM - SpkRast
[([FeMode] = Vz i S e
TraRequired TorqEng
TorgEst W
PedalPer
FuelPWMRaw
®—> FuelPW. TruePW]) [[FeePW »| FuelPw
—<__ >
FuelPRITRaw
TEngRPMCor] EngRPMCor FuelMode
e
TorqEng TraReauired TraRequired
FuelReq
3 EngRPM SpkRgst
g T -
EngRPM SpkRast
[Troiede] 7 FuelMode EngRPMCor
TraRequired Torcng
TorgEst

Signals that are not used within a structural subsystem

shall be input to a structural subsystem. These signals
shall not be output to other structural subsystems or

basic blocks.
[Correct]

FuelPWMRaw RrCD
FuelRgst
FuelPWEst
EngRPMCor
FuelFault
TorgEng
FuelFilter

PedalPer
FuelPWMRaw
3
EngRPM

PedalPer
FuelRast
FuelPW
FuelPWEst FuelMode >
FuelMode
TotalTorq
TraRequired |
FuelFault TotalTorq | EngRPMCor
EngRPM EngRPMCor k| FuelReq
FuelMode SpkRast »(2
SpkRagst
TraRequired TorqEng
TorgEst
=

[Incorrect]

Signals that are not used in the subsystem are connected to avoid crossing of signal

lines.

43

PedalPer e
() TS FuelPWMRaw FuelPW FuelPW
FuelPWMRaw -1/1 -
®—; EngRPM.in l:uelMode
EnngM — . FuelFault TotalTorq
= et EngRPM EngRPMCor |ToRequired
1z EngRPMCor FuelMode FuelFault TotalTorq Fue|Req
TorqEng TraReauired EngRPM EngRPMCor |
FuelFilter FuelMode SpkRast
v SpkRast
TorgEst “
I’ nm
|
FuelPWMRa \! FuelPW
FuelPWMRaw FuePW
Fuequst FuelPWEst
EngRPMCor FuelPWEst
EngRPMCor FuslFault
TorgEng
TorqEng FuelFilter FuelFauit
Cr >
EngRPM_in EngRPM
) >
FuelMode_in FuelMode
C g &
TrgRequired_in TragRequired
Rationale
Sub ID Description
a - Clarifies structural subsystem connections and execution order.
B - Eliminating unnecessary connections clarifies the relationship between connections.
- Deviation from the rule can cause to confusion due to unused input/output signals.

jc_0602: Consistency in model element names

Sub ID

Rule
Sub ID
a

Rule ID: Title

Recommendations
MATLAB® Version

jc_0602: Consistency in model element names

NA-MAAB: No recommendations
JMAAB: a

All

Description Custom Parameter

These names shall match when they are directly -
connected by using signal lines.

* [Inport] block name

- [Outport] block name

- Structural subsystem input port label name

- Structural subsystem output port label name

- [From] tag name

- [Goto] tag name

- Signal line signal name

Exception 1:
A signal line that connects to one of the following

44

Rationale
Sub ID

See Also

subsystem types can have a name that differs from that
of the subsystem port label:

- Subsystems linked to a library

- Reusable subsystems

Exception 2:

When a combination of [Inport], [Outport], and other
blocks have the same name, use a suffix or prefix for the
[Inport] and [Outport] blocks. Any prefix or suffix can be
used for ports, but they must be consistent. For example,
[Inport] uses “in” and [Outport] uses “out”.

Note: [Inport] and [Outport] names and signal names
must have different names.

[Correct]
Names of model elements that connect directly to signal lines are consistent.

@—o—b sigA sigB »([sigB]
: sigA <{sigB>
sigh
calc_1
»{sigB sigC » 1
o >isigA Cy sigEl———»(4) <sigC> @
(O sigE - sigC
sigk calc 2 .
v E— [sigC]
o f
sigB

{sigB> sigD T [sigD]
sig. sigh sigl
<{sigh>

calc_3

. .
[<igD] <sigD> > 2

sigD

[Incorrect]
Names of model elements that connect directly to signal lines are inconsistent.

A IN1 OUT1 <einB> > [TMP2]|
IN A sig, sig|
calc_1
p{INT ouT1
i 1 <{sigC> bglJ[I'DC
@) lc.2 .
g (4 cale [TMP3]
OUTE L
~— @@/
calc_4 ouTB
»{IN2
OUT1 [TMP4]
[TMP1] [TMP1] IN3 <{sigD>
<sigh>
cale_3
‘[TMP:I] - » 2)
<{sigh> OUTD
Description

- Prevent misconnected signal lines.

- Readability is impaired.

- Deviation from the rule can make it difficult to maintain the integrity of the model
code.

- Sub ID a, see MISRA AC SLSF 036C

and

45

jc_0281: Trigger signal names

Rule ID: Title

Sub ID
Recommendations

MATLAB® Version
Rule

jc_0281: Trigger signal names

NA-MAAB: No recommendations
JMAAB: al/a2/a3/a4, b1/b2/b3/b4

All

Custom Parameter

preszear

Sub ID Description
al The name of the conditional input block at the destination
shall include the name of the block at the origin of the
trigger signal
[Correct]
2
{1 P inpu t_rewv presser
input_rew
it ey
fct preszer
[Incorrect]
3
[2 Bdinput_rew presser]
inputrew
hput ey
fct presser
a2 The name of the conditional subsystem at the destination

shall include the name of the block at the origin of the

trigger signal.
[Correct]

2

v

THegar()

inpu t_rew

1 P
D inputrew

preszer

presseri

presser]

iFpuUt_res

[Incorrect]

I fot_presser 1 _Are I

e

r

L2 F g
input_rew

pLt_rey

Trigl

presser

>

presser

inpu trew presserd

I fot, eresser'll

presser]

presser

46

a3

a4

bl

The name of the conditional input block at the destination | -

shall include the name of the trigger signal.

[Correct]
o

Function—Call

l evert 2ms I

G t | I
enarator o
P input_rew == =14
C e put. e p—
inpLE_rew presser
fot_presser
[Incorrect]
0 I l Evert_2 s I
Function—Call
Generator
Trigger)
P input_rew s=er 1 g
C e put. e — G
inpLt_rens presser
fot_presser
The name of the conditional subsystem at the destination | -
shall include the name of the trigger signal.
[Correct]
e ===
2;ar
Detect
Cha
nge v
£
o P LB Hesser {1
) C) inpLt_ ey prEsser rC)
input_rens pressar
I fot_presser shiftC I
[Incorrect]
n@ar U=z shiftC
gear
Cetect
Change
£

(2 } - P input_mey
inpuE_rew

input_rew

presser

——>()

presser

The name of the Stateflow block event at the

lfl::t_presserl

destination -

shall include the name of the block at the origin of the

trigger signal.
[Correct]

47

2
y

J TaskZrrel)

Nt _rew

; ¥
@ input_ren rllnput_rev {_D p:reaaerJ <pressery

presser_chart

[Incorrect]

e

presser

presser

7
@ Te=0 =0 y[in;:ut_rev {_D p“E%EI-J <pressers
inpUE_re
presser_chart
b2 The name of [Chart] at the destination shall include the -
name of the block at the origin of the trigger signal.
[Correct]
2
v
event|)
{1) input, reuD-" resser
. inpUt_rew) 'LD J <presser
Input_ren

presser_chart_2ms

[Incorrect]

2
v

presser

»

j eventl)
) .)y
1 —— nput_rew r

presser

. rll 'LD WEJ <presser>
inpLt _rens
presser_chart
b3 The name of the Stateflow block event at the destination -
shall include the name of the trigger signal.
[Correct]
) event_2ne
FunctiorCall
Gererator
(1
input_rens presser

frpoLt_rew

presser_chart

&

presser

48

[Incorrect]

@ evert_2ms

{H

Function—Caill
Generator Task,) 1
(‘) < ¥ ...{)
) ! Nt _rens .-Lmr:ut_rev t.l::] meaaerj prEssEr g
input_rew prassar
presser_chart
b4 The name of the trigger signal and the [Chart] name at -

the destination must include the same name. The name
of [Chart] at the destination shall include the name of the
trigger signal.

[Correct]
I avent.2ms I
| 1) I —
Function—Call Y
Generator (" svent])]
[G >
@ input_rey i R to presserJ presser r@
Input rew presser
presser chart 2ms I

[Incorrect]

E I et 2ms I

Function=Call r
Generator J event!)
: @)
P input_ew ==1 >
C s S v —— I ED
input_rev presser
I pre&;er_char‘tl

Rationale

Sub ID Description

ala?a3 | - Reduces connection mistakes.

adblb2 | - Increases understanding of the relationship between the origin of the trigger signal
b3b4 and the destination.

- See Also

- Sub ID al, a2, a3, a4, see MISRA AC SLSF 026C

db_0143: Usable block types in model hierarchy

Rule ID: Title db_0143: Usable block types in model hierarchy
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Model levels shall use only the block types that are Layer type
defined for the layer type. Block type

49

Rationale
Sub ID

a

For information on layer types, see Appendix 8.2 -
Hierarchical Structure of a Controller Model. Clearly
defined layer types restrict the number of blocks that can
be used.

Block restrictions:
- (R2011a and earlier) [Enable] cannot be used at the
root level of the model.
- Action ports are not permitted at the root level of a
model.

Layer restrictions:
- Data flow layers that are used for basic blocks only.
- Other than data flow layers, layers can include blocks that are used for structural
subsystems and all other layers.

Blocks that can be used for all layers include:
e [Inport]

[Outport]

[Mux]

[Demux]

[Bus Selector]

[Bus Creator]

[Selector]

[Ground]

[Terminator]

[From]

[Goto]

[Merge]

[Unit Delay]

[Rate Transition]

[Data Type Conversion]

[Data Store Memory]

[If]

[Switch Case]

[Function-Call Generator]

[Function-Call Split]

Description

Readability is impaired when subsystems and basic blocks are used in the same
layer.

db_0144: Use of subsystems

Rule ID: Title db_0144: Use of subsystems

Sub ID NA-MAAB: a, b

Recommendations JMAAB: a, b

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Blocks in a Simulink diagram shall be grouped together -

into subsystems based on functional decomposition of

50

Rationale
Sub ID

a

the algorithm, or portion thereof, represented in the
diagram.

Avoid grouping blocks into subsystems primarily for the
purpose of saving space in the diagram. Each subsystem
in the diagram should represent a unit of functionality that
is required to accomplish the purpose of the model or
submodel.

Blocks can also be grouped together based on
behavioral variants or timing.

When implementing a subsystem to alleviate readability
issues, use a virtual subsystem.
[Correct]

Subsystems are divided by functional unit.

B

—bD
@ + b + .. - Proportional Gain
Wad n O

Fiter Confliciert

Ireeersd Cain

[Incorrect]
Subsystems are not divided by functional unit.

Centroll

Cantral2

o
g
5

Fiker Coefflclent

el Gain

Integrator

G2

Vad |

A virtual subsystem shall be used when processing order | -
and code generation does not need to be taken into
consideration.

Description

- Avoid grouping blocks into subsystems primarily for the purpose of saving space in
the diagram.
- It can be difficult to reuse the subsystem.

- As atomic subsystems are considered a single process that influences processing
order and code optimization, they can be misinterpreted when used other than as
intended.

51

jc_0653: Delay block layout in feedback loops

[Correct]

in the hierarchy that describes the feedback loop.

[Delay] resides in the hierarchy that describes the feedback loop.

Rule ID: Title jc_0653: Delay block layout in feedback loops

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a [Delay] in feedback loops across subsystems shall reside | -

(— e] B 1"
»
Relationsl -
Inl) @ Operatcr Switch

+ il Lkt Delay

Censtant

v
[
o

Uit Delavl

Clutl

[Incorrect]

@-—«Phl

Dut1 it Dut!

Subsystem Subsysteml

[Delay] resides in a subsystem that is nested within the hierarchy which describes
the feedback loop.

52

Rationale
Sub ID

Constant
@ b+) 5 P
Int Tt - »H"=0 » D1t
—> Retaticral » il
, D e i
&P = >+
In2 z Lhit Delay
Uit Delay Add
Unid Gatavt
— -
- -~ -
- -] ~ = - -
i -~ -
G - -
O
ot outl P nt Outi »(1)
o h2 Outl
Subsystem Subsystemi

I i
| —

Description

- Prevents double placement of [Delay].
- Clarifying the extent of diversion improves reusability.

- Improves testability; it is difficult to test a subsystem that contains [Delay] on its own

because past values cannot be entered directly.

hd_0001: Prohibited Simulink sinks

Rule ID: Title hd_0001: Prohibited Simulink sinks
Sub ID NA-MAAB: a
Recommendations JMAAB: Not supported
MATLAB® Version All
Rule
Sub ID Description
a Control algorithm models shall be designed from discrete | -
blocks.
[Scope] and [Display] can be used in the model diagram.
These sink blocks shall not be used:
e [ToFile]
e [To Workspace]
e [Stop Simulation]
Consider using signal logging and the Signal and Scope
Manager for data logging and viewing requirements.
(R2019b and later) To log and manage the signal, click
the Simulation tab and, under the Prepare gallery,
select the appropriate tool.
Rationale
Sub ID Description
a - Improves readability and model simulation.

- Code generation may not be possible.

Custom Parameter

53

3.3. Signal

na_0010: Usage of vector and bus signals

Rule ID: Title na_0010: Usage of vector and bus signals

Sub ID NA-MAAB: a, b, c, d

Recommendations JMAAB: a, b, c, d

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a [Mux] and [Demux] blocks shall be used when generating | -

and decomposing vectors.
[Mux] inputs shall be scalars and vectors. -

[BusCreator] and [BusSelector] shall be used when -
generating and decomposing busses.

d Busses shall connect to blocks that support busses. -
Rationale
Sub ID Description

- Prevents issues that are caused by combining vector and bus signals.

abed See “Preventing the mixing of busses and Mux” for additional information.

See Also
- Sub ID a, b, ¢, d, see MISRA AC SLSF 015A,B

jc_0008: Definition of signal names

Rule ID: Title jc_0008: Definition of signal names
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Signal names shall be defined for signal lines that output Definition of an important

from important blocks. The signal name shall be provided | block
once, at the origin of the signal line.
A label shall be used to display defined signal names.

Important blocks:

An important block is defined by the system input and
output of meaningful results, not by its type.

[Correct])

(1 } P
— <). .

Divide

€D

t

<t

54

[Incorrect]

i 1 E L g
s — &
Divide
D
t
Rationale
Sub ID Description
a

- Defining the signal name and displaying the label for the output of meaningful results
from important blocks improves the readability of the model.

jc_0009: Signal name propagation
Rule ID: Title jc_0009: Signal name propagation
Sub ID NA-MAAB: No recommendations

MATLAB® Version All

names are displaye

Recommendations JMAAB: a, b

d.

Rule
Sub Description
ID
a When defining the signal name for a signal that extends

across a hierarchy, signal property {Show propagated
signals} shall be selected so that propagated signal

Custom Parameter

However, when one of the following conditions is met, do
not select {Show propagated signals}:
- In a subsystem with a library
- In subsystems where reusable functions are set
- A signal name is not set at the [Bus Creator] outport

<Outl>

Ot

signal.
[Correct]
{Show propagated signals} is selected, displaying the propagated signal names.
(1) {1
In1 Qutl
In1 — lin?
Subsystem

55

“k Signal Properties:

Signal name:

Signal name must resolve to Simulink signal object

Show propagated signals

Logging and accessibility Code Generation Documentation

[Log signal data [] Test point

| datal
| datal

Subsystam

L, datal anddata? l’.4
detalanddatal i ianddatas "(datamnddata?a alanddata?

[Incorrect]
{Show propagated signals} is not selected, therefore signal names are not displayed.

o " outt

In1 >
2 Out1
Subsystem
In2
In2
>

"k Signal Properties:

Signal name: |

Signal name must resolve to Simulink signal object

[show propagated signals

Logging and accessibility =~ Code Generation Documentation

[Log signal data [] Test point

Signals that connect to [Bus Creator] and [Outport] do not have names, but {Show
propagated signals} is selected for signals that connect to [Subsystem] and [Outport].

56

—»
datal
data?

() datalanddata? S
datalanddata? . datalanddata2

Subsystem

Signals that connect to [Bus Creator] and [Outport] have names, but signals that connect
to [Subsystem] and [Outport] also have names.

|:
datad
) data3anddatad

datadanddated | oo s | data3anddata4| ata3anddatad
datad

Subsystem1

Signal property {Show propagated signals} shall be -
selected for these blocks so that propagated signal
names of the signal output are displayed:
- [From]
- [Signal Specification]
- [Function-Call Split]
[Correct]
{Show propagated signals} is selected, displaying the propagated signal names.

Ioh] R >
In1 <Inl>
I Dutl

> inherit =
¥] ¥]
| I

57

0 call @ {call>

<call>
Y
functionl) function()
—m N1 Outl b—p Ind Outl
Function—Call Function—Call
Subsystem Subsystemi
1
-
z
Uit Delay

" Signal Properties:

Signal name:

Signal name must resolve to Simulink signal object

Show propagated signals

Logging and accessibility ~ Code Generation = Documentation

[] Log signal data [] Test point

Out3

Signals that connect to [Inport] and [Goto] do not have names, therefore {Show

propagated signals} does not need to be selected.

(| [oary >|>
Ind /

" Signal Properties:

Signal name: |

Signal name must resolve to Simulink signal object

[Show propagated signals

Logging and accessibility ~ Code Generation Documentation

[] Log signal data [] Test point

Outs

Signals that connect to [Inport] and [Goto] do not have names, therefore signals that

connect to [From] and [Gain] can be left unnamed.

Ind

(] [imi y

58

"k Signal Properties: Ind >

Signal name: |In4

[] signal name must resolve to Simulink signal object
[] Show propagated signals
Logging and accessibility ~ Code Generation Documentation

[] Log signal data [] Test point

[Incorrect]
Signals that connect to [Inport] and [Goto] do not have names, but {Show propagated
signals} is selected for signals that connect to [From] and [Gain].

mn1l| | ont] \/T%%/

Outl

i

In1

Regardless of whether signals are propagated, {Show propagated signals} is not

selected.
In1 In1 \
In1 [in1] [in1] / >

Out1

Ee
-

Signals that connect to [Inport] and [Goto] have names, but signals that connect to [From]
and [Gain] are named.

N 2
In2 [in2] [in2] / In2 >‘1/ ’“

Qut2

5
Ne

Signals that connect to [Gain] and [Signal Specification] do not have names, but {Show
propagated signals} is selected for signals that connect to [Signal Specification] and
[Outport].

b inherit >

In3 QOut3

Regardless of whether signals are propagated, {Show propagated signals} is not
selected.

» — inherit II=

In3 Out3

Signals that connect to [Gain] and [Signal Specification] have names, but signals that
connect to [Signal Specification] and [Outport] have names.

4 inherit 4

In4 Out4

Signals that connect to [Function-Call Generator] and [Function-Call Split] do not have
names, but {Show propagated signals} is selected for signals that connect to [Function-
Call Split] and [Function-Call Subsystem].

59

function() function()
— In1 Outl b——p Inl Cutl
Function—Call Function—Call
=ubsystem Subsystem?
! e
z
Linit Delay

Ciuth

Regardless of whether signals are propagated, {Show propagated signals} is not

selected.

@ call

;/_\K
; A 4
function() function()
In1 tmp Bl tmp Outs > 5)
Qutb
Function—Call Function—Call
Subsystem Subsystermn
1
z
Unit Delay

Signals that connect to [Function-Call Generator] and [Function-Call Split] have names
and signals that connect to [Function-Call Split] and [Function-Call Subsystem] are also

named.
f()
call call
call
fun ction() fun ction()
— In1 Outl fb—¥ Int Dutl
Function—Call Function—Call
Subsystem? Subsystems3
! e
z
Lnit Delayl

Outh

60

Rationale

Sub Description
ID

- Prevents signal line connection mistakes.

ab . . .
- Prevents signal line name mistakes.

db_0097: Position of labels for signals and busses

Rule ID: Title db_0097: Position of labels for signals and busses
Sub ID NA-MAAB: a, b, ¢
Recommendations JMAAB: a, b, ¢
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Signal line labels and bus labels shall not overlap other -
labels, signal lines, or blocks.
[Correct]
The signal line labels and bus labels do not overlap other labels, signal lines, or
blocks.

D >+
Int A5 mls >
DEF > MNO

Add JKL Out1

J 1 Product

In2

Constant1

[Incorrect]
The signal line labels and bus labels overlap other labels, signal lines, or blocks.

(1) B

y >
In1 >+ GHI X
DEF o
Add 1 JKL Out1
Product
In2 Constant1
b Signal line labels and bus labels shall be positioned -
below signal lines.

[Correct]
Signal line labels and bus labels are below signal lines.

i >+
I ABC > s >
n | GHI | X
DEF > o M)

Add JKL Outl

| 1 Product

In2

Constant1

[Incorrect]
Signal line labels and bus labels are above the signal line.

61

X e U

Qutl

MNO :

D >+
DEF JABC
Add ' >
| Product
In2 T
Constant1
c Signal line labels and bus labels shall be positioned at
the origin of the connection.
[Correct]
Signal line labels and bus labels are positioned at the origin of the signal line
connection.
: ABC *
Int >+ GHI > X
Add ' o

Out1

. Product
DEF 1 JKL

In2
Constanti

[Incorrect]

Signal line labels and bus labels are positioned at the destination of the signal line

X

MNO :

connection.
D &
In1 ABC >+ E:
n
o |
(2) JKL Product
In2 Constant1
Rationale
Sub ID Description

a and busses, which improves readability of the model.

be and busses, which improves the readability of the model.

Outl

- Adherence to this rule prevents confusion with corresponding names, signal lines,

- Consistent label position prevents confusion with corresponding labels, signal lines,

na_0008: Display of labels on signals

Rule ID: Title na_0008: Display of labels on signals
Sub ID NA-MAAB: a
Recommendations JMAAB: Not supported
MATLAB® Version All
Rule
Sub ID Description
a A label shall be displayed on the signal line originating
from these blocks:
e [Inport]
e [From] (see exception)
e [Subsystem] or [Stateflow] chart (see exception)
e [Bus Selector] (the tool forces this to happen)
e [Demux]
e [Selector]
e [Data Store Read] (see exception)

Custom Parameter

62

e [Constant] (see exception)
e [Chart]

Exception: When the signal label is visible in the
originating block icon display, the signal does not need
not to have the label displayed unless the signal label is
needed elsewhere due to a destination-based rule.

b A label shall be displayed on a signal line that connects -
(either directly or by way of a basic block that performs a
non-transformative operation) to these destination blocks:

e [Outport]
e [Goto]
e [Data Store Write]
e [Bus Creator]
e [Mux]
e [Subsystem]
e [Chart]
Rationale
Sub ID Description
- Improves readability, model simulation, and workflow.
a : :
- Code generation may not be possible.
b - Improves readability, model simulation, and workflow.

na_0009: Entry versus propagation of signal labels

Rule ID: Title na_0009: Entry versus propagation of signal labels

Sub ID NA-MAAB: a

Recommendations JMAAB: Not supported

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

When a label is displayed for a signal, the following rules define whether that label is
created there (entered directly on the signal) or propagated from its true source
(inherited from elsewhere in the model by using the ‘<’ character).

Signal labels shall be entered for signals that originate from:
e [Inport] at the root (top) level of a model
e Basic blocks that perform a transformative operation (For the purpose of
interpreting this rule only, the [Bus Creator], [Mux], and [Selector] are
included among the blocks that perform transformative operations.)

a Signal labels shall be propagated for signals that originate from:
e [Inport] in a nested subsystem
Exception: When the nested subsystem is a library subsystem, a label can be
entered on the signal coming from [Inport] to accommodate reuse of the
library block.
e Basic blocks that perform a non-transformative operation
- [Subsystem] or Stateflow [Chart]
Exception: When the connection originates from the output of a library subsystem
block, a new label can be entered on the signal to accommodate readability.
- The result of executing a MATLAB command is reflected in the code, which makes
consistency between the model and code difficult to maintain.

63

db_0110: Block parameters

Rule ID: Title db_0110: Block parameters

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

a Block parameters shall not be used to describe: -
- Operation expressions
- Data type conversion
- Selection of rows or columns
- MATLAB commands

Rationale
Sub ID Description

- Operation expressions, data type conversion, or row or column selection become a
magic number in generated code, which makes consistency between the model and
code difficult to maintain. Adjusting parameters also becomes difficult.

- Describing the calculation formula within the block decreases readability.

- The result of executing a MATLAB command is reflected in the code, which makes
consistency between the model and code difficult to maintain.

db_0112: Usage of index

Rule ID: Title db_0112: Usage of index
Sub ID NA-MAAB: al/a2
Recommendations JMAAB: al/a2
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al A vector signal shall use a 1-based index mode. -
[Correct]

A uniform 0-based index mode is used.

64

EB -
Ini

i > u]
Conztant

5 > 1
Constantl

3 plda
Constant?

Ol

2 —
In?

1 > 0
Constant

5 > 1
Constantd

3 pie 2
Constanth

[Incorrect]
A uniform index mode is not used.

Ot

65

Inl

1 L \
Constant

2 P u|
Constant

3 SE : u|
Constant?

Ot

& "—
Ini2
g p/0
Constants :\—
2 B 1 0
Constantd
3 e =2 2 ul
Constants
a2 A vector signal shall use a 1-based index mode.
[Correct]

A uniform 1-based index mode is used.

Cuty

66

Inl

Constant

Constantl

3

Constant?

In2

[Incorrect]

Constantl

Constantd

Constanth

Ol

Out

A uniform index mode is not used. (Same as db_0112, Sub ID_al).

67

Il

1 i
Constant \ @

o > 2 = Ot
Constantl

3 e : |
Constant?

(2} > —]
In2
i - \
Conztant: D
) pl! 5 Out?
Conztantd
3 pk 2 u|
Constanth
Rationale
Sub ID Description
ala? Logic is easier to understand when using a uniform index mode.
jc_0645: Parameter definition for calibration
Rule ID: Title jc_0645: Parameter definition for calibration
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Block parameters that are targets of calibration shall be -

defined as named constants

Examples of parameters that are outside of the
calibration target include:
- Initial value parameter O
- Increment, decrement 1

[Correct]

68

In1 e .@

PR p Dt

[Incorrect]

G >
In % .@

Outi

Rationale
Sub ID Description

A literal constant in the model will propagate as a literal constant in the generated

a code, making calibration impossible.

jc_0641: Sample time setting

Rule ID: Title jc_0641: Sample time setting
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Block parameter {Sample time} shall be set to “-1” -
(inherited).
Exceptions include:
* [Inport]
- [Outport]

- Atomic subsystem

- Blocks with state variables, such as [Unit Delay] and
[Memory]

- Signal conversion blocks, such as [Data Type
Conversion] and [Rate Transition]

- Blocks that do not have external inputs, such as
[Constant]

- [Chart]

Rationale
Sub ID Description

- Discrepancies can occur in the processing of the model because of different
simulation times.

- Maintainability of the model deteriorates when a specific sample time is set for each
block individually.

jc_0643: Fixed-point setting

Rule ID: Title jc_0643: Fixed-point setting

69

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a When block parameters {Data type} is a fixed-point (fixdt) | -

setting and {Scaling} is “Slope and bias”, parameter
{Bias} shall be set to “0".

Rationale
Sub ID Description

When the bias in a model is not uniform:
- Behavior of the model is impossible to determine by its appearance.
* Unintended overflows and underflows occur.
- Results in wasteful operation and deterioration of code efficiency/computing load.

jc_0644: Type setting

Rule ID: Title jc_0644: Type setting
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When the data type is set by a data object, a block or -
Stateflow data dictionary shall not be used to set the data
type.

Exceptions (see rationale for more information):
- Inside a reusable function

- [Data Type Conversion]

- Data types set by using “fixdt”

- Boolean type, double type

[Correct]
0611
, hot by the block.

70

Rationale
Sub ID

"4 Function Block Parameters: Add X "k Signal Properties: Qut1 X

~
Sum Signal name: |Outl

Add or subtract inputs. Specify one of the following:
a) string containing + or - for each input port, | for spacer between ports Signal name must resolve to Simulink signal object I
(e.g. ++|-|++)

b) scalar, >= 1, specifies the number of input ports to be summed.
When there is only one input port, add or subtract elements over all
dimensions or one specified dimension

Show propagated signals
Logging and accessibility = Code Generation ~ Documentation

[Log signal data [] Test point

Main Signal Attributes Logging name

[J Require all inputs to have the same data type Use signal name
Accumulator data type: | Inherit: Inherit via internal rule >> Outl
Output minimum: Output maximum:

i : Data
(o | [o

Limit data points to last: 5000

Output data type: ‘ Inherit: Inherit via back propagation V‘ >>

Decimation: 2

[Lock data type settings against changes by the fixed-point tuclsl

Integer rounding mode: Floor -

[saturate on integer overflow

7] Cancel Help Apply Cancel Help Apply

Description

- When the data type is set in a block and it differs from the type setting in the data

object, it can be difficult to determine which setting is correct. This can impair
readability.

- When the type is set in the block,
- —maintainability is affected when the signal line type changes.

Exceptions:
- Inside a reusable function

When all block structures are identical, differences between input/output data type
can result in different C source code that is not reusable. For reusable functions,
data types of input/output blocks should be specified at the subsystem level.

- [Data Type Conversion]

This block is used to explicitly set the data type.

- Data types set by using “fixdt”

When fixed-point is selected, data type must be set individually because each block
can have different data points. In this scenario, it is impossible to use only the data
object to set the data type.

- Boolean type, double type

Some block types must be set to Boolean.

Double type is generally used in plant models and for Rapid Control Prototyping
(RCP), therefore it is not within scope of this rule.

Embedded software uses double type in specific situations. Use caution when
configuring the settings on these blocks to minimize the use of double type.

3.4. Conditional subsystem relations

db_0146: Block layout in conditional subsystems

Rule ID: Title db_0146: Block layout in conditional subsystems
Sub ID NA-MAAB: a, b

Recommendations JMAAB: a, b

MATLAB® Version All

71

Rule

Sub ID Description Custom Parameter
a Conditional input blocks shall be positioned at the top of -
the subsystem.
[Correct]

Trigger
() »—
It \
(3 > |~: »(1)
In3 Out2
-, >
InZ
Switch
[Incorrect]
) -
Irit \
G > I”: »(1)
In3 Out2
2 -
Ire
Switch
Trigger
b The position of these blocks shall be defined by the Location layout
project:
- [For Each]
- [For Iterator]
- [While Iterator]
Rationale
Sub ID Description
ab - Unifying the internal and external layout of the conditional subsystem improves

readability of the model.

jc_0640: Initial value settings for Outport blocks in conditional subsystems

Rule ID: Title jc_0640: Initial value settings for Outport blocks in conditional
subsystems

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

72

Rule

Sub
ID

Description

When both conditions are met for a conditional

subsystem:

- Includes a block with initial conditions (i.e.
[Constant] and [Delay])

- Connects to [Outport]
The initial condition shall be defined on [Outport].

However, when the output signal from a conditional

subsystem is connected to [Merge], the initial condition

shall be defined on [Merge].

[Correct]

The initial condition is defined.

Il

Custom Parameter

1)

Ot

Initial Ot put =1

Erable
1 Ot
Constant
1
1 - -
z Q2
Constanti Unit Delay
SampleTime = —1
[nitialCordition =05
" "
Outport Qutport

Provide an output port for a subsystem or model. The 'Output when

disabled' and 'Initial output' parameters only apply to conditionally executed

subsystems. When a conditionally executed subsystem is disabled, the

output is either held at its last value or set to the 'Initial output'.

Main Signal Attributes

Port number:

OutZ

[nitialOutput = 05

Provide an output port for a subsystem or model. The 'Output when
disabled' and 'Initial output' parameters only apply to conditionally executed
subsystems. When a conditionally executed subsystem is disabled, the

output is either held at its last value or set to the 'Initial output’.

Main Signal Attributes

Part number:

1

[2

Icon display: | Port number

Source of initial output value: | Dialog

Output when disabled: | held

Initial output:

Icon display: Port number

Source of initial output value: Dialog

Output when disabled: ' held

Initial output:

1

los

]

[Incorrect]

Cancel

Help

Apply

]

Cancel

Help

Apply

73

The initial condition is undefined.

Il
Erahle

1 — (1)
. it
onstant InitialOut put = [

| . 1 | .
1 oz Out2 'C)Q

z
Coratant Ot
arnsta i .
Unit Delay InitialOut put =[]
SampleTime = -1
InitialZordition = 05
" "
Outport Outport
Provide an output port for a subsystem or model. The 'Output when Provide an output port for a subsystem or model. The 'Output when
disabled' and 'Initial output' parameters only apply to conditionally executed disabled' and 'Initial output' parameters only apply to conditionally executed
subsystems. When a conditionally executed subsystem is disabled, the subsystems. When a conditionally executed subsystem is disabled, the
output is either held at its last value or set to the 'Initial output’. output is either held at its last value or set to the 'Initial output’.
Main Signal Attributes Main Signal Attributes
Port number: Port number;
1 [[
Icon display: | Port number - Icon display: | Pert number -
Source of initial output value: | Dialog - Source of initial output value: | Dialog -
Output when disabled: | held - Output when disabled: | held -
Initial output: Initial output:
o] B &
9 Cancel Help Apply 2 Cancel Help Apply
Rationale
Sub Description
ID
a - The model may not behave as intended when the initial condition is unclear.
jc_0659: Usage restrictions of signal lines input to Merge blocks
Rule ID: Title jc_0659: Usage restrictions of signal lines input to Merge blocks
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter

74

a Only conditional subsystem output signals shall input to

[Merge].
[Correct]
Conditional subsystem output signal is input to [Merge].
iful > 0)
else [—
Int
If
A J
if{}
(2) P In1 Outl

If Action Subsystem1

s

else |]

pIni Outl

If Action Subsystem2
[Incorrect]

0
iflut > 0)
D
I else
If
A 4
if(}
(2) p{ni Out! b—-———
In2
If Action Subsystemf
else [} D
piin1 Outl > 2
If Action Subsystem2 ~ Gain
Rationale
Sub ID Description
a - Prevents the simulation from proceeding as intended.

b
X Merge

Out1
Merge
—p
Merge
Out1
Merge

na_0003: Usage of If blocks

Rule ID: Title na_0003: Usage of If blocks

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description

a For [If], the {If expression} and {Elseif expression} shall

be used only to define input signals.
[Correct]

Custom Parameter

75

The {If expression} only defines the input variables.

iflu1)
else

i i

ul

Relational
Operator

}

Outl >
s

If Action Subsystem Qutl

Gonstant Merge

else [}
Qutl

[f Action Subsystemi

[Incorrect]
The {If expression} defines a comparison operation.

ifful "= 0)
[}—PI n ul
I n eke
If it {1
Outl >
" e
If Action Subsystem " Outt
herge
Y
elee {}
Outl
If Action Subsysteml
Rationale
Sub ID Description
- Visual comprehension of control conditions is easier when logical operations are
a described outside of [If].

- Describing logical operations outside of [If] allows verification to focus on the logical
operation.

jc_0656: Usage of Conditional Control blocks

Rule ID: Title jc_0656: Usage of Conditional Control blocks

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a These block parameters shall be used to make all actions | -

in the conditions explicit:

- For [If], select {Show else condition}

- For [Switch Case], select {Show default case}
[Correct]

Default behavior

76

case[1]
Out1 | Sooat Ul case[2]
— default
Switch Case Termirator
E Source '
Corstant Switch Case Action
Subsystem
-‘I'“\TCESE D}uﬂ II
Switch Gase Action
S ubsystemt
[Incorrect]
No default behavior
case [1]
Outl | ul
Select
case [2]
Colntup
Switch Case
Y
Source I
Constant Bwitch Case Action
Subsystermn
Bwitch Cage Action
Sibsystemn
Rationale
Sub ID Description
Determining whether there is pointless processing or if something is missing from the
a design (such as a missing description) is easier when the processing of exceptions

(else, default) is explicitly set in the model .

jc_0657: Retention of output value based on conditional control flow blocks and Merge
blocks

Rule ID: Title jc_0657: Retention of output value based on Conditional Control
Flow blocks and Merge blocks
Sub ID NA-MAAB: a2
Recommendations JMAAB: al/a2
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al Unused action ports shall connect to [Terminator] when -
these conditions are met:
- Pastvalue is retained
- [Merge] and a conditional flow block, such as [If]
or [Switch Case], are used to switch functions.

77

[Correct]
[If] example

In1

2

iful)

lzaifu2)

elze

Ini Outt

if{}

If Action
Sibsystem

Terrrirator

[Switch Case] example

Int Outl

In%

caze [1]

case [2 3]

default:

elze {}

hierge

If Action
Subzysterri?

@—b Int outt

.

case: {1

Iné

Switch Caze Action
Subzystem

Terminator |

Int Qutl

[Incorrect]
[If] example

Switch Case

default: {1

herze

hierze

In7

Switch Casze Action
Slbaystem?

Out1

hierzel

Out2

78

ul iflull

Il

it {}
Ini Outl
In3
If Action
Sibsystem
| e
u? elseiflu?] o Ol
Iri2 hierge
r
elseif {}
Int Outl
It Ind
If Action
Subzystenm?
[Switch Case] example
case [1]:
L
caze: [}
(6)>—wnt Outl
O—y =
e Switch Case Action
Subzystem
| e
Ot
caze [23] l heree1
case {}
In1 Outt
7
Switch Casze Action
Switch Caze Subsysterm
a2 A feedback loop using [Delay] shall be implemented -

when these conditions are met:
- Pastvalue is retained
- [Merge] and a conditional flow block, such as [If]
or [Switch Case], are used to switch functions.

[Correct]
[if] example

79

iflul)

CO——» 14
Inl In Outt
In3
If Action
Sbaystem
elseiflu2) l
elseif {1
[Outl P Merze
If Action her
" Sheystem] =
I
else
elze {1
®—> In1 Outt
If Ird
If Action
Sheystem?
Uit Delay
[Switch Case] example
case [1] L
case: {}
@—D In1 Qutl
g
Switch Casze Action
Sbsystem
ul case [23]
= !
»
caze: [}
] int Outl » hierze
Siwich Case A "
i =2 Action
Sibsystami Merz=t
default: L
default: {1
In1 Outl
Switch Case In7

[Incorrect]
[If] example

Switch Case Action
Sbaysterd

i
i

Unit Delay1

80

u1 iflul)
Inl
y
if{}
Inl Dutt
gl
If Action
Subzystem
: heres
u? elzeiflu?) o Out1
Ir2 herze
r
elzeif {1
Inl Qutl
If ind
If &ction
Sibaysten?
[Switch Case] example
case [1]
N
caze: {}
(6 >—»n Dutt
CO——u =
! Switch Case Action
Subsystem
| e
Out2
case [23] ¢ [y —
caze: {}
In1 Outt
In7
Switch Caze Action
Switch Case Subsysten?
Rationale
Sub ID Description
- Improves code efficiency.
al - Connections to [Terminator] can be used when past values are held other than by
the default (else).
a2 - Retaining past values is explicit.

3.5. Operation blocks

na_0002: Appropriate usage of basic logical and numerical operations

Rule ID: Title

Sub ID
Recommendations

MATLAB® Version
Rule

na_0002: Appropriate usage of basic logical and numerical
operations

NA-MAAB: a, b

JMAAB: a, b

All

81

Sub ID Description Custom Parameter

a Logical signals shall not connect to blocks that operate Blocks receiving
on numerical signals. numerical signals
[Correct]

Numerical values are compared to determine if they are equal.
uintlf
L1} g T
In1
uintd boolean uintl G
Sl "
g Cutl
Ciormpare
vintiE To Conztart
(3) »F
I3

Switch

[Incorrect]
A logical output is connected directly to the input of blocks that process numerical

inputs.
®hadean
™+ uintd boolean
- : » bookan
bodlean Add - Ot
Data Tvpe Corwersion]
I
®hodean
L uin s boolean
x L

bool O
i Product Data Tyvpe Corwersion

sz

A logical signal is compared with a numerical value.

®uint16

I

bzl bool int1 G
@ oolean " oolean —I uin

Ir - Dt
rrpare
To Zera —— P —iF
Switch
uint16
D
In3
b Numerical signals shall not connect to blocks that Blocks receiving logical
operate on logical signals. signals
[Correct]

82

bioale an n

Ot 1

E)hmlean
| or
Il
hmlean Logical
Cperator]
I
boolean o
E 3 } Ll ARD biole an
Ina P
:hmlean Logical
Ciperator
I

&>

Cut2

Logical signal is inverted by using a logical operation.

uint1G

@ uint1G > T
Il
boolean boolean
NOT {
I
_ Logical
@ uint16 Cperator F_ﬂ 5
In3
Switch

Ot

Logical signal is evaluated by using a logical operation.

®uint1 G > 0T
In1
@hndean |
L boolaan uinti &
w0 o (D
™ . >
. Ot
boole an Logizal
true Cperator
Coretant " iF
uintl & =witch
D
Ina

[Incorrect]

- A block that is used to perform logical operations is being used to perform numerical

operations.

- A numerical output is connected to the input of blocks that process logical inputs.

double double
25
I boodlean
Gah —» 0
dc\uble g double ,:IBDEIEE' Ot
- erator
g :
Gainl

- A block that is used to perform numerical operations is being used to perform logical

operations.

Inputs other than logical values can be provided to the block. However, [Enable
Port] can receive only logical signals that have On/Off.

83

Rationale
Sub ID

ab

[Product] performs logical operations when it connects the numerical operations
result to a block that receives the logical value [Enable Port].

double
Il % double
double
I
r
n
doubl deubl
@ ki i dut —'m :
na Ot
Description

- When numerical and logical values are treated the same, the original intention
becomes unclear and the next operation in the model can be incorrectly interpreted,
further compounding the error.

jc_0121: Usage of add and subtraction blocks

Rule ID: Title jc_0121: Usage of add and subtraction blocks

Sub ID NA-MAAB: a

Recommendations JMAAB: a, b, ¢

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a The {icon shape} of the add and subtraction [Sum] block -

shall be “rectangular”.
When used in a feedback loop, the {icon shape} can be
“round”.

[Correct]
The {icon shape} for the add and subtraction [Sum] block is “rectangular”.

i
owt M)

Out1

Sum

The second input to the add and subtraction [Sum] block is a feedback loop, so the
{icon shape} is “round”.

84

G) w1)
Ty = Out] Out]
s

Outl O | =
UnitDe lay

|

[Incorrect]
This is not a feedback loop, but the {icon shape} of the add and subtraction [Sum]
block is “round”.

D Plowm "D

1 " ut1 Outd
2
In2 n

The “+” mark shall be used for the first input to the add -
and subtraction [Sum] block.

For a feedback loop, the first input can be set by using

the “-” mark.

[Correct]
The “+" mark is used for the first input to the add and subtraction [Sum] block.

"
s p_ | Outl Outl

In2

Sum

The second input to the add and subtraction [Sum] block is a feedback loop, so the
mark is used.

Out1_old

—_

N

+

- K
1
e T <l > D)

In1

[Incorrect]
The sign for the first input to the add and subtraction [Sum] block is the “-” mark.

85

[Incorrect]

The add and subtraction [Sum] block has three inputs.

(1) > -
Int Inf
1
o P
@ In2 >+ Out1
In2
Sum
c The add and subtraction [Sum] block shall not have more | -
than two inputs.
[Correct]
The add and subtraction [Sum] block has no more than two inputs.
L +
7 In1 >
1
2 -
() 1o > + Out1
In2
Sum

(1) >+
In1
In1
2 o
In2 Out1
In2 Out1
(3) I3 > +
n
In3
Sum
Rationale
Sub ID Description
a Adherence to the guideline improves readability of the model.
b Readability of the control specification improves when the sign for the first input is
consistent.
c The order of operations is clearly defined.

jc_0610: Operator order for multiplication and division blocks

Rule ID: Title

Sub ID
Recommendations

MATLAB® Version

jc_0610: Operator order for multiplication and division blocks

NA-MAAB: No recommendations
JMAAB: a, b, c

All

86

Rule
Sub ID

Description

The “*" mark shall be used for the first input to a
multiplication and division [Product] block.

[Correct]

Custom Parameter

The “*” mark is used for the first input to the multiplication and division [Product]
block.

— P X

[Incorrect]

The “/” mark is used for the first input to the multiplication and division [Product]
block.

R

*|+

—P X

Product
The multiplication and division [Product] block shall have
no more than two inputs.
[Correct]
The block has two inputs.

—P
X X
>
Product i
Product1

[Incorrect]
The block has three inputs.

87

> X

.

Product

Rationale
Sub ID Description
- When checking the block, the input order of the expression and block is reversed,
which impairs readability.
a - For floating point numbers, the code is generated according to the operation order in
the block ((1+1stinput)) x 2" input). However, if division is performed later, the
number of operations can be reduced.

b - The order of operations is clearly defined.

jc_0611: Input sign for multiplication and division blocks

Rule ID: Title jc_0611: Input sign for multiplication and division blocks

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a When using fixed-point values as the input to the -

multiplication and division [Product] block, the sign of the
data type shall be the same for all input signals.

Rationale
Sub ID Description
- A utility function is created for each least significant bit (LSB) when fixed-point code
a is generated. Unification of data type signs can reduce the number of utility
functions.

jc_0794: Division in Simulink

Rule ID: Title jc_0794: Division in Simulink
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When using division, implementation of the algorithm -
shall avoid division by zero.
Rationale
Sub ID Description
- Deviation from the rule can cause unintended operation and code generation
results.

88

jc_0805: Numerical operation block inputs

Rule ID: Title jc_0805: Numerical operation block inputs
Sub ID NA-MAAB: al/a2, b, cl/c2, d, e, f1/f2, g, h, i, |
Recommendations JMAAB: al/a2, b, cl/c2, d, e, f1/f2, g, h, i,
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al When using [Abs] with signed integer types, the input -
shall not be the most negative value.
[Correct]
intd in ints I
18— > L >
Upperlimit = 127> <EatuateOrintezerCvertlow = off>
Lowerlimit = - 127>
[Incorrect]
in 2 int3 -
12 s > 12
CmaturatelnlntezerCverflom = of f>
a2 [Abs] block parameter {Saturation on Integer Overflow} -
shall be selected.
[Correct]
ints ints [17
1o in M in > 127
CmatrateOnlinteger Overflon = o
[Incorrect]
in 3 ints -
128 |- W > 125
CmaturatelnlntezerTverfliom = off>
b Input to [Abs] shall not be unsigned integer types or -
fixed-point types.
[Correct]

- intd le intd n

I it

[Incorrect]

n uintd le uintd n

In1 St 1
cl Input to [Sqrt] shall not be a negative value. -
[Correct]
Negative number is saturated with 0.
double
C1) ? p—AT
x R
_ | boolean dokle double
>= —I--I —» ./ u
W
double <OutputSigralType = autor
0 . PL_F
Simulation result
"4 XY Graph =A<
X Plot
1.5 r
ol 1 [
< 05t
e
LI
—.5 !
-2 -1 0 1 2
X Axis
[Incorrect]
doukle cloukle
4 ﬁ > IEL
<0t putSizralT vpe = autor
c2 [Sqart] block parameter {Output Signal Type} shall be set -
to “complex”.
[Correct]

90

double ﬂ double (c) ._| 0 +1i]

L0t put=igrelType = complexs

[Incorrect]

cloukle doukbile
S BN >

< Dut putSigralT vpe = autor

Input to [Reciprocal Sqrt] shall not be less than zero.

[Correct]
Less than eps saturated with eps

(D double . > T

*
— boolean double cloukle
- D=—"eD
¢ —h—| —VE
i
double Reciprocal
=18 * ."‘_" F Sort

Simulation result; Plot as Y=log10(Z)

4 XY Graph [':'||EI|_
XY Plot
10
25
—
o .
-5 0 5
X Axis <107

[Incorrect]

double 1 / ﬁ double > inf

Reciprocal
SOt

When using [Math Function] and block parameter
{Function} is set to “log” or “log10”, the input to the block
shall not be zero.

[Correct]
Replace within +eps with +eps

91

double
double
fg=F-4 T
daouble boalean daouble daouble (o)
- S
£

Dutput=iErallvpe = complesd:

double i double F
] >

—=pE

Simulation result: Plot as Y = |Z]|

"4 XY Graph = | B
XY Plot
20
- 15T
< 10
:;-
5 5
0 . . .
-0.01 -0.005 0 0.005 0.01
X Axis

[Incorrect]

docble dovile (c) | —inf|
0 F——™ logi0 >

< CutputSignalType = complex:

fl When using [Math Function] and block parameter -
{Function} is set to “log” or “log10”, the input to the block
shall not be a negative number.

[Correct]
When the input is less than eps, the value is saturated to eps. Less than eps

saturated with eps.

colkle
1) ' p—i T
; L
_ |boclean couble dovble
>= —r-l ——» ogl0
b

<OutputSigralT ype = autor

dovble
eps - P F

Simulation result

92

4 XY Graph I. =) & |_—t;hl
XY Plot
0 P
E —10
=
—20 :
-1 —0.5 1] 0.5 1
» Axis
[Incorrect]
coLle doLble ran
-1 ™ logl >

0wt putSigralT vpe = auta>

f2 When using [Math Function] and block parameter {Function} is

set to “log” or “log10”, block parameter {Output Signal Type} shall
be set to “complex”.

[Correct]

clouble double (o) 0+ 1364
- b———» g0 >]

< OoutputSigralTvpe = complex:

[Incorrect]

coLble coLkle ran
-1 ™ logl0 P

0wt putSigralT vpe = auta>

g When using [Math Function] and block parameter {Function} is

set to “mod” or “rem”, the second argument input shall not be
zero.

[Correct]

doLkle

10 P |—|
mod double > 1

doLble l (=311 dovble > 04

158

[Incorrect]

93

h

couble

10 >
mod cloukle > 10

cloukle

l = double > FEn

>

When using [Math Function] and block parameter {Function} is
set to “reciprocal”, the input to the block shall not be zero.

[Correct]
Replace within +eps with +eps

H» Db
double
e b
4* T

*
couble boolean ciouble doLble
ere =0 —-{ by 1
- 7
covble rmin couble nF
- d

Simulation result; Simulation results is not inf, but since it is close to zero, the change

in the output value is significant.
i |
4| XY Graph EES
X Plot
1000
2 [\
S 0 - T
—
~1000 . : -
0.1 -0.05 0 0.05 0.1
X Axis

[Incorrect]

double double i
> 1 > irif

When [Product] block parameter {Multiplication} is set to
“Element-wise(.*)", the divisor input shall not be zero.
Note: To specify a divisor input, set [Product] block parameter

{Number of inputs} to “*/".)
[Correct]

94

double
10
% oo
k3 "
<Multiplication = Element-wise(.”)>
16 double <Number of inputs = */>

[Incorrect]

double
10
% feoee
<Multiplication = Element-wise(.*)>
0 double <Number of inputs = */>
] When [Product] block parameter {Multiplication} is set to -

“Matrix(*)”, the divisor input shall not be set to a singular matrix.
Note: To specify a divisor input, set [Product] block parameter
{Number of inputs} to “*/".)

[Correct]

10 double
01

P K double | ‘5” 3|
| .
> Inv gl 2| 1]
<Multiplication = Matrix(*)=
1 3| |double <Number of inputs = */>
2 5
[Incorrect]
10 double
01
P % double | nan“ nanl
| .
> Iny gl nan| | nan|
<Multiplication = Matrix(*)>
1 3 | |double <Number of inputs = */>
E
Rationale
Sub ID Description

alclde | The result of entering an invalid value is implementation dependent. Deviation from
fighij the rules can result in unintended behavior.

a2 Correct settings prevent unintended behavior that can result from using invalid values.

The block can become optimized out of the generated code, resulting in a block that
you cannot trace to the generated code.

Correct settings prevent unintended behavior that can result from using negative
values.

b

c2f2

95

jc_0622: Usage of Fcn blocks

Rule ID: Title jc_0622: Usage of Fcn blocks
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When [Fcn] has operators with different priorities, -
parentheses shall be used to specify the priority order.
Rationale
Sub ID Description
When operators have different priorities and the computation order is not clearly
a specified by using parentheses, readability is impaired and can be misinterpreted.

This can result in unintended behavior.

jc_0621: Usage of Logical Operator blocks

Rule ID: Title jc_0621: Usage of Logical Operator blocks
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The {icon shape} for [Logical Operator] shall be set to -
“rectangular”.
[Correct]

The icon shape for [Logical Operator] is set to “rectangular”.

CoO—

[nt 1 ror
L
Logical R e] KOR > NOT
Operator Logical Outl
[r2 Operator3 Logical Logical
Operatord Operatort

CoOr—

[r3
o
Operator

[

G)—* o YOR

%—,—’ '

; Logical
Logical
Operator? Operatord

6

[Incorrect]
Some of the icon shapes for [Logical Operator] are not “rectangular”.

96

— —» H)D—’ NOT

e Operator Logical - Out!
Operator3 Logcal Logical
O peratord Operatort
G
I3 '
- Logical
i Operator]

4 D

&)—,—’

. Logical
Logical
Operator? Operatort

g5}

Rationale
Sub ID Description

When describing the same function, using a consistent expression improves
a readability. Since “Characteristics” shapes are similar, the risk of misinterpretation is
greater than with “rectangular” shapes.

jc_0131: Usage of Relational Operator blocks

Rule ID: Title jc_0131: Usage of Relational Operator blocks
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When using [Relational Operator] for comparison of -
signals and constants, the second (bottom) input shall be
used as the constant input.
[Correct]
g
it
Sl ———
PARAM > BE
Relational
Qperatar
[Incorrect]
> D
ab BE
AR
Relational
Qperator
Rationale
Sub ID Description

97

Using constant values and the same comparison method reduces misinterpretation of
the model.

jc_0800: Comparing floating-point types in Simulink

Rule ID: Title jc_0800: Comparing floating-point types in Simulink
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Equivalence comparison operators (==, ~=) shall not be -
used on floating-point data types.
[Correct]

double —
LOWER. ¢ boo kean
@%,,, double Relational
Operator bo an

di b - AM ———{ 1)
ol Aidd double - EE
2 UPPER [S Jpookan Losical
d2 Operator
Relational
Clperator 1

[Incorrect]

Uses floating-point type equivalence comparison operations (==, ~=).
double e —
ap > __ |bobean
di S »(1)
Refational EE.]
m double Qperatar

doublke e |
D » - |habke
a3 o = (D
Refational BB
dnuble Ciperator 1
o4
Rationale
Sub ID Description
Due to the characteristics of the floating-point, since the error is included in the value,
a the result of the equivalence comparison operation may be false when it was
expected to be true.
jc_0626: Usage of Lookup Table blocks
Rule ID: Title jc_0626: Usage of Lookup Table blocks
Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b
MATLAB® Version All
Rule

98

Sub ID
a

b

Rationale
Sub ID

ab

Description Custom Parameter

[Lookup Table Dynamic] block parameter {Lookup -
Method} shall be set to “Interpolation — Use End Values”.

These [n-D Lookup Table] block parameters shall be set: -
- Set {Interpolation Method} to “Linear point-slope”
or “Linear Lagrange”
- Set {Extrapolation Method} to “Clip”
e Select {Use last table value for inputs at or above
last breakpoint}.

Description

When an unexpected value is entered for [Lookup Table], the output is determined by

using the extrapolation method and can become an impossible value or cause the
[Lookup Table] output to overflow.

jc_0623: Usage of continuous-time Delay blocks and discrete-time Delay blocks

Rule ID: Title

jc_0623: Usage of continuous-time Delay blocks and discrete-

time Delay blocks

Sub ID Recommendations NA-MAAB: a

or subsystem.
[Memory] shall be used in a continuous type model or
subsystem.

[Correct]
[Unit Delay] is used in the discrete type model or subsystem.
()

function

¥
+

H PGAIN x =
- err

L
e
u
o
[w D
=
[y
a
¥
+

>
v
]
'
=
=
¥
%

Y

]

1 dT Product 1

.

Unit Delay
SampkTime = -1
IhitialCondition = 0

[Incorrect]
[Memory] is used in the discrete type model or subsystem.

wipi

JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Unit Delay] or [Delay] shall be used in a discrete model -

¥

99

i}

function

[+ |
O+ P GAIN | — g
= ”" e L N Wi CI')
Product |+ v
o |
8 =‘+—‘ TGAIN
| X -
-"'j Wl
l—_| dr Froduct |
Mlemor
TnkeritSampleTime = off
InttialCondition = 1
Rationale
Sub ID Description
a Adherence to the rule improves readability of the model.
jc_0624: Usage of Tapped Delay blocks/Delay blocks
Rule ID: Title jc_0624: Usage of Tapped Delay blocks/Delay blocks
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When holding previous past values, [Tapped Delay] shall | -

be used to create a vector signal from all held values.

[Correct]

[Tapped Delay] is used.

C—rpeiav—] '

In1

[Incorrect]

Outl

Tapped Delay Sum of
Elements

[Tapped Delay] is not used.

100

1 1 1 1
(O r—» - > - » - » L
e 2 2 2 2
Urit Delay Unit Delayt Unit Delaw? Unit Delayd
D
» Out2
Sum of
Elerments1
L » L » L » L »+
3 z z 2 2
Uit Delayd kit Delayd Unit Delanyg Unit Delaw? .
»(2)
»+ Outs
|+
Add
b When holding past values, [Delay] shall be used to -
obtain the oldest value only.
[Correct]
[Delay] is used.
7
Ind Chutd
Delay
[Incorrect]
[Delay] is not used.
o T B S
Ir6 2 z 2 = Outs
Unit Delayd Unit DelzyS Unit Delzyv1Q Uit Delayl?
Rationale
Sub Description
ID
a [Tapped Delay] is set with arrays that hold past values, which improves code
readability to assist code efficiency.
B Improves model readability and code efficiency.

jc_0627: Usage of Discrete-Time Integrator blocks

Rule ID: Title jc_0627: Discrete-Time Integrator blocks

Sub ID NA-MAAB: a

Recommendations JMAAB: a, b

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

101

[Discrete-Time Integrator] block parameters {Upper
saturation limit} and {Lower saturation limit} shall be
defined.

[Correct]

Block parameters {Upper saturation limit} and {Lower saturation limit} are defined.

:1 ._F{Ts _/’_ L .
d_plm plm

d plm .

Decrete-Time
Inteerator
Initial = 0
Tzamplk = -1
Gan = 1.0
Upperzaturationlimt = PLM_b&
LowerEatur atonlimit = P LR_MIM

Limit output

Upper saturation limit:

ap

plm

PLM_MAX

Lower saturation limit:

PLM_MIN

[Incorrect]

Block parameters {Upper saturation limit} and {Lower saturation limit} are not

defined.
)——» =~k
o _plm =—1 plrr
d_plrm : :
Uiscrete—T ime
Integrator
Initial = 0
Tsample = —1
Gan =10
[Limit output
Upper saturation limit:
PLM_MAX
Lower saturation limit:
FLM_MIM
Jc_0627

When [Discrete-Time Integrator] block parameters
{Upper saturation limit} and {Lower saturation limit} are
defined as Simul ink_Parameter, parameter {Data
type} shall be set to “auto”.

[Correct]
{Data type} is set to “auto”.

olm

102

K T=
O F==—

-1
d_plm z 3]
Dicrete-Time g
Ihteeratar
Initial = 0
Tzampk = -1
Gan =10
Uppersaturationlimit = PL R &
LowerSatur ationl imit = PLK_MIM

& Sirnulink.Parameter: PLM_MAX W
Value: 100

Data type: | auto Ny —

Pl Simulink.Pararneter: PLM_MIN e
Value: |EI
|Data type: | auto v 5>

[Incorrect]
{Data type} is not set to “auto”.

k. T=
O) D
d plm plim
Decrete-Time
Inteerator
Tnitial = 10
Tzampk = -1
Gan =10
Uppersaturationlimit = PLk_bd
Lowersatur ationl imit = PLK_MIM

"k Simulink.Parameter: PLM_MAX x

Value: 100

|Data type: | uintd w »>

"l Simulink.Parameter: PLM_MIN -

Value: |IZI

Data type: | uintd w >

' Rationale

' SubID |

Description

a

Avoids block output overflow and prevents other computation blocks that use the
output of this block from producing unexpected results.

B

Simulation errors occur when {Data type} is set to a value other than “auto”, “single”,
or “double”.

103

jc_0628: Usage of Saturation blocks

Rule ID: Title jc_0628: Usage of Saturation blocks

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a [Saturation] and [Saturation Dynamic] shall be used to -

limit physical quantity.

Type conversion shall not be used.

The upper and lower limits for the data type maximum
and minimum values shall not be set.

[Correct]
[Saturation Dynamic] is used to limit physical quantity. Type conversion is not being
used.
uint3?
6000
uindan Constantd
™ » > uintz N | Spuintzz - Lintl G :
Product » o | Qut]
Product] Saturation Data Type Conwersion
irt32 Lint32 nintaz Ermamic Ok
3142 1000 o
Constant Constant! Constant?

[Incorrect]

[Saturation Dynamic] is not being used to limit physical quantity. Type conversion is
being used. The upper and lower limits for the data type maximum and minimum
values are set.

uin 32

rtmax uint 167

. Congtant?
y |uint3d ul {un |
In2 > "l x |uint3? > y uint1 6 n
Product? »ia | Out?
Product 3 DSE"EW@‘E%
) . : 4113 T _
qig0 [t T ki bt minCuint 167 fae2
Canstartd Cianztanth Constanth
Rationale
Sub ID Description
a Consistent use of [Saturation] improves maintainability of the model.
p %
jc_0651: Implementing a type conversion
Rule ID: Title jc_0651: Implementing a type conversion

104

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Data Type Conversion] shall be used when changing -
the data type of the block output signal.
[Correct]
[Data Type Conversion] is used to convert the data type of the [Divide] output signal.
n uinti (2)
In1 2 % |uint32 &) »l
uint1a 2 . ‘
3142 » uint32 (2) 5 it 16 uint16 (2) » n
Constant Praduct "+ Data Type Conversion! out
SintlG Linta2 Divide CSaturatel nlntegerOverflow = on>
1000 M it

Constarit] Data Type Conversion

< SaturatelnlntezerOverflow = on>

[Incorrect]
[Data Type Conversion] is not used to convert the data type of the [Divide] output

signal.
n uirt16 (2)
> | 7l |um@ ol
314y irt16 » 2 uint16 (23 ‘®
2
Constant Proauct >+ Outl
uint1f uint32 Diveide
1000 1 g uint32
Corstant! Data Type Conversion
<SaturatelnlntegerOverflow = ony
Rationale
Sub ID Description

Dividing the math operations and type cast can help to clarify the order of execution

a and data type for each expression.

3.6. Other blocks

db_0042: Usage of Inport and Outport blocks

Rule ID: Title db_0042: Usage of Inport and Outport blocks
Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b, ¢
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Inport] shall be positioned on the left side of the diagram, | -
but can be moved to prevent the crossing of signals.
[Correct]
[Inport] is positioned on the left side of the diagram.

105

02Ratio

C2Ratio

D

Tran=Tain

[Incorrect]

W02 Cale S l,'
VO2 Calo
TQ Req -
T Req

Throt Rea T3 Rea
s
VoZ2Cal SlipEst

Throt Req
Slighods ——{(_4)
P TransTan SlinMode
SlipCals

[Inport] is not positioned on the left side of the diagram.

(G)——»|02Ratio

02Ratio

V02 Calc

TQ Reg

Throt_Req

:

W02 Calo

‘

TQ Req

TG Req

Yo2Cal

Throt Reg

]

oD,

TransTqin

TransTan

Slipkst

SlipMods

SlipEst

(D

SlipMode

SlipCalc

[Outport] shall be positioned on the right side of the
diagram, but can be moved to prevent the crossing of

signals.

[Correct])

[Outport] is positioned on the right side of the diagram.

106

02Ratio

D

TransTqin

V0?2 Cale
Y2 Calo
02Ratio TG Req
TQ Reqg

Thmt_ReQ Ll TQ_R@Q
s
Vo2Cal SlipEst

Throt Reg
SlipMode
P TransTen SlipMode
SlipCalc

[Incorrect]

[Outport] is not positioned on the right side of the diagram.

G o—>

02Ratio

Duplicate [Inport] shall be prohibited.

[Correct])

One [Inport] is used..

)

In1

[Incorrect]

[Inport] is duplicated.

VO2_Calc
VO2 Calc
02Ratio TQ.Req R
TO Req
Throt Reg TG Req
st | (D)
Vo2Cal SlipkEst
Throt Req
SlipMoce |——»(_ 4)
(2) P TransTan SlipMode
TransTqin
SlipCalc
’ ~—
= (1)
. Out1
1 Relational
—» - Operator
z

107

C1) > .

Ini - > -
QOutl

1 Relational
- Operator
In2 z
Rationale
Sub ID Description
abc Defined operation rules improve readability.
jc_0081: Inport/Outport block icon display
Rule ID: Title jc_0081: Inport/Outport block icon display
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a For [Inport] and [Outport], block parameter {Icon Display} | -

shall be set to "Port number".

[Correct]
The {icon display} for [Inport] and [Outport] is "Port number".

1) P+

EgRpm > |u|
EgRpm — P+ EzRpm abs

n Ciffset

Offset

[Incorrect]
The {icon display} for [Inport] and [Outport] is not "Port number".

EgRpm_abs

-—“ngm +
Eafom > L
—+ EsRpm abs
Add s

108

Rationale
Sub ID Description

- Improves readability by displaying the port number of [Inport] and [Outport].
- Allows for easy identification of port numbers that are within a subsystem.
a - Prevents misconnections to hierarchized subsystems by displaying the block names
and making the names of signal lines to the [Inport] or [Outport] the same as the
block names.

na_0011: Scope of Goto/From blocks

Rule ID: Title na_0011: Scope of Goto/From blocks
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Goto] block parameter {tag visibility} shall be set to -
“Local”.
Rationale
Sub ID Description
- When hierarchies of [Goto] and corresponding [From] are different, the connection
a relationships can be difficult to understand.
- Simulation errors can occur when hierarchies of [Goto] and corresponding [From]
are different and a virtual subsystem changes to an Atomic subsystem.

jc_0161: Definition of Data Store Memory blocks

Rule ID: Title jc_0161: Definition of Data Store Memory blocks
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The smallest scope level shall be used to define [Data -
Store Memory].
b Only data required for execution and code generation -
shall be defined in [Data Store Memory].
Rationale
Sub ID Description
a - Readability improves when usage is limited.
b - Unused [Data Store Memory] data can affect maintenance and operability.

jc_0141: Usage of Switch blocks

Rule ID: Title jc_0141: Usage of Switch blocks
Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

109

Sub ID Description Custom Parameter

a The second [Switch] input condition shall be a logical -
type.
[Switch] block parameter {Criteria for passing first input}
shall be set to “u2~=0".

Rationale
Sub ID Description

- It is easier to understand specifications when the configuration is applied by using

a Simulink blocks rather than by writing operation expressions in blocks.

jc_0650: Block input/output data type with switching function

Rule ID: Title jc_0650: Block input/output data type with switching function

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a For blocks with switching functions ([Switch], [Multiport -

Switch], and [Index Vector]), the same data type shall be
used for data ports and output ports.

[Correct]
The data type for the data port and output port is the same.

@ int16 > T

I

In2 Cutl

Y
1

Switch

intd int1G
int16

Cata Type Corversion

@inﬂﬁ h-—|

Ird

th

int 15
L5 } .‘4\
it 16
:
@inﬂﬁ .‘1 Ot

Irfd
inta int1g
e S kg
In7
Cata Type Cormersion hultiport
Switch

110

Sub ID
a

Rationale

[Incorrect]
The data port and output port have different data types.

int16 > T

g

Ing

int16

@b oolean ._l

In9

g

Switcht

int&]

g

Int0

Out3

\ int16 n

QOutd

Inl 3
int8
C7) pK o
Inl 4
Multiport
Switcht
Description

Prevents implicit data conversion.

jc_0630: Usage of Multiport Switch blocks

Custom Parameter

Rule ID: Title jc_0630: Usage of Multiport Switch blocks
Sub ID NA-MAAB: a, ¢

Recommendations JMAAB: a, b, ¢

MATLAB® Version All

Rule

Sub ID Description

a [Multiport Switch] block parameter {Number of data ports}
shall be two or more.

b The input to the [Multiport Switch] control port shall be an
unsigned integer.

c When [Multiport Switch] block parameter {data port
orderlis set to "Specify indices", these block parameters
shall be set:

- {Data port for default case} to “Additional data port”.

111

Rationale
Sub ID

a

- {Diagnostic for default case} to “None”.
[Correct]

Main Signal Attributes

IData port order: ISpecify indices ']
Data port indices (e.q. {1,[2,3]}):
[1.33 |
IData port for default case: | Additional data port ']
IDiagnostic for default case: | None < I
double
2 »—
Corgtart
foble !
[Lz2 3] » 11
N
i At Ll
double] |—9|
[4 5 6] » 11
[gm0 Dizp b
daubl
789 f— K
Corstant7 Multport
S hch
[Incorrect]
Main Signal Attributes
IData port order: ISpecify indices ']
Data port indices (e.g. {1,[2,3]}):
[y |
IData port for default case: |Last data port 'I
IDiagnostic for default case: | Error vI
2 »—]
Constant1
- 1
[1 2 3] > & P>
Constant4
] Display1
[4 5 6 ppk 3,
Constant5 I
Multiport
Switch1
Description

- Unintended output can occur when there is only one data port because the block

changes to extract scalars from vectors.

The control port is an input range that expects an integer value of zero or greater.
When a signed or non-integer signal is connected to the control port, it can appear
as a misconnection.

- There is a possibility of data ports being unintentionally selected when negative or

non-integer values are input.

When block parameter {Data port order} is set to “Specify indices”, any value that is
input to [Multiport Switch], other than the index specified for the control port, is
treated the same as the last value of the specified index. As a result, an unintended
data port can be selected.

112

na_0020: Number of inputs to variant subsystems

Rule ID: Title na_0020: Number of inputs to variant subsystems
Sub ID NA-MAAB: a
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The number of inputs/outputs of a [Variant Subsystem] -
and its child subsystem or [Model Reference] shall be the
same.
[Correct]

The number of inputs to the child subsystem is the same.

sensor]
Qutl

sensor?
sensor] Outl
sensord

sensord

Default_Fofa

ml

sensor?

a
e
v

sensord

e

[Incorrect]
The number of inputs to the child subsystem is different.

asensoﬂ +
Qutl

Outl

sensor?

sensord

Default_Fofa

sensord
D
b
b The number of inputs/outputs for [Model Variants] shall be -
that same as its referenced model.
[Correct]

The number of inputs to the referenced model is the same as for [Model Variants] .

113

sensar

[Incorrect]

Default Foft
rsarl

........

.....

;;;;;

The number of inputs to the referenced model is different than the inputs to [Model

Variants].

Rationale
Sub ID

ab

In Line FofA
orl
Qutl % j I
Pl=ensord g
M:.Jg it
Description

- Unconnected signals can be unintentionally overlooked when the number of
inputs/outputs is different.

na_0036: Default variant

Rule ID: Title na_0036: Default variant
Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub Description
ID
a Variant subsystems shall be configured so that one -

subsystem is always selected. This is achieved by using
one of these methods:

- Use the default variant for the variant.

- Define conditions that exhaustively cover all possible
values of the conditional variables. For example,
define conditions for true and false values of a
Boolean.

Custom Parameter

114

[Correct]
A default variant is used.
Variant choices (list of child subsystems or model blocks)

[Name (read-only) Variant control Condition (read-only)
)l Default_FofA (default) w | [NfA)
Function_Fofa functionVar ~ | FUNC==1
In_Line_Fofa inLineVar w | FUNC==
il
[Correct]

FUNC is a logical type.
Variant choices (list of child subsystems or model blocks)

(P Name (read-only) Variant control Condition (read-only)
Eﬂl Function_Fofa functionVar ~ | FUNC==1
In_Line_FofA inLineVar | FUNC==

[Incorrect]
An active subsystem will not exist when FUNC is not 1 or 2.
Variant choices (list of child subsystems or model blocks)

(P2h Name (read-only) Variant control Condition (read-only)
@_‘ Function_FofA functionVar ~ | FUNC==
= In_Line_Fofa inLineVar w | FUNC==2

b Model variant conditions shall be set so that all values -

which can be applied to conditional variable signals are
configured so that one subsystem is always selected.
For example, a condition is prepared for the variable
signal value being true, as well as false.

[Correct]
The condition is set so that all values for the conditional variable are covered.

Variant choices
-+ Model name Variant control Condition (read-only)
| |Model_SUM defaultvar [FUNC~=1)8&&{FUNC~=2)
= Model_SUB functionVar FUNC==1
Model_MUL inLineVar FUNC==2

[Incorrect]
An active subsystem will not exist when FUNC is not 1 or 2.

Variant choices

-+ Model name Variant control Condition (read-only)
X Model_SUB functionVar FUNC==
2 Model_MUL inLineVar FUNC==
Rationale
Sub Description
ID

- Prevents the omission of conditions.

ab - There may not be an active subsystem when conditions are omitted.

na_0037: Use of single variable for variant condition

Rule ID: Title na_0037: Use of single variable for variant condition

115

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Variant conditions shall be used to prohibit compound -

conditions that are formed from multiple variables.

Exception:
When using default variants, conditional expressions
that are formed from multiple variables can be used.

[Correct]
The variant condition is set by a single condition that is formed from multiple
variables.
Mame Submodel Configuration Variant Control Condition
=%l nal037a_0OK
=)-[C][Variant Subsystem
i [Default_Fofa L) DefaultVar {INLINE==0)&&{FUNC==0)
Function_Fof L1 FunctionVWar FUNC==1
ineVar_Fof L] InLineWar IMLIME==

The usage of enumerated type variables is recommended in a condition equation.
This example uses numerical values to improve readability.

[Incorrect]
The variant condition is set by a compound condition that is formed from multiple

variables.
Mame Submedel Configuration Variant Control Condition
=I-[*&| na0037a_NG
E-[][Variant Subsystem
#] autoTrans (IMLINE==0) &8 (trans Type==3)
D peed] defaultTrans (((INLINE==0)8: 8 (transType==3))==0) &&(FUNC==0) &8 trans Type~=2)
“[] ManualTrans ¢ImanualTrans (FUNC==1)||(transType==2)
Rationale
Sub ID Description

- Complicates the conditions, which makes it difficult to determine which subsystem
will become active. This can result in conditions being omitted.

- When conditions are omitted, there is a risk that there may not be an active
subsystem.

4. Stateflow

4 1. Stateflow blocks/data/events

db_0122: Stateflow and Simulink interface signals and parameters

Rule ID: Title db_0122: Stateflow and Simulink interface signals and
parameters

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

a [Chart] parameter {Use Strong Data Typing with Simulink | -
1/0} shall be selected so that strong data typing between

116

Rationale
Sub ID

a Stateflow chart and Simulink is permitted.

Note: {Use Strong Data Typing with Simulink 1/0} is
available only when [Chart] property {Action Language} is
set to “C”".

[Correct]
Parameter {Use Strong Data Typing with Simulink I/O} is selected, so the input and
output are set to “uint8” type.

intd

Temp

[Incorrect]
Parameter {Use Strong Data Typing with Simulink I/O} is not selected, so the input
and output are set to “double” type.

'E‘
cloubl
cortgeee |y
Cond
w,
Description

- When {Use Strong Data Typing with Simulink 1/0O} is not selected, the Simulink
signal data type that can input and output to [Chart] is set to “double” type. As a
result, type conversion is required prior to input and after output, which increases the
number of blocks and decreases readability.

- When {Use Strong Data Typing with Simulink 1/0O} is not selected, the Simulink
signal data type that can input and output to [Chart] is set to “double” type. However,
input data of any type in [Chart] can connect directly with that signal.

When these two signals have different data types, an implicit data type conversion
occurs. By selecting {Use Strong Data Typing with Simulink 1/0O}, the implicit data
type conversion does not take place and a data type inconsistency error is
generated. This prevents misunderstandings due to differences in data type, thus
improving readability.

db_0123: Stateflow port names

Rule ID: Title db_0123: Stateflow port names

Sub ID NA-MAAB: a

Recommendations JMAAB: Not supported

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a The name of a Stateflow input/output shall be the same -

as the corresponding signal.

117

Exception: Reusable Stateflow blocks can have different
port names.

Rationale

Sub ID Description

- Improves readability.

a - Code generation may not be possible.

db_0125: Stateflow local data

Rule ID: Title db_0125: Stateflow local data

Sub ID NA-MAAB: a, b, c, d
Recommendations JMAAB: a, b, ¢, d

MATLAB® Version All
Rule

Sub ID Description Custom Parameter
. " ” H
a Scope shall not define “Local” local data at the machine -
level.
[Correct]
’
[dlata < PARAM]
L —
(N———=(_
2 {
data +=COMST;
}Dut =dats;
Yy
)
]
Model Explorer - m] ®
File Edit View Tools Add Help
HOLBER @ § 0+ B
Search: | by Name | Mame: | | & search
Model Hierarchy = Contents of: db0125_OK/Chart_OK (only) Data data
M ba Simuink Root Column View: | Stateflow ~ | Show Details 4 of 15 object(s bhd General Logging Bt
[Base workspace Nome: [
~ [l dbo125 Ok Name Scope Port Resolve Signal DataType Size TnitialValy E — 1
5 W p— COpe: ocal -
g EEI 0 s =
K] Data must resolve to Simulink signal object
] Coc for cboi2s o CONST Constant double 02 :
2] Simuink Design verifier| |12 PARAM - Parameter double Size:
) Advice for db0125 Ok |l out ouput 1 [doule Complexity: [Off -
Type: |duub\a
[Lock data type setting against changes by the fixed-point
Initial value: Expression -
Limit range
Mimm: [| esdmm:
Add to watch window
[Incorrect]

Scope has set “Local” local data at the machine level.

118

Maodel Explarer
File Edit View Tools Add Help
HO 4 @BCR @Ee® T & xeE 56T

Search: | by Name | Name: | | G\ search

Mode! Hierarchy 8 = contentsof: db0125_MG (only) Filter Contents Data data

General Description

Column View: |BlockDataTypes v | Show Details 10 of 12 object(s) /=

~ *L simuiink Root

Bace Uiy Name: data
MName BlockType OutDataTypeStr OutMin OutMax Lockd
ace Scope: Local ~
% Model Warkspace
& configuration (Active))) -
B code for cho1z5_1G G Configuration (Active)
[2%] simuiink Design verifier [code for dbo125_ne Complexity: |Off -
() Advice for db0125_NG 23] simulink Design Verifier resuits
5 chart_ne () advice for db0125 NG Type: [double
[chart_ne [Lock data type setting against changes by the fixed-pair
L Scope i 5
e Initiel value: |Expression -
(5] consT Limit range
PARAM Minimum: l:l Maximum: I:

Scope shall not define “Constant” local data at the -
machine level.

[Correct])

L [ciata < PARAM]
O——0
2

{
data += CZOMST;
oLt = cats;

Model Explorer — [m]
File Edit View Tools Add Help
[y ® 4 D eed & &
Search: |hy Name V|Name: | ‘ él. Search
Model Hierarchy = Contents of: db0125_OK/Chart_0K (only) Filter Contents Data CONST
v Simulink Root = General i
ﬁ Column View: | Stateflow ~ Show Details 4 of 15 object(s) 7~ Cepine)
E Base Workspace .
Name: [consT
v db0125_OK Name Scope Port Resolve Signal DataType Size TnitialValu I = T I
cope: onstan -
% Model Workspace data Local O double L
@ Configuration (Active) | e t1 doub 0.2 Size: ‘
& code for dho125_ok | b sl e .
lz‘ Simulink Design Verifier,] PARAM Parameter double Complexity: |Off -
@ . db0125 0 out Cutput 1 O double
= Type: [double ~|
[Lock data type setting against changes by the fi
Initial value: |Expression - |02
Add to watch windows

[Incorrect]
Scope has set “Constant” local data at the machine level.

119

Model Explorer
File Edit View Tools Add Help

O g &R @@ F I eEE 5 E
Search: | by Name | Name: | | &4 search
Model Hierarchy 9 T contentsof: dbi125_NG {only) Filter Contents Data CONST
v Simulink Root — General Description
i EH e Workepace Column View: |BlockDataTypes + | Show Details 10 of 12 object(s) |~ B
Name: CONST
| db0125 NG | Hame BlockType OutDatsTypeStr CutMin OutMax Locks IS Toreon
cope: onstant A
Model Workspace Model Workspace I
Configuration {Active) Sizer

@ Configuration {Active)

& code for dbo125_NG

lz‘ simulink Design Verifier E Code for db0125_ NG Complexity: |Off 0

@ Advice for db0125_NG 2% simulink Design Verifier results

B chart e (2) Advice for db0125_NG Type: | double .
O chart NG [Lock data type setting against changes by th

Initial value: |Expression - |01

Scope shall not define “Parameter” local data at the -
machine level.

[Correct])

1. [dats < PARAM]

at
O—0O

)
{
[data += COMET;
=

2
oLt = cata;
1

(P

(.'l.\

O

S
Madel Explorer - O
File Edit View Tools Add Help
BO 4 &R @ § & /< ||T0 88 & &
Search: | by Name leame: | | é{ Search
Mode! Hierarchy = Contents of: db0125_OK/Chart_OK (only) Filter Contents Data PARAM
A4 Simulink Root = General Description
ﬂE oo orpace Column View: [Statefiow ~ | Show Details 4 of 15 abject(s) 7~ £
Name: [PARAM
~ - Name Scope Port Resolve Signal DataType Size Initialvalul l; = o= oT— I
spa cope: arameter - unable]
il mocel Wcr. e data Local O double
= code for db12s ok onstan oune :
2] simulink Design Verifier| [PARAR Farameter] double Complexity: | Off -
4t out Output 1 O double
Type: ‘duub\e ~
[Lock data type setting against changes by the fixe
Add to watch window

[Incorrect]
Scope has set “Parameter” local data at the machine level.

120

Model Explorer
File Edit WView Tools Add Help

BO 460X @O " F A AEEEEEE
Search: | by Name | Name: | | G\ Search

Model Hierarchy B = contentsof: dbo125 MG (only) Data PARAM

General Description

hd Simulink Root =
" P Column View: |BlockDataTypes ~ Show Details 10 of 12 object(s) =
iase Workspace Mame: |PARAM

MName BlockType OutDataTypeStr OutMin OutMax Locks

Model Workspace |Scope: |Parameter ~ |] Tunable I

Model Workspace
&5 Configuration (Active) fel P Size:

B coce for dbo125_NG €% Configuration (Active)
23] simuiink Design verifier (& code for cbo125 16 Complexity: |Off -
(@) Advice for db0125_NG @ Simuiink Design Verifier results
5 chart_ne () Advice for db0125 NG
 chart NG

L Scope

data

CONST

PARAM |

v

Type: | double

[Lock data type setting against changes by the fixed:

A Stateflow block with parent-child relationships shall not -
include local data with the same name.

[Correct])

St00

entry, during]
data = data + 1
out = data;

data + CONST,
data;

Model Explorer
File Edit View Tools Add Help

ke O3 2 F MM 88| & G
Search:| by Name « Juame:] | & search
Model Hierarchy == Contents of: db0125d_OK/Chart_OK. {only) Chart: Chart_0K
hd Simulink Root . . = General Documentation
i Column View: | Statefiow ~ Show Details 5 of 10 object(s) f~
L] Base Workspace Name: Chart OK
v %’125‘170'(Mame Scope Port Resolve Signal DataType Size Machine: (machine) db0125d C
Model Works
= ode or. pace X out Output 1 O Inherit: Same as Simulink
i3 Configuration (Active) @ R Inherit 5 Smulnk -1 Action Language: |C
E Code for db0125d_OK o o nherit: Same as Simulinl
5] data Local O double State Machine Type: |Classic

E‘ Simulink Design Verifier)

@ Advice for dh0125d_O 5] COMST Constant double -
Inherited v

Update method:

v B Chart_OK PARAM Parameter dauble
[stoo [[] Enable C-bit operations
O st1 User specified state /transition ex

[Incorrect]
A Stateflow block with parent-child relationships has local data with the same name.

121

Muodel Explorer
File Edit Wiew Tools Add Help

bl 3 e] i B M & & &
Search:| by Mame ~ hame:| | 34 Search

Model Hierarchy == Contents of: db0125d_NG/Chart_NG (only) Filter Contents Chart: ¢

hd Simulink Root = Gener
*a Column View: |Stateflow ¥ | Show Details 5 of 10 object(s) Y~
% Base Workspace Mame:
v db0125d_NG= Mame Scope Port Resolve Signal DataType Size Machini
Model Worksj T
@ pos orkspace [414) out Qutput 1 O Inherit: Same as Simulink

\5:;: Configuration (Active) Action |

E Code for db0125d NG i inp np 1 Inherit: Same as Simulink -1
Simulink Design Verifier it data Local O double State
4] CONST Constant double

() Advice for db0125d_M
v [chart_nG [52] PARAM Parameter double Update
[st01 [Ena
[stoo s
Exp

Muodel Explorer
File Edit View Tools Add Help

b} 3 & (o § M 4 aB & &
Search:| by Mame w hame:| | @l‘ Search

Model Hierarchy = Contents of: ...25d_NG/Chart_NG/5t01 {only) |Filter Contents State Stol

v ¥ Smuink Root Column View: | Stateflow ~ | Show Details 1 object(s) Ty~ Genera
E Base Workspace Name: St01
h db0125d_NG= Mame Scope Port Resolve Signal DataType Size State Outpu
E‘ Model Workspace I data Local | O double
&: Configuration (Active)| | [create o
& code for dbo125d_nG
Simulink Design Verifier) i
() Advice for db0125d_N Function Inlin
4 E Chart_NG Label:
O sto1
5t01
[stoo entry, during
data = date
out = data;
Rationale
Sub ID Description
- When local data is defined at the machine level, it is shared with all blocks in the
a model. The data will not behave like a local variable and can be influenced by any
operation.

- Adherence to the rules prevent the definition from disappearing when copying a
Stateflow block to another model.

- When a Stateflow block with parent-child relationships includes local data with the

d same name, readability decreases due to lack of clarity with regard to the influence

of the local data.

abc

db_0126: Defining Stateflow events

Rule ID: Title db_0126: Defining Stateflow events

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

122

Stateflow events shall be defined by the smallest scope
level in the Stateflow block being used.

b

[Correct]
Model Hierarchy

=" Contents of: db01:

b 'bi Simulink Root
E Base Workspace
v [a] dbo12s
@ Maodel Workspace
@51,- Configuration {Active)
B code for dbo12s

() Advice for db0 126

> [Chart
~ [chart1
v []a

v[Oa
> Oan
> [a2
[az

> e

e |

Incorrect]

Maodel Hierarchy

@ Simulink Design Verifier results

v P simuiink Root
E Base Waorkspace
v dbo125_NG
% Model Weorkspace
l@} Configuration (Active)
B code for dbo125_NG
@ Simulink Design verifier results
(/) Advice for db01256_NG
» ﬁ Chart
‘B
v [A
v Oat

Column View: | Stateflow

Name Par

CJau
[1a12
S
% E2

Scope

Local

Local

= Contents of: db0126_NG/Che

Column View: | Stateflow

Mame Fort Resolv

Oa
Os
[3] c1
3] c2

Scope

Input 1
Input

' Rationale

123

Sub ID

Description

a - Limiting use locations increases reliability.

jc_0701: Usable number for first index

Rule ID: Title jc_0701: Usable number for first index
Sub ID NA-MAAB: al/a2
Recommendations JMAAB: al/a2
MATLAB® Version All
Rule
Sub ID Description
al When [Chart] property {Action Language} is set to “C”,

Stateflow data property {First index} shall be set to “0".
[Correct]
{First index} is set to “0".
Data a

General Logging Description

i [] save final value to base workspace

First index: | 0 |

12’ Units: | |
3

' Description:

Custom Parameter

Data b

{ General Logaging Description

1
3 D Save final value to base workspace
3

} 4 Firstindex: |0

Units:

) Description:

[Incorrect]
{First index} is set to a combination of “0”, “1”, and “2".

124

Data a

T—a

General Logging Description
[] save final value to base workspace

O-

{ First index: |2 |
EF% =1; Units: | |
aldl= 2; escription:

}a[4] =13; -

-1

O Data b

General Loagging Description

{ [save final value to base workspace
b[0] = 1; .
b[1:| =9 First index: |u |
bl2] = 3; wits: | |
Description:
\

Data c
{ General Logging Description
<[

1]1=1;
C[Q] = 9 (] save final value to base workspace
3 =8

First indesx: | 1 |

Units: | |

O Description:

a2

When [Chart] property {Action Language} is set to “C”,
Stateflow data property {First index} shall be set to “1”".

[Correct]
The {First index} is set to “1”.

Data a
I General Logging Description
Ch) [] save final value to base workspace
] Firstindex: |1 |
:F?% i 12 Units: | |
a [8] =3 Description:

O Data b

{ General Looging Desdaription

b[1]1=1: [Ssave final value to base workspace

E%% i % First index: |1 |

J Units: | |
Description:

125

[Incorrect]
The {First index} is set to a combination of “0”, “1”, and “2".
. Data a
General Logging Description
I:/'l'") [[] save final value to base workspace
T { First index: |2 |
al2]=1; Units: | |
EF% - 2’- Description:
ald] =3; '
I
./'-’:K. Data b
W,
General Logging Description
{ bl:[j] 1 [save final value to base workspace
bh] = 2: First index: |IZ| |
}b[?] = 3,' Units: | |
Description:
)
Data c
{c[1] _ 1; General Logging Description
C[Q] =2 [save final value to base workspace
}C[E] = 3; First index: |1 |
Units: | |
I_f'i\l Description:
Rationale
Sub ID Description
al - Logic becomes easier to understand when {First index} is uniform.
- Logic becomes easier to understand when {First index} is uniform. However, C
a2 language is 0-based, which decreases the readability of the code as the index
calculation process is 1-based. This is reflected in the generated code.

jc_0712: Execution timing for default transition path

Rule ID: Title jc_0712: Execution timing for default transition path
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Chart] property {Execute (enter) Chart At Initialization} -
shall not be selected.
Rationale
Sub ID Description
- Using the same settings for each [Chart] prevents the model from being
a misinterpreted.
Use caution when referencing an input signal using the default transition line when

126

property {Execute (enter) Chart At Initialization} is selected. (See manual for further
details)

jc_0722: Local data definition in parallel states

Rule ID: Title jc_0722: Local data definition in parallel states
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Local variables that are completed in one state shall be -
defined in that state.
[Correct]
Local variables are defined in the state being used.
T mEEEEEEEEEEEEmm——— -~ pmmmEEEEEEEEEEEEm—_——— -~
AL, N /AB %
] 1 I . |
] 1 I |
: " 1 | s
i] a |
=0 { =0 i
1 { : ! { :
| datal++;) | datal++; :
' fr1 =datal + ul; : ' w2 = datal: :
I il I 1]
i ! i ¥ i !
i O - O :
A Fl . [
\'H--__ ________________ it \'H--__ ________________ it
Meodel Explorer Model Explorer
File Edit Wiew Tools Add Help File Edit View Tools Add Help
f 3 = WE 4 |EO & w &
Search:| by Mame - i\lame:| Search:| by Mame - hlame:|
Model Hierarchy = Contents of: jc072 Model Hierarchy = Contents of: ji
v b} Simulink Root) A b} Simulink Root .
E Base Workspace Column View: | Stateflow & Base Workspace Column View: | State
M E?ZZ‘B—OK Name Scope Por v E?;ZZ*?E s | Mame Scope
5| Model Workspace 5] Mode Workspace :
5‘;‘1 Configuration (Active) 5:0\, Configuration (Active) - dataz_Local
B code for je0722a_ok & code for jo07225_0K
|Z%| Simulink Design Verifier [=%| simulink Design Verifier
() Advice for jc0722a_OK I Advice for jc0722a_OK
v [Chart v 3 chart
v [OJa v Oa
S
O a8
[Incorrect]
Local variables are not defined in the state being used.

127

AN, N /AB Y
] { 1] i
1 1 \
:—:'.-4:“ { : :—t:{_} { :
1 ! 1 !
I I
' datal++;) ! dataZ++; :
' r/1 =datal + ul; : ' v = datal: :
1 1
- V 1 - U 1
O i O i
\] \]
. __," S __,"

= Model Explorer
File Edit View Tools Add Help

B 3 2]) 8
5&3rd1:| by Mame ~ hame:|
Model Hierarchy E Contents of: jci

v % simulink Root
- Base Workspace
v [Pl jco722a_nG 7{ 5
s Model Workspace -
tEl‘_‘_ol Configuration {Active) [?I:J datal Local
B code for jco7223_NG i) data2 _Local
|=¥| simulink Design Verifier
) Advice for jc0722a_Nd
v [T Chart

Column View: | Statef

v[Ba |
) aa
[
Rationale
Sub ID Description

- Readability and maintainability can be improved by explicitly limiting the valid range

a of the variables, thereby avoiding unintended references and changes.

4.2. Stateflow diagram

jc_0797: Unconnected transitions / states / connective junctions

Rule ID: Title jc_0797: Unconnected transitions / states / connective junctions

Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b

MATLAB® Version All

Rule
Sub ID Description Custom Parameter
a [Chart] shall not have unconnected transitions. -

[Correct]
[Chart] does not have unconnected transitions.

128

[condition]
b

- /

m P,
r'?"
'.—-J

L
|

[Incorrect]
[Chart] has unconnected transitions.

.T.
= B °
v_[condition]

(= Q

action;

N by

[Chart] shall not have unconnected exclusive (OR) states | -
and connective junctions without a transition source.
[Correct]

[Chart] does not have unconnected exclusive (OR) states or connective junctions
without a transition source.

L]

[condition]
b

- /

|
9 1
L

m e
r'?"
'.—-J

129

[Incorrect]

[Chart] has unconnected exclusive (OR) states and connective junctions without a

transition source.
[

- 2 e

v [condition]

-O—=10

action;

N J

Rationale
Sub ID Description
ab - Unconnected transitions can result in adverse effects, such as misinterpretation of

simulation results or failure to generate code.

db_0137: States in state machines

Rule ID: Title db_0137: States in state machines
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When the {Decomposition} of the [Chart] or State is setto | -
“OR (Exclusive)”, there shall be at least two states in the
hierarchy.

[Incorrect]

{Decomposition} of the [Chart] and State A is set to “OR(exclusive)”, but the
hierarchy contains only one state.

L]

/A ™\

I

Al

Rationale
Sub ID Description

- Redundant descriptions impair readability.

a . .
- Generated code includes unnecessary state variables.

130

jc_0721: Usage of parallel states

Rule ID: Title

jc_0721: Usage of parallel states

[ConCt] [Con2]
L

_H

Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description
a Substates of parallel states shall not be parallel states.
[Correct]
7 £
'.'. [T anditiont | =
Q "'..
{
actionl;
}
s Pt

¥
¥ [Ceonditian?]

2

action 2;

J

N s
[Incorrect]

Substates of parallel states are parallel states.
.l‘ém:vumr()a . -
",m_f—‘\ ¥ [Condition1]

(K e)
i i
actionl ;
1
[Tonat] [ConaAz]
A2 !
| —
/ v
"ﬁmup?ﬂ6 5
'En_—" ¥ [Cendition2]
(K e)
i i
action?;
}
[ConCi] [ConC2]
R
L ——
/ A

Custom Parameter

131

' Rationale

' SubID |

Description

- Behavior is not affected by nesting parallel states in a parent superstate.
a ; o .
- Hierarchization of the parallel state decreases readability.

db_0129: Stateflow transition appearance

' Rule ID: Title

' db_0129: Stateflow transition appearance

Sub ID
Recommendations

NA-MAAB: a, b, c, d, e

JMAAB: a, b, c, d, e

' MATLAB® Version

LAl

' Rule

' SubID | Description | Custom Parameter
a ' Transition lines shall not cross over one another. | -
[Correct]
Transition lines do not cross.
fState003 1
!
State001 ’im]
f—
2 :{)
- /
rgtat9004 A
o
OI [cond\t\on]:
2 { {
J action2; Tactorﬂ:
y ! y !
Q-0
A\ y

[Incorrect]
Transition lines cross.

132

Transition lines shall not overlap other transition lines.
[Correct]

Transition lines do not overlap other transition lines.

State001 State002

[Incorrect]
Transition lines overlap.

State001 State002
— =

Transition lines shall not cross over states.
[Correct]
Transition lines do not cross over states.

[]

State001 State002 State003
=

[Incorrect]
Transition lines cross over states.

State001 State002 State003
="}

Transition lines shall be drawn vertically or horizontally.
Diagonal lines can be used for flow charts.

[Correct])

Transition lines are drawn vertically or horizontally. Diagonal lines are used for flow
charts.

133

/State008

[condition] -
—

b T

action?

}

)
J

g

\

{

actionl;

I:'Stateﬁﬂﬁ 4 "State007
o [,
L a !
i State001 ‘ State002 i State003
|] i
] 1
] 1
E 2 =0 |
L% j
/State006 1%
E i‘ll>| [ccnditior]_{_)
i 21{ {
| | action2 actiont;
1 wl i
| 3
\ AN
[Incorrect])
Transition lines are not drawn vertically or horizontally.
j\ [condition] _{{:L\

| Unnecessary connective junctions shall not be used.

[Correct]

-

Unnecessary connective junctions are not used.

T EETE TSR

Unnecessary connective junctions are used.

.rS'tatTDﬂ-I v .r"Eta 0z
i ol
1 ¥ ponditionl] — condition] . [sonditian]
H b o b o) £ Loy T
1 - - . [
izl 1 izl
! Artio action actiond it act Hor
H J.' I J.' I it].-'
H - -} i O
L e tH]
E < | A H E 'S
! | hj :) L] .
iy o
| ‘s
1 | g | | T
e & Ny
[Incorrect]

134

T T

/Btatel0] Py ¢ EtateD02 %

Rationale
Sub ID Description
a - Difficult to understand the relationship between states when transition lines cross.
b - Difficult to understand the relationship between states when transition lines overlap.
c - Difficult to understand the relationship between states when transition lines cross
over states.
d - Consistent application of transition lines improves readability.
e . Transiti(éns can be difficult to understand when unnecessary connective junctions
are used.

jc_0531: Default transition

Rule ID: Title jc_0531: Default transition
Sub ID NA-MAAB: a, b, c,d, e, f, g
Recommendations JMAAB: a, b, c, d, e, f, g
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a - When {Decomposition} of [Chart] is “Exclusive (OR)”, the -
default transition shall connect at the top of the [Chart]
block.

- When {Decomposition} of the state is “Exclusive (OR)”, the
default transition shall connect immediately beneath the
state.

[Correct]
The default transition line is connected at the top.

!
AR

[a == 0]
AR

135

[Incorrect]
The default transition line is not connected.

AL

o=@

AB

When {Decomposition} is set to “Parallel (AND)”, the default | -
transition line shall not be connected.

[Correct]

{Decomposition} of the parent object for states AA and AB is set to “Parallel (AND)”,
which makes states AA and AB parallel states. The default transition line is not
connected for these parallel states.

1
1
1 I
1
L —
————————— -
1 i
1

1 I
1

#

N s

[Incorrect]
A default transition line is connected for parallel state AA.

L]
YR K
I
I |
.
AR 3

1
1
I 1
|
L ———

A level shall not have multiple default transitions. -

[Correct]
The level does not have multiple default transitions.

136

A

N 6] (AA

F

ca1 (B

2]

[3]

]

L

J

[Incorrect]

Multiple default transitions are included in the same level of state A.

ﬁ_ ["c1]

o]

(3]

AB

-

~

[ca] [B

S

Default transitions shall be connected directly and
positioned vertically to the upper part of the state or

connective junction.
[Correct]

The default transition is connected vertically to the upper part of the state.

137

[Incorrect]

.

2]

[C1]

A

y

The default transition of state A is not connected vertically to the upper part of the

state.

The destination state or destination connective junction for

/A ™
AA..
[Cc2] [c1]
AE :

AN A

the default transition shall be positioned to the top left in

the same level.
[Correct]

The default transition is positioned to the top left in the same level.

138

4B

[Z1] ‘ [c2]

A4

. v

[Incorrect]
The default transition of state AB is not positioned to the top left in the same level.

1

W

/A N
A
[C=] » [c1]
AB '

A S

Default transitions shall not extend beyond the -
boundaries of the state.

[Correct]
The default transition is within the boundaries of the state.

139

AA N
N el
s,
T .) | lca) (B
c2) | | lcal |
AB ")
N
@,
A
. J/

[Incorrect]
The default transition extends beyond the boundaries of the state.

A N
fM \
N [o1]
On
7 N) | [ca1 (B
[c2] | [ca])
i AB)
\ A
. /‘

Configuration parameter {No unconditional default -
transitions} shall be set to “Error” to ensure that in the
transition path for the default transition, the path with the
lowest priority is an unconditional transition.

[Correct]
The path with the lowest priority in the transition path for the default transition is an
unconditional transition.

140

Rationale
Sub ID

L 1]
z . 51 (B
[c2] 1" | B3] '
g 4] A8
O
2 L
[Cz] I f [z3]
(% '
Ny v

[Incorrect]
The path with the lowest priority in the transition path for the default transition is not
an unconditional transition.

1

o N
AA 5
N o]
2 N J | 5]
[zl | [c3] "
v [64] 4B
L il
L0 .
Description

- Simulation errors can occur when a state chart does not include default transition

lines.
- When default transitions are included in a flow chart, it is impossible to determine
whether this is intentional or through failure to insert them.

- Readability improves when there are no unnecessary default transitions.

+ The state may not function as intended and produce a warning when multiple default
transitions are included in the same level.

- Readability decreases when there are curves or variations in the angle or position of
default transitions.

- Readability decreases when there are variations in the position of the transition
destination state or transition destination connective junction for the default
transition.

141

- Readability decreases when a default transition extends beyond the boundary of a
state and intersects with state boundaries and expressions.

- When there is not an unconditional transition in the transition path of the default
transition, the transition destination disappears if all conditions of the transition path
are not met. This can result in unintended behavior.

jc_0723: Prohibited direct transition from external state to child state

Rule ID: Title jc_0723: Prohibited direct transition from external state to child
state

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Transitions from one state directly to an external child -

state shall be prohibited.

[Correct]
Transition from parent state to parent state.

Al

Transition from child state to another parent state.

142

L J - o

[Incorrect]
Direct transition from an external state to a child state in a different state.

(A0 3 =D =1

Alz ‘3 D

Direct transition from an external child state to a child state in a different state.

143

i B /&0 B
Al
; A
A2
. V. L A
Rationale
Sub ID Description
a - Direct transitions between child states can complicate the states and decrease
readability.

jc_0751: Backtracking prevention in state transition

Rule ID: Title jc_0751: Backtracking prevention in state transition

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Connective junctions shall not be used to separate -

complex conditions.

[Correct]
Connective junctions are not used to separate complex conditions.

A

en,du:
out = uint8(1 0);

\ [flg1 && flg2]

en,du:
out = uint8(20);

\

[('flg1) && ('flg2)]

[Incorrect]
Connective junctions are used to separate complex conditions.

144

Rationale
Sub ID

a

':I"I du: [ﬂg1] [O [ﬂgz:l = Er‘l du:
out = uint8(1 0); out = uint8(20);
|__ 2] ~ [flgl]

Description

- Deviation from the rule can cause backtracking, which results in unintended
behavior.

jc_0760: Starting point of internal transition

Rule ID: Title jc_0760: Starting point of internal transition
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Internal transition lines shall start from the left edge of the | -
state.
[Correct]
The internal transition line begins at the left edge of the state.

145

(Stateeo

[in1 > in_valuel]

[in2 > in_value2]

out = out_value3;

\

[inl > in valuel]

[in2 > in_value2]

~ out = out_value3; out = out_value2; Ut~ out_valued;

Oa o 5

[Incorrect]
The internal transition line does not begin at the left edge of the state.

146

/§tatee

Stateeel
en:
out = out_valuel;

State@e2
en:
out = out_value2;

Statege3
en:
out = out_value3;

S A
@tateeo ™)
e S
Rationale
Sub ID Description
a - Adherence to the rule improves readability.

jc_0763: Usage of multiple internal transitions

Custom Parameter

Rule ID: Title jc_0763: Usage of multiple internal transitions
Sub ID NA-MAAB: al/a2
Recommendations JMAAB: al/a2
MATLAB® Version All
Rule
Sub ID Description
al Multiple internal transitions shall not be used in a single
state.
[Correct]

147

/51

[C1]

O-

é) [c2]

==

1 =)

1 =

{ {

out = var3; out = var2;

}
O

A

{

out = var1;

}

.
/51 ™
@
1 : “
C
[:{::l'] [] =
i
L
1 b
oL
i
|
[
6 [C3] i
L
. A

[Incorrect]

148

a2

/81

1 I::“i_,)’l
C2) .
& ::_{-__J.
3 I.':-{__)
{ { {
out = var3; out = var2; out = vart,;
L} 1})

\ v

O—O—0

[C1]

[C2]

- W,

When multiple internal transitions are used in a single -
state, they shall be listed from top to bottom in the order
of execution.

[Correct])

149

»
[C1] a
1 =
[ce] 3
o
| S
 EEE—
[cal c
9
M—
N J
[Incorrect]
/51 N
[c1] G)
1
| S
[ca] <
<
—
.
[c2] |k
| S
A _/
Rationale
Sub ID Description
- The number of transition conditions is unclear when multiple internal transitions are
al used. By limiting the use of internal transitions to a single use, transitions are clearer

and readability improves.

- Using multiple internal transitions can prevent transition lines from crossing and
a2 simplifies state transitions.

- Arranging internal transitions in execution order improves readability.

jc_0762: Prohibition of state action and flow chart combination

Rule ID: Title jc_0762: Prohibition of state action and flow chart combination

150

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a A state shall not include state actions (entry, during, or -

exit) and flow charts.

[Correct]
Within the state, only one of either a State action or a flow chart is described.

=

o J

[t1 »=100]
[t2 >=100]
F { N
2 =0
= B }
{ L {
EE J {2+
i v |

[Incorrect]
The state has both a state action and a flow chart.

151

/a A
ern:
1 =0 .
du;
t1+ i
= |
T i
& | t1++
"\-I
N _
[H »>=100] T
! [t >=100]
b A
21
tZ2 =10 t
du;
t2+; v
*-Ir -.\I {
24
._,.I 1
. - .
Rationale
Sub ID Description
a - The execution order becomes difficult to understand, which decreases readability.

db_0132: Transitions in

flow charts

[Correct]

Rule ID: Title db_0132: Transitions in flow charts

Sub ID NA-MAAB: a, b

Recommendations JMAAB: a, b

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Transition actions shall not be used in flow charts. -

Transition actions are not used.

152

_"z':\ [conditiont]
L
2

out = actiond;

"

"
r,-.-u__)

LTI

AL [condition?]

N
2 |

out = actionl;

T

I
l"-\. -)l

[Incorrect]
Transition actions are used.

P [condition1]
O

2 Hout = actiont:}

=)

o

7

Ii:j 1
2

out = action;

[condition?]

N 'Y
L‘_)' I_J'J
e
'.\\- ‘,rl

In a flow chart, the condition shall be positioned on a
horizontal transition line and the condition action sha
positioned on a vertical transition line.

Exception:
Diagonal transition lines in loop constructs.

[Correct]

The condition is positioned on a horizontal transition line and the condition action is

on a vertical transition line.

out = action?;

out = action?;

Il be

153

_"z':\ [conditiont] e
\T"J1 ={_ _)
2 {

out = actiond;

=
P

LTI

I(_.L\I1|:cc>r'u::li‘cic>r12:|

e

2

out = actionl;

A M
'\T/'--' IL__/'. 2
e
l\-\. -)l

[Incorrect]

a horizontal transition line.

out = action?;

The condition is positioned on a vertical transition line and the condition action is on

{
[out = action? ;
{ [conditiont]))
(o = Lz — =)
l"l'/ '_I LY
1 I N conditionz]
out = action;
{
out = actionsZ;
o~ ./li.' -’?‘\.
'u__} "x_} \ /I
I "!
A
Rationale
Sub ID Description
a - The transition action in a flow chart is not executed.
b - Consistent positioning of conditions and condition actions improves readability.

jc_0773: Unconditional transition of a flow chart

Rule ID: Title

Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b
MATLAB® Version All

Rule

Sub ID Description

jc_0773: Unconditional transition of a flow chart

Custom Parameter

154

When a transition line with a transition condition -
originates from a connective junction, t unconditional
transition line shall also begin from that junction.

[Correct]

function A_bunkle_else_if

[* State sort processing */

nowgerl = 4

]

[State == 3]
C)'I [:O
2
I [state = 2]
C)'I =
2
J‘ [State == 1]
<‘L>1 g { {
2| * do nothing */ J {nowgeﬂ = nowgeri = 2 nowger! = 3
} L}
O O O
[Incorrect]
0762

function A bunkle else if

" State sort processing ™/

i

nowgeri =4

1
§ [State==3])
(M- =0

' | e)
Loy

nowgerl =2 | nawgerl=3

nowger! = 1

p

T & Q
i

O

{ ’- {

R

The {execution order} for unconditional transitions shall -
be set to the last value.

[Correct])

155

function A_bunkle_else_if

/* State sort processing */

S,

’f‘ W,
B

Inowg;er'_ =4
v [State == 3]
A e
O 1.-_)
2
/J; (State == 2]
O =0
3 T
) [State == 1]
C‘} ={)
3 ,:- { (
| I* do nothing */ 'no-.a.rg&rﬂ =1 nowgerl =2 nowgeri =3
\ | 1
v} b [+
/L__ " & i /L_
= L} - &,

[Incorrect]
The {execution order} for

the unconditional transition line is not the last value.

function A_bunkle_else if

[I* State sort processing */
{
L
nowgerl =3
}
(51.2 [State == 3] A
b v
1
J. [State == 2]
fi\uz =)
T
v [State ==1]
.Qg = “)
1 { { {
/* do nothing */ nowger! = 1 nowgerl = 2 }”CWQE‘” =t2
v} v ! i
O O O

condition is not met.

' Rationale
' SubID | Description
- Prevents unintended behavior that results from backtracking.
a Setting an unconditional transition explicitly defines the behavior for when the

- Setting the unconditional

behavior.

transition to take precedence can prevent unintended

156

jc_0775: Terminating junctions in flow charts

Rule ID: Title jc_0775: Terminating junctions in flow charts
Sub ID NA-MAAB: al/a2
Recommendations JMAAB: al/a2
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al Only one terminating junction shall be used. -
[Correct]
. function output = set_oukput_datalinput)
A Tint <l o~
1 = A finpu<10]
2 I =0
U = set outpot ckata(int) }DL,U = zet_output datalin ; 2 |
! U }Dutput = input; }DUtpUt =0
=) v v
[Incorrect]
There is more than one terminating junction.
. function output = set cutput datalinput)
Y. rint <0]
LA = U linput<tdl
7 i ®l =9
cutl = set_output_datalind }Dl.lﬂ = set output datalinl X 2 { I
& & output = input output =0
'y A, } L 1
a2 One terminating junction with a single unconditional -
transition as the input shall be used.
[Correct]

157

(it <]

Yo Jm—rod

[Incorrect]

I,f_@m <0
Ny

{
}0 Lt = set_output_datslin

{
}0 Ut = set autput datalind J;

function output = set outpot_datalinpu)

linpue <101~

-) {
ioutput = irgut; }DUmUt =@

(y— ()

T

Rationale
Sub ID

ala2

}out] = set output datalinl)

out! = set output datalint):

There is more than one terminating junction and input.

function output = set output datalinput)

fi‘.] [imput < 10] e
) v

“

output = input; }outpu‘t =0

i
(= O

A

Description

- One terminating junction improves understanding of the logic end point.
- Using a consistent style for terminating junction improves readability.

jc_0738: Usage of Stateflow comments

Rule ID: Title jc_0738: Usage of Stateflow comments
Sub ID NA-MAAB: a
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When [Chart] parameter {Action Language} is set to | -
“C”, I*...*/ comment nesting shall not be used.
[Correct])

158

State00

en:

state = S00;

/* Start comment */

/* S00 represents the default state */
/* End of comment */

[Incorrect]

State00

en:

state = S00;

[*I* Start comment™/*/

/*/*S00 represents the default state™/*/
/#**End of comment */*/

b When [Chart] parameter {Action Language} is set to “C”, -
new line characters for comments /* */ shall not be used
in the middle of a single comment.

[Correct]

State00

en:

state = S00;

/* Start comment */

/* 500 represents the default state */
/* End of comment */

[Incorrect]

State00

en:

state = S00;

/* Start comment
S00 represents the default state
End of comment */

Rationale
Sub ID Description
a The compiler can misinterpret the comments as a program.

- Aline break in the middle of a comment makes it difficult to determine whether
the part being edited is in the comment. There is also a possibility that the
b comment is nested.
- When [Chart] property {Action Language} is set to “MATLAB”, comments must
use %.

159

4.3. Conditional transition / Action

jc_0790: Action language of Chart block

Rule ID: Title jc_0790: Action language of Char
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description

a [Chart] property {Action Language} shall be set to

[Correct]

{Action Language} is set to “C”".

t block

“C".

@ P[I'empi Q\i

Templ

Custom Parameter

Cond1

Chart
Action Langu

age:C

@ {I’em;ﬁ Q[E]

Temp?2

CondJ

Cond1

Chart1
Action Langu

[Incorrect]
{Action Language} is set to “MATLAB".

age:C

@ {Temm @é

Temp1

Cond?2

o]
)

Chart

Action Language: C

@ P{TempZ @6

]

Cond1

CondZJ

Temp?2
Chart1
Action Language : MATLAB
Rationale
Sub ID Description

Cond2?

160

- Using a consistent action language improves readability because there is not a
difference in syntax.

- Easier to maintain consistency between the model and the generated code when
using C as the action language as compared to MATLAB.

- Easier to understand the model for users who are familiar with the C programming
language.

jc_0702: Use of named Stateflow parameters/constants

Rule ID: Title jc_0702: Use of named Stateflow parameters/constants
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a [Stateflow] shall not use numeric literal. -
Exceptions:

- Initial value is O
- Increment, decrement 1

[Correct]
Numeric literals are not used.

[r\brrrel |
antry

Cord = Marrral;

i

ja?Ma_OK_parameter.m

1 %

A = HIGHT=100;
& |= HIGHZ=120;
4 - LOW1=0;
[LoWz=10;

[Incorrect]
0711

[Temp > 120]

[Temp > Cl

[Termp <= -20] [Terp <=100]

Rationale

Sub ID Description

-+ Only the modeler will understand the purpose of the value when numeric literals are
used to write constants, which decreases readability.

- Constants that are intended for calibration are generated in the code using numeric
literals.

161

jm_0011: Pointers in Stateflow

Rule ID: Title jm_0011: Pointers in Stateflow
Sub ID | NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description

a [Stateflow] shall not use pointer variables.

[Correct]

Pointer variables are not used.

statel
en,du:
A=B;

[fnc(D)] [fne(E)]

state2
en,du:
A=C;

[Incorrect]
Pointer variables are used.

Custom Parameter

162

statel

0

Fn fn

state2

&

Rationale
Sub ID Description

- Readability is impaired when pointer variables are used.

a - Code generation may not be possible.

jc_0491: Reuse of Stateflow data

Rule ID: Title jc_0491: Reuse of Stateflow data
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a A variable shall not have multiple meanings (usages) ina | -
single [Chart].
[Correct]
A variable does not have multiple meanings (usages).

163

®

{

k=0;

tmp = inputl;

b

{l Compute input1 raised to the 3rd power

[k=3
By
2

{

{ xax tmp = tmp * input1;
outl =tmp; ™~ }
tmp = input2; T~
k=0; S~
} {

k=k+1;

}
{f Compute input1 raised to the 4th power

I

Ik < 4
1.]

tmp = tmp * input2;

{
out2 = tmp;

}

[Incorrect]
Variables k and kk have multiple meanings (usages) in a single [Chart].

164

®

{

k=0;

kk = 0;

tmp = input1;
1

I

/i Compute input1 raised to the 3rd power

(,EL\ [k < 3] .
(M ['_-|'::/J
Thhm"m,_ {
I H‘"m_,a tmp = tmp * input1;
k = tmp; Ry }
tmp = input2; T
} H"H.,_ o
(C
k=k+1;
}
{f Compute input1 raised to the 4th power
V. [kk < 4] .
(- O
2 - |

tmp = tmp * input2;

kk = tmp; 1
1 kk = kk + 1;
i)
r""w._
L
' Rationale
' SubID | Description
‘ a - Variables can be misinterpreted when the variable name is different than the

meaning of the numerical value that is assigned to the variable.

Jm_0012: Usage restrictions of events and broadcasting events

' Rule ID: Title | jm_0012: Usage restrictions of events and broadcasting events

‘ Sub ID

NA-MAAB: No recommendations

Recommendations JMAAB: al/a2/a3

165

MATLAB® Version All

Rule
Sub ID Description Custom Parameter
al Stateflow events shall be used only in [Stateflow] output. -
[Correct]
Event is used only in the [Stateflow] output.
L]
L
[enEl I
"
N)y E10
O =
Y,
Chart
y
B function()
In1 outl
Inl Out1
Function—Call
Subsystem
[Incorrect]
Event is used other than in the [Stateflow] output.
A ‘=
1 1
| 1
1 1
I 1
| 1
' i
| A1 A2 !
- [data==1Tsend(H E1}I :
| :
1 1
| 1
| 1
| 1
| 1
1 1
] 1
Y ’/"
,’é— ___ X
] 1
1 1
1 L] [}
I [}
[} [}
1 1
1 1
i y B2 i
1
E B1 -]
: i
I 1
1 1
1 1
1 1
I 1
[} 1
1 1
] I
\ ,l
a2 Send syntax send(event_name, state name)shall -
be used to broadcast Stateflow events.
[Correct]

Event is broadcast using the send syntax.

166

a3

;’A 3
) |
H I
) |
H |
: i
: i
(a1 A2 !
| [data==Ylisend(F1.B] _ :
| = -
1 |
) |
H I
1 |
) I
H I
' i
‘\N __ A
(° \
! . |
! |
! |
! |
: |
! i i
(B = !
! E1 |
| :
! |
! |
! |
! |
! |
! |
! |
| i
N W

-

[Incorrect]
The state that receives the broadcast has not been defined in the send syntax.

lf?l‘ b
H [
H [
H 1
H [
[1
| - ‘
e o |
I _ B
data== dlE1) exitE1
: [data SE . i
I i
H [
H 1
H [
H 1
H i
.| :
Mo 4
I’é \“
! |
1 . I
! I
! |
! I
! |
: v I
I
I = I
! > |
I - H
! |
! I
! I
! |
I I
! |
! I
|\\]

-

Send syntax send(state_name.event_name)with the | -
qualified event name shall be used to broadcast
Stateflow events.

[Correct]
The qualified event name is used in the event being broadcast.

167

o

>

—

Q.

)

o

&

1

I3

(0]

=

=

o

m

.
)
. . .

e

m
.
N
— R —

[Incorrect]
The state that receives the broadcast has not been described in the send syntax.

1
| i
[} 1
[} 1
[} 1
1 1
[} 1
! i |
! .
(A AQ. :
- [data==1}{send(E 1)) exitE 1l i
| : i
[} 1
[} 1
[} 1
[} 1
[} 1
[} 1
[} 1
\ ’l

/8 2\
[} . |
! 1
! |
! 1
! |
i y i
1 (B = I
i Ei i
1 |
[} |
1 |
[} |
1 |
[} |
1 |
[} |
| |
']
Rationale
Sub ID Description
al - Recursive processing in a chart is prevented by using Stateflow events in [Stateflow]
output only.

168

a2a3

- Improves readability because transitions that are triggered by events are clearly

identified.

jc_0733: Order of state action types

entry (en)
during (du)
exit (ex)
[Correct]
Order is en, du, ex.

[Incorrect]
Not in en, du, ex order.

Custom Parameter

du

en
c= -
param1=0;
param2=1;
paramad=10;

param3=50;

—— =
paraml=param]+param?2;

State2
du

2

[] FRAE
paramd=1
er

SRR P
param1=1(

param2=2;

—
paraml=paraml+param?2;

Rule ID: Title jc_0733: Order of state action types
Sub ID NA-MAAB: a, b
Recommendations JMAAB: a, b
MATLAB® Version All
Rule
Sub ID Description
a Basic state action types shall be stated in this order:
entry (en)
during (du)
exit (ex)
[Correct]
Order is en, du, ex.
Statel
en
paraml =0,
param2=1;
param3=10;
du
paraml =paraml+param?2;
ex
param3=5(;
[[1n1 +p';aram1 . | [{ln1 +pararmi)
param3] paramS]
State?
en
param1 =10,
paramZ=2;
du
paraml=paraml-+param?;
ex’
param3=10,
b Combined state action types shall be stated in this order:

[Incorrect]
Not in en, du, ex order.

169

L] »
Statel K Statel
en: endu
param1=0; param3=50;
param2=1; duex
param3=10; paraml=paraml+param2,
en.du ex e
paraml=paraml+param?2; param1=0;
duex param2=1;
parama=h0; param3=10;

: /
[[Irﬂ+pfr'am1]> g [In1+parami >
parami3] parama]
State? State2
endu endu
parami=10; paraml=param1+param2,
param2=2; ax:
du.ex: param3=10,
paraml=paraml+param2; x e
ax param1=10;
param3=10; param2=2;
Rationale
Sub ID Description
ab - Consistent modelling improves readability and maintainability.

jc_0734: Number of state action types

Rule ID: Title jc_0734: Number of state action types
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a State action types shall not describe the same thing more | -
than twice.
[Correct] [Incorrect]

170

I _'

Statel Statel

en en:
Cht! =10 Oud =0
It > 10 1 T
|] [<5)] Lt >10)] [t <5)]
(State? N (State? N
en en
parmmmt =1; parard =1;
parart = Inl ; e, ol
endu; paraml = pararml + Il ;
pataml = paraml + 10 ; er:
Ot = parardl — param; rarar? = Inl ;
pamEre = pErar +1; e,
Out! = paraml — params;
param? = marane +1;
o S e vy
Rationale
Sub ID Description
- The execution order will differ depending on the order in which they are described.
a - Execution order can be difficult to understand when the action type is described

multiple times.

jc_0740: Limitation on use of exit state action

Rule ID: Title jc_0740: Limitation on use of exit state action
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a State action type exit(ex) shall not be used. -
[Correct]

Cald

[Termp > LOW] [Termn > HIGH]
entny
Cornd = Cold
2
[Termp <= HGH?]
[Termp <= LOW]

[Incorrect]

This example illustrates how the model behavior in [Chart] is misinterpreted. It
appears that TBD is output when state action type exit(ex) is used, but it is in fact
being overwritten by the state action type entry of the transition destination state. It is
not outputted by [Chart].

171

[Termp > LOWA] Mol [Termp > HGH]
| ertry 1

Cond = Marrral;

o et - exit:
[Termp <= LOWEZ] Cond = THED; [Termp <= HIGH?] Cond = TBD;
Rationale
Sub ID Description
- Execution timing can be difficult to understand when state action type exit(ex) is
a used in combination with a conditional action, a transition action, or state action type

entry(en). This can result in misinterpretation of the model behavior.

jc_0741: Timing to update data used in state chart transition conditions

Rule ID: Title jc_0741: Timing to update data used in state chart transition
conditions
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Variables that are used in a state transition condition -
shall not use “during” to perform an update.
[Correct]

The update is not performed by using “during”.
®

—

= f stable():;

—~+o

[a==1]

-

B

\

function y = f stable

[Incorrect]
The update is performed by using “during”.

172

Rationale
Sub ID

a

iy
a = fstabls();

[a == 1]

function v = f stable

Description

- The execution order of the transition condition and implement of “during” can be
difficult to understand, which increases the risk of errors.

jc_0772: Execution order and transition conditions of transition lines

Rule ID: Title jc_0772: Execution order and transition conditions of transition
lines

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a All transition paths shall be executable. -

(R2011b to R2016a) Configuration parameter {Transition
shadowing} shall be set to “error”.

(R2016b and later) Configuration parameter
{Unreachable execution path] shall be set to “error”.

[Correct])

173

[21]

}ﬂg:OFF; flz = ON;
!

[Incorrect]
Execution order 1 is an unconditional transition and conditional expression [C1] is
described in execution condition 2.

'y [C1] .
_I,»’ 2 o\
1
{ {
flg = OFF; fla = QN;
!]
S _/
/E'\I
[Correct]

Includes a state transition.

174

—

[hasChangad(C17] ‘

[c1==0n] 1

[st0]
[Incorrect]

Includes state transition. The unconditional transition line is higher in the execution
order than the conditional transition line.

G
rasChanged(C1] ‘

[c:1=t:N]E|

]

Rationale
Sub ID Description
- An unconditional transition that is in any position other than the last in the execution
a order causes the subsequent transition to be a dead path, which results in

unintended simulation behavior.

jc_0753: Condition actions and transition actions in Stateflow

Rule ID: Title jc_0753: Condition actions and transition actions in Stateflow

Sub ID NA-MAAB: al/a2
Recommendations JMAAB: al/a2

MATLAB® Version All
Rule

175

Sub ID Description Custom Parameter

al Transition actions shall not be used in a state chart. -

[Correct]
Only a condition action is used in the state chart.

l

A [flg2] C

I [figl] T [igt]
z [

out = action?; out = actionl;

¥ }

[Incorrect]
A transition action is used in the state chart.

9
A [flg2] C
2
[Tflg2]
I ~ -
{out = action2:} {out = actiont;}
B
a2 Condition actions and transition actions shall not be -

combined in the same [Chart].
[Correct]

Either a condition action or a transition action can be used in a [Chart].
(The following diagram illustrates a transition action.)

176

A LiigZJ C
2
[fig2]
i e
[flg1] [fig1]
/{out = action2:} /lout = action1:}
B

[Incorrect]
[Chart] 0774

®
A [flg2] e
2 1
[“fig2]
I [fig1]
"- , [figl] _
out = action; fout = actiont]
|
B
Rationale
Sub ID Description
al - Prevents confusion with a condition action, thus improving readability.
- A condition action executes upon entering a transition. A transition action executes
a2 after determining whether it can transition to the next state. Adherence to the rule

prevents confusion between a conditional action and a transition action.

jc_0711: Division in Stateflow

Rule ID: Title jc_0711: Division in Stateflow

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: al/a2

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

177

al Variables, constants, or parameters in a Stateflow block -
shall not be used to perform division operations.

[Correct]
Division is performed outside of [Chart].
—P{ X
oot G b |
{_@ outl
—{
N/
Divide Chart
L]

{
outl = inl;

}

[Incorrect]
Division occurs within [Chart].

4 ™

> in
@6uﬂ —
- in2
. v

Chart

178

= inl/in2:

— O
o
'_|_
m

I

= data;

i

=

=
I

a2

When division occurs in a Stateflow block, the process shall -
prevent division by zero.

[Correct]
The process is defined to prevent division by zero.

|

(:51 [in2 == 0] O

[Incorrect]
The process does not prevent division by zero.

179

Rationale
Sub ID

ala2

results.

{
data = in1./in2;
J

Description

- Deviation from the rule can cause unintended operation and code generation

db_0127: Limitation on MATLAB commands in Stateflow blocks

Rule ID: Title

Sub ID
Recommendations

MATLAB® Version

Rule
Sub ID
al
blocks.
[Correct]

db_0127: Limitation on MATLAB commands in Stateflow blocks

NA-MAAB: al/a2
JMAAB: al/a2

All

Description Custom Parameter

MATLAB commands shall not be used in Stateflow -

MATLAB commands are not used in Stateflow blocks.

180

a2

(XY Trac/
du:

xForce = WheelTgTot *

yForce = WheelTgTot *

sl cos(WheelAng);
sl sin(WheelAng):

o
Simulink Function Simulink Function
y = sl_cos(u) y = sl_sin(u)
, -
vt = — —
C |) =T
.F
u cosl2*pku)
U . . W
Gain Cosine

[Incorrect]

A MATLAB command is used in Stateflow blocks.

T

(¢ Trac/)
du

xForce = WheelTqTot #|ml cos(WheelAng);

yForce = WheelTqTot # ml sinlWheel&ng):

. J

When a MATLAB command is used in Stateflow blocks, it | -
shall be accessed only by using [MATLAB Function].

[Correct]

The MATLAB command is accessed by using [MATLAB Function].

181

X Trac/
du:

[«Force, vForce] = calcWheel(WhealTg Tot, WheelAng):

MATLAE Function
[<F wF] = calcWheellwhes| Ty, wheelfng)

.ﬂ calcWhesl + ’

1 function [xF,¥F] = calcWheel (wheelTa, wheelfng)
? - %F = wheelTy % cosi{wheelfing);

a - vF = wheelTyg % sin(wheeldng);

4 enid

h

[Incorrect]

[MATLAB Function] is not used for a MATLAB command.
]

(%Y Trac/)
du
xForce = Wheel TqTot #{ ml cos(\Wheel&ng);
yForce = WheelTqTot | ml sinlWheel&ng);

\ /
Rationale
Sub ID Description
al - Not all MATLAB commands are supported for code generation. As a result, code
may not be generated for these unsupported MATLAB commands.
- Not all MATLAB commands are supported for code generation. As a result, code
a2 may not be generated for these unsupported MATLAB commands.
- Readability improves when C and MATLAB action languages are described
separately.

jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

Rule ID: Title jc_0481: Use of hard equality comparisons for floating point
numbers in Stateflow

182

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a These equality comparison operators shall not be used -

in floating-point operands:

[Correct]
Equality comparison operators are not used in floating-point operands.

oy Boslet —d2)<ol] _~

single

5 {
di) {out = single{0); }DUt = singlel1)
-2 single }
d2
1e6 =ingle > - -
Chart »
[Incorrect]
Equality comparison operator “=="is used in floating-point operands.
.f"*':'\.] [t ==ct] o~
% O
{ {
out = single(0); out = single(1);
e . r";\
- Ny
Rationale
Sub ID Description
- Due to the nature of the floating-point data type, as it contains an error, the result of
a the equivalence comparison operation may be false when it was expected to be
true.
na_0001: Standard usage of Stateflow operators
Rule ID: Title na_0001: Standard usage of Stateflow operators
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a, b1/b2/b3, c
MATLAB® Version All
Rule
Sub ID Description Custom Parameter

183

a When [Chart] property {Action Language} is set to “C”, -
operators (“&”", “|”, “*", “~") shall be used only for bit
operations.
[Correct]
Operators (“&”, “|", “*", “~") are used for bit operations.
{ Mamvs:A DataType
OutData1 = InData1 | InData2; fnpatal - int
OutData2 = InData1 & InData2; InDataz — ints
OutData3 = InData1* InData2; CutDatal int3
OutData4 = ~InData1; OutDataz int3
V } OutData3 intd
O QutDatad intd
[Incorrect]
Operators “&”, “|", “*", “~" are not used for bit operations.
i Nameh DataType
<J InDatal double
OutDatal = (InDatel > 1) | (Inbata2 <2); InData2 double
IC.‘utDo.ta:E = \ InDatal > 1) & (InData2 < 2); OutDatal boolean
E\:tg:t;d : .].rr:IDr[‘}-;E:.-lj--,.aljr;rjit??; QutData2 boolean
g 3} ; OutData3 double
Q OutData4 boolean
bl When [Chart] property {Action Language} is set to “C”, -
operator “~=" shall be used for inequality operations.
[Correct]
Operator “~="is used for inequality operations.
[
[InData IEInData?
Q| =0
2
{
OutDataI = }OutDatal =1
b2 When [Chart] property {Action Language} is set to “C”"., -

operator “I=" shall be used for inequality operations.

[Correct]
Operator “I="is used for inequality operations.

184

[InData1BInData2]
O O

2
{ {

QutDatal = 0: }OutData] =1
}

O O
A

b3 When [Chart] property {Action Language} is set to “C”, -

operator “<>" shall be used for inequality operations.

[Correct]
Operator “<>" is used for inequality operations.

[InData lIr:Data2]
O &
2

[[=3
QOutDatal = 0; QOutDatal = 1;

O O

B

c When [Chart] property {Action Language} is set to “C”, -
operation “I” shall be used for logical negation.
[Correct]

Operator “I" is used for logical negation.
L]

©—1 Datal] O

2 “I” is used [
{OutData1 =0 QutDatal = 1;
} }
[Incorrect]
An operator other than “!” should be used for logical negation.

185

‘ WDaTaT]
O O

‘

! ‘I” other than “!” should be used. [
OutDatal = 0; }OldDauﬂ =1
]
|
O O
Rationale
Sub ID Description

When either of these [Chart] properties are set as follows:
e {Action Language} is set to “MATLAB”
e {Action Language} is set to “C” and {Enable C-bit operations} is selected,

a) .
“&&" and “&”, “||" and “|", have the same calculation function. However, when “&&”
and “&” or “||” and “|” are combined in the same chart, it can be difficult to determine
whether these are separate calculation functions or the same calculation function.

blb2b3 | Consistent use of equality operators improves readability.

- Consistent use of logical negation operators improves readability.
c - When [Chart] property {C-bit operations are enabled} is selected, the function of the

“I” operator remains the same and is not affected by logic changes that result from
changing the setting.

jc_0655: Prohibition of logical value comparison in Stateflow

Rule ID: Title jc_0655: Prohibition of logical value comparison in Stateflow
Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Logical constants shall not be compared to each other. -
[Correct]
Logical constants are not compared to each other.

186

A [flg2] c
en,du: 2 = en,du:
out = uint8(1); out = uint8(3);

[g2]

N

B
en,du:
out = uint8(2);

[Incorrect]
Logical constants are compared to each other.

L]

A [flg2 == true] C

en,du: 2 = en,du:
out = uint8(1); out = uint8(3);
lg2 Ise]
T = .'._
1 [flg1 ON uint8] T
[f gl OFF uint8]
B
en,du:

out = uint8(2);

Rationale
Sub ID Description

- Readability improves with consistent use of “boolean-valued signal==true(boolean
type constant)” or “(boolean-valued signal)” for logical signal condition expressions.

- Prevents redundancy in the model.

- Deviation from the rule can cause unexpected issues.

jc_0451: Use of unary minus on unsigned integers

Rule ID: Title jc_0451: Use of unary minus on unsigned integers
Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

187

Sub ID
a

Rationale
Sub ID

a

Description Custom Parameter

Unary minus shall not be used on unsigned integers. -
[Correct]

Statell Marne DataTvpe
en . .

it 4 \ sial 132 _var t32
132 _varl = —int32(u16 vard) E |ui1 E-i\._riarZ IL:;nH 6

[Incorrect]
Negative values cannot be input into 16-bit environments.
(Negative values can be input into 32-bit environments)

L]

.:rt-l-atc-l._ld Marne DataT vpe
32 varl = —ui16_var2; W) 132 vart int32
Lt Uil G_var? uint16
Description

- As the results are depend on the execution environment, unintended results can

occur.

jc_0802: Prohibited use of implicit type casting in Stateflow

a

Rule ID: Title jc_0802: Prohibited use of implicit type casting in Stateflow
Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

All operations, including substitution, comparison, -
arithmetic, etc., shall be performed between variables of

the same data type.

The data type of the actual arguments and the formal
arguments in a function call shall be the same.

[Correct]
- Variables use the same data type for calculations.

Example: Comparison operation
® Signal

l Name || DataType

[i<n]

‘A \ 7 ‘B | i unit8
n unitd

Example: Arithmetic operations and assignment operations (compound expressions)

188

Signal

* [Name || DataType
d=i+j; i unit8
A)
] uint8
d uint8

- Variables have different data types but are explicitly typecast before calculation.
Example: Comparison operation
L

ignal
Lirll 16G)<d] . Name || DataType
A B i unit8
d int16

Example: Arithmetic operations and assignment operations (compound expressions)

° ignal

l) Name || DataType
d = int16() + int16()

r } - i unit8
] uint8

d int16

- The data type of actual arguments and formal arguments in the function call are the
same.
® Signal

{ - Name || DataType
d = func(double(i)):

A } B i single
‘ i double

: = d doubl
function ret = func(arg) e
®
{) Name || DataType
ret = arg * J;
} arg double

C) ret double

[Incorrect]
- Variables use different data types for calculations.

Example: Comparison operation
@ Signal

v Name || DataType
[i<d] ik

‘ B \ i unit8
d int16

Example: Arithmetic operations and assignment operations (compound expressions)
Signal

[| Name " DataType
d=i+]
: s | i unit8 I
A }
| i uint8
d int16

189

- Calculations are performed between unsigned integer type variables and signed

integers.

S
S| nal

| Name || DataType |
O] o e

- The data type of actual arguments and formal arguments in the function call are

different.
L { Signal
d = func(i): 3 Name || DataType
A \ } ‘ B i single
i double
function ret = func(arg) | || ¢ double
T
ret = arg * , Name || DataType
} arg double
()
__) ret double
Rationale
Sub ID Description
a - Implicit data type conversion can produce unexpected results.

jc_0803: Passing values to library functions

Rule ID: Title jc_0803: Passing values to library functions
Sub ID NA-MAAB: 1/a2, b1/b2, c1/c2, d1/d2
Recommendations JMAAB: 1/a2, b1/b2, c1/c2, d1/d2
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al A minimum value for the signed integer type shall not be -
provided when using the abs library function.
[Correct]
{
out = abs(-1);
}
&
[Incorrect]

190

a2
bl

b2
cl

c2
di

{
out = abs(-128);

The abs library function shall not be used.

A negative number shall not be entered when using the
sqrt library function.

[Correct]

out = sqrt(2);

[Incorrect]

{
out = sqrt(-2);

J

The sqrt library function shall not be used.

A negative number shall not be entered when using the
log and 10910 library functions.

[Correct]

L]

{

out = IogﬁOl

[Incorrect]

{

out = logl—10];

The log or 10g10 library functions shall not be used.

Zero shall not be entered for the second argument when
using the fmod library function.

191

[Correct])

{
out = frad(10,2):

[Incorrect]
[

[
}

out = fmod(10,0);

&

d2 The fmod library function shall not be used. -
Rationale
Sub ID Description

- The behavior of a library function when an invalid value has been passed is
alblcldl : X .)
dependent on the processing system and may result in unintended behavior.

a2b2 - To avoid duplicate modelling of the same guard process in Simulink and Stateflow,
c2d2 use Simulink to perform arithmetic operations.

4.4. Label description

jc_0732: Distinction between state names, data names, and event names

Rule ID: Title jc_0732: Distinction between state names, data names, and event
names
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a An identical name shall not be used for state, data (inputs | -

and outputs, local data, constants, parameters, data

store memory), or event names in a single [Chart].

[Correct]

Names are not duplicated.

192

/ModelA

A

[condition == C1]

J[a == Al] w [a == A2]

OnA

-

[Incorrect]
Names are duplicated.

[condition == C2]

/ModelB N\
OffB
[b==B1 | [o==pB
nB
. J
ode B

OffB

haodelEfF= B2]

onB

(MiadelA
oA
leomdition =011
[a==A1] [a==A2]
o [cardition = G2]
.
Rationale
Sub ID Description
a -+ Using unique names prevent misunderstanding.

jc_0730: Unique state name in Stateflow blocks

Custom Parameter

Rule ID: Title jc_0730: Unique state name in Stateflow blocks
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description
a State names in [Chart] shall be unique. -
The content of linked atomic sub-charts can be treated as
another [Chart].
Rationale
Sub ID Description
a - Readability is impaired.
- Deviation from the rule can cause unintended code behavior.

193

jc_0731: State name format

Rule ID: Title jc_0731: State name format
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The state name shall be followed by a new line that -
does not include a slash (/).
[Correct])

h
-

[Incorrect]

hh

Rationale
Sub ID Description
a - Readability improves when state names are described consistently.

jc_0501: Line breaks in state labels

Rule ID: Title jc_0501: Line breaks in state labels
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a A state action statement shall not be written on the -
same line as a state action type.
[Correct]

194

Rationale
Sub ID
a

(=tate \

en:
entry valus=1;
dunng value=0;
du:

entry valus=0;
during value=1;
ex;

during valus=1;

—

[Incorrect]

[Staté N

enentry value=1;
during_value=0;
duentry value=0;
during_value=1;
excduring_value=0;

Description
- Readability is impaired.

jc_0736: Uniform indentations in Stateflow blocks

Rule ID: Title jc_0736: Uniform indentations in Stateflow blocks

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a, b, c

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a State action types shall not have blank spaces at the Number of single-byte

start of a line. spaces

Executable statements shall have one single-byte
space at the start of the line.

[Correct]
Executable statements use one single-byte space at the start of the line.

195

ModelA N\
entry:
a=0;
b=0:;
c—1
during:
a=a+inl;
b=a*2;

\e=1:),

[Incorrect])
Executable statements do not have a single-byte space at the start of the line.
[J

ModelA N\
entry:
a=0;
b=0;
c=0
during:
a=a+inl;
—ax*x2;
exit:

o=t | J

A blank space shall not be entered before the -
following:

e “[* of a transition condition

o “{" of a condition action

e “/"of a transition action

[Correct])

A blank space is not entered before the “[* and “{" of the transition label
condition, conditi_on action, and transition action.

L /

[a >=10] [d >= 10]

o

/A d 1D N

[Incorrect]

A blank space is entered before the “[* and “{* of the transition label condition,
condition action, and transition action.

196

T ~

c At least one single-byte space shall be entered after Number of single-byte
the “/” of a transition action. spaces
[Correct]

Single-byte spaces are entered after the “/” of the transition action.

it — O
N\ eventl/ {f=10} (M
Fa e O
[>= 10]

.

[Incorrect)
There are no single-byte spaces after the “/” of the transition action.

- r
Il — :
\ eventl/{f = 10;} (N
7 —{ C
[g >=10]
)
Rationale
Sub ID Description
- Using uniform indents before the executable statement clarifies the link between
a the state action type of a state label and the execution statement, improving
readability.
b - Using uniform indents for transition conditions, condition actions, and transition
actions improves readability.
C - Consistent use of blank spaces improves readability.

jc_0739: Describing text inside states

Rule ID: Title jc_0739: Describing text inside states
Sub ID NA-MAAB: a

197

Recommendations JMAAB: a
MATLAB® Version All

Rule
Sub ID
a

Description

Text inside a state shall not extend beyond the
boundaries of the state.

[Incorrect]

Statel

I

ubState! off
A+ Statel OfF TimerCount #7

en:
timer = [}
du:
timer +=dt;

[timer poff.time] [timer = o time]

ubStatel on
£¥ Statel On TimerCount £/

&n:
timer = [,
du:
timer +=dt;
. A
1
(Statel ™

I

ubStatel off
¥ Statel Off TimerCount +5

timer =10
du:
timer +=dt;

[timear > off fime]
[timer = on_time]

SubStatel on

S¥ Statel On TimerCount ®/
an

timer =

du:

timer += df;

Custom Parameter

198

Rationale
Sub ID

a

Etatel

timer += dt

[timer > off time | [timer > on_time |

Description

- When the text inside a state extends beyond its boundaries, it can be difficult to
determine which state the text belongs.

jc_0770: Position of transition label

Rule ID: Title jc_0770: Position of transition label

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: al/a2

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
al Transition labels are positioned at the transition line -

point of origin.

[Correct])
Transition labels are positioned at the point of origin.

¥ [enerpm > TH_EMG_RFM] [out rpm > THOUT RFM]
(H

= H
i I g { {
mode = 0OME; }mode =TWw0, mode = THREE;

199

[Incorrect])
The positioning of transition labels is inconsistent and do not correspond to the
transition line.

[ene_rpm > TH_EMG_RF]
o [outrpm = THOUT RFR]

' W oY

H ?
mode = TWO;
!
{
maode = THREE;
!
{
mode = aRE;
¥ 1 N ¥
a2 Transition labels are positioned near the center of the -
transition line.
[Correct]

Transition labels are positioned near the center of the transition line.

[enerpm > THEMG_RFM]) [outrpm > THOUT RFPM]

{ M e H

2 2
{ { {
mode = 0ME; mode = TWD: }rno-de =THREE;
} 1

' ¥ '
[Incorrect)

The positioning of transition labels is inconsistent and do not correspond to the
transition line.

200

[ene_rpm > TH_EMG_RFM]
7 [out rpm = THOUT RPR]
4 = H

I L
mode = TWO;
I3
i
}mt:de = THREE;
{
mode =0ME;
¥ ! ¥
Rationale
Sub ID Description
ala2 - Consistent positioning of transition labels makes the correspondence between

label and line easier to understand.

jc_0771: Comment position in transition labels

Rule ID: Title jc_0771: Comment position in transition labels
Sub ID NA-MAAB: al/a2
Recommendations JMAAB: al/a2
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
al Comments in transition labels shall be positioned above -
transition conditions, condition actions, transition actions,
and Stateflow events.
[Correct]
The position of the comments in the transition labels is uniform.

201

/{ Engine speed determination

01[eng rpm = TH ENG _RPM) ""O
2 J When condition is not met /' When condition is satisfied
I I
L L
flg = OFF; flg = ON,;
} }

O- O

[Incorrect]
The position of the comments in the transition labels is inconsistent.

Il Engine speed determination

Y. [eng_rpm > TH_ENG_RPM] ~
Cﬂ =)
_-—
. I 'Wh dition i t met {
: en condition is not me fig = ON:
1
= s 1
}flg OFF; Il When condition is satisfied

o8 8

a2

Comments in transition labels shall be positioned below
transition conditions, condition actions, transition actions,
and Stateflow events.

[Correct]
The position of the comments in the transition labels is uniform.

202

[eng_rpm = TH_ENG_RPM)]
('I—') 1H Engine speed determination

r
{

1ﬂg:OFF: flg = ON;

/I When condition is not met Il ' When condition is satisfied

O- &

[Incorrect]
The position of the comments in the transition labels is inconsistent.

/l Engine speed determination

¥ [eng_rpm >TH_ENG_RPM] P
O O
-y
o {
:':f When condition is not met fig = ON;
1
= . i
}flg 2l /I When condition is satisfied

O &

' Rationale
' SubID | Description
- Uniform positioning of comments in transition labels clarifies to which transition
ala2 condition, condition action, transition action, or Stateflow event the label

corresponds.

203

jc_0752: Condition action in transition label

Rule ID: Title jc_0752: Condition action in transition label

Sub ID NA-MAAB: No recommendations

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Parentheses in condition actions shall use only curly -

brackets on a single line.
(A new line shall start before and after curly brackets.)

[Correct]
Note: The example is for a flow chart, but the rule also applies to state transitions.

¥t
1
Incorrect
Twtds]
Rationale
Sub ID Description
a - Clarifying condition actions improves readability.

jc_0774: Comments for through transition

Rule ID: Title jc_0774: Comments for through transition
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a When there is no processing in an unconditional -
transition, a clarifying comment shall be written on the
transition label.
[Correct]

204

A clarifying comment is provided.

@ /*State Distribution process */

nowger = 4,

N s [State == 3] _
t':> 1 =)
2
{
nowger = 3;
[State == 2]) °
(-\'—'] :::-l/- b
A o
2 { _
[State == 1] nowger = 2;
'Y Yy 1
C /n—l—m\)
2
I*do nothing*/ nowger = 1:
i, b y
L_} } |;_}:u |':H_}-.-J i)
/'.J.:\
I\- -/I
[Incorrect]

A clarifying comment is not provided on the condition path, so it is difficult to
determine whether the lack of action is intentional.

@ /*State Distribution process */

l|'0'u'v'ge' =4;
g’ [State == 3] 8
O @,
2
{
nowger = 3;
[State == 2] 1
O 2® |
2 {
[State == 1] ‘nowger = 2;
O 2@)
2 {
nowger = 1;
1 1 1
i .'!II 'r .'!II X
Fa e P "
> O-= O= O
O
Rationale
Sub ID Description
- Clarifies that the processing is deliberately excluded.
a - The comment that is added to a transition label is also included in the generated
code.

4.5. Miscellaneous

jc_0511: Return values from a graphical function

‘ Rule ID: Title jc_0511: Return values from a graphical function

205

Sub ID NA-MAAB: No recommendations
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The return value for graphical functions shall be set in -
one place only.
[Correct]
.{ function A = HBLC)
data =0
| I
Al [B=a _ [c=d
J (1 =1
{ 2 2
}mw@m = HState, data); 1D21 ;DZQ; iDZS
A=D
B
[Incorrect]
{ - -
data = 0. function & = FIBC)
(\’ [B==0] [c=0]
: O =1 =)
nowgerl = FlState, datal;
] | { [
A= A=2 A=3
7 1 ! }
O= O= ®
O
Rationale
Sub ID Description
a - Modifications to the output name is limited to prevent the changes from being
missed or overlooked.

jc_0804: Prohibited use of recursive calls with graphical functions

Rule ID: Title jc_0804: Prohibited use of recursive calls with graphical
functions

206

Sub ID NA-MAAB: a
Recommendations JMAAB: a

MATLAB® Version All
Rule

Sub ID Description Custom Parameter

a Calls from a graphical function to itself and calls between -
graphical functions shall be prohibited.

[Correct]
Processing is performed within the graphical function.

function ret =funciij)

{ {
out = fundl Gnl 'l retl =i;
1 I}

[Incorrect]
The graphical function is calling itself.

function retl = funciii)

{ {
out = funcd Ginl & }FEﬂ = funclij}
}

Graphical functions are calling each other.

function retl =funcl §1

{ {
out = funct Cind }FEﬂ = func2i}

function retl =func?ijl
L

{
retl =funcl(j}
}

Rationale
Sub ID Description
a - Readability decreases. Deviation from the rule can cause unintended overflows and
infinite loops.

207

na_0042: Usage of Simulink functions

Rule ID: Title na_0042: Usage of Simulink functions

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a When using [Simulink Function] in [Chart], one or more of | -

the following conditions shall be met.

- Input/output variables shall use only local [Chart] data
in the [Simulink Function].

- Input/output variables shall use only local [Chart] data
and input data in the [Simulink Function].

+ [Simulink Function] shall be called from multiple
places in [Chart].

- [Simulink Function] shall not be called at every time

step.

[Correct]
[Simulink Function] lookuplD is not called from every time step and, therefore, can
be used.
G Simulink Function y=lookup1D(x)

S1

en:

out = int;

[in2] 7 Lout>1]

S2
en:

a=inl * 2,
out = lookup1D(a);

[Incorrect]
[Simulink Function] lookuplD is called from every time step and, therefore, cannot
be used. (out is the Stateflow output data)

Simulink Function y=lookup1D(x]
lookup1 Dilir
)
Rationale
Sub ID Description
a - To improve model readability, the use of [Simulink Functions] should be used with

caution in charts.

208

na_0039: Limitation on Simulink functions in Chart blocks

Rule ID: Title na_0039: Limitation on Simulink functions in Chart blocks

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a Stateflow blocks shall not be used in [Simulink Functions] | -

that are included in Stateflow [Chart].

[Incorrect]
v [RootChart
[] =t mnt
v B SimulinkFunctio nlnsideStateflo
£ ChartlnsideSimulinkFon
[]

(St_root
du temp = SimulinkFunctionlnsideStateflow(input);
output = temp,

Simulink Function
y = SimulinkF unctionlnsideStateflow(x)

/
0
f
inside_inp Ow inside_autp
: O v
Char nsideSimulinkFon
Rationale
Sub ID Description
a - Readability decreases and can result in design errors.

209

5. MATLAB

5.1. MATLAB Appearance

na_0018: Number of nested if/else and case statements

Rule ID: Title na_0018: Number of nested if/else and case statements
Sub ID NA-MAAB: a
Recommendations JMAAB: Not supported
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The number of levels of nested if /else and case Maximum nested levels
statements shall be limited, typically to three levels.
Rationale
Sub ID Description
a - Improves readability
- Code generation may not be possible.

na_0025: MATLA

B Function headers

Rule ID: Title na_0025: MATLAB Function headers
Sub ID Recommendations NA-MAAB: a
JMAAB: Not supported
MATLAB® Version All
Rule
Sub ID Description
a [MATLAB Functions] shall have a descriptive header.

Information in the header can include, but is not limited to:

Function name

e Description of function
e Assumptions and limitations
e Description of changes from previous versions
e Lists of inputs and outputs
Example:

Custom Parameter

210

Rationale
Sub ID

a

%% Fonction Name: NA 0025 Example Header

%

% Description: An example of a header file
%

% Assumptions: Hone

%

% Inputs:

] List of input argumentcs

%

% Outputs:

E List of output arguments

%

% SRevision: 3.05

% SAuthor: MAABS

% SDate: July 24,2012%

%

% __

Description

- Improves readability, model simulation, testability, and workflow
- Code generation may not be possible.

5.2. MATLAB Data and Operations

na_0024: Shared data in MATLAB functions

a

Rule ID: Title na_0024: Shared data in MATLAB functions

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

Signal lines shall be used to connect data that is shared -
between MATLAB functions.

[Correct]

«»

Whes Data
P W eelData

EngineDats v‘. ErrarFlag @

Erghelata Yhes i
‘. ErrorFlag » EerrFIa";:_:lllan'tEvalLEtlm Errorf ke
E reineF aultEvaluation
g ErtorF lag_In

1

Z

nitiaiCordition = O3

211

function ErrorFlag =
EngineFaultEvaluation(EngineData,ErrorFlag _In)
%ttcodegen

RPM_HIGH = 10000;

RPM_LOW = 10;

HIGHRPMFAULT = 271;

LOWRPMFAULT = 272;

ErrorFlag = ErrorFlag In;

if EngineData > RPM_HIGH

ErrorFlag = bitor(ErrorFlag,HIGHRPMFAULT);

end
if EngineData < RPM_LOW

ErrorFlag = bitor(ErrorFlag, LOWRPMFAULT);
end

function ErrorFlag = WheelFaultEvaluation(WheelData,ErrorFlag_In)

%#codegen
SLIP_HIGH = 1000;
WHEELSLIP = 273;

ErrorFlag = ErrorFlag_In;
if WheelData > SLIP_HIGH
ErrorFlag = bitor(ErrorFlag,WHEELSLIP);
end
end

[Incorrect]
This type of pattern cannot be used when the rule is applied.

ErorfF laz_DataStore

D EncinaDats A Titialiahe = 0

ErgieData ErgirgF aultEvaliation

EreeFlag DataStore —»(1)
Wh eelDats ‘ a3z Datastore -

ErroeFlag
WhesData WheslFauktEvalietion

function EngineFaultEvaluation(EngineData)
%ttcodegen
global ErrorFlag DataStore
RPM_HIGH = 10000;
RPM_LOW = 10;
HIGHRPMFAULT = 271;
LOWRPMFAULT = 272;
if EngineData > RPM_HIGH
ErrorFlag_DataStore =
bitor(ErrorFlag DataStore,HIGHRPMFAULT);
end
if EngineData < RPM_LOW
ErrorFlag_DataStore =
bitor(ErrorFlag DataStore, LONRPMFAULT);

212

function WheelFaultEvaluation(WheelData)
%ttcodegen
global ErrorFlag DataStore
SLIP_HIGH = 1000;
WHEELSLIP = 273;
if WheelData > SLIP_HIGH
ErrorFlag_DataStore =
bitor(ErrorFlag DataStore,WHEELSLIP);
end

Rationale
Sub ID Description

- When a data store is used, the readability of the data flow decreases and can lead

a to errors in the update reference timing.

na_0031: Definition of default enumerated value

Rule ID: Title na_0031: Definition of default enumerated value
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a Method getDefaultValue shall be used to explicitly -
define the default value of an enumeration.
[Correct]

classdef (Enumeration) BasicCaolars < Sinulink.IntEnumType
gnumerat ion
Red(0)
Yellow(1)
Blue(2)
gnd
methods (Static = true)
function retWal = getDefaultValue()
retVal = BasicColors.Red;

end
end

En

[Incorrect]
clazsdef (Enumeration) BasicColors < Simulink.IntEnumType

enumerat on

Red(0)
Yellawil)
Blue(2)
end
end
Rationale
Sub ID Description

213

- When an enumerated type does not have a clearly defined a default value, the first
a enumeration string that is described will be defined as the default, which may not be
as intended.

na_0034: MATLAB Function block input/output settings

Rule ID: Title na_0034: MATLAB Function block input/output settings
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a The data type in the model explorer shall be defined for -
all input and output to [MATLAB Function].
Rationale
Sub ID Description
a - Defining the data type for all input and output to [MATLAB Function] helps prevent
simulation errors and unexpected behavior.

5.3. MATLAB Usage

na_0016: Source lines of MATALAB Functions

Rule ID: Title na_0016: Source lines of MATALAB Functions

Sub ID NA-MAAB: a

Recommendations JMAAB: Not supported

MATLAB® Version All

Rule

Sub ID Description Custom Parameter
a The length of MATLAB functions shall be limited. This Maximum effective lines

restriction applies to MATLAB Functions that reside in the | of code per function
Simulink block diagram and external MATLAB files with
a .m extension.

The recommended limit is 60 lines of code. Subfunctions
may use an additional 60 lines of code.

Rationale
Sub ID Description

- Improves readability and workflow

a - Code generation may not be possible.

na_0017: Number of called function levels

Rule ID: Title na_0017: Number of called function levels

Sub ID NA-MAAB: a

Recommendations JMAAB: Not supported

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

214

Rationale
Sub ID
a

The number of sub-function levels shall be limited, Maximum function call
typically to three levels. levels

MATLAB function blocks that resides at the Simulink
block diagram level counts as the first level, unless it is
simply a wrapper for an external MATLAB file with a .m
extension.

This includes functions that are defined within the
MATLAB block and those in separate .m files.

Standard utility functions, such as built in functions like
sqrt or log, are not included in the number of levels.
Likewise, commonly used custom utility functions can be
excluded from the number of levels.

Description
- Improves readability and testability

na_0021: Strings in MATLAB functions

Rule ID: Title na_0021: Strings in MATLAB functions

Sub ID NA-MAAB: a

Recommendations JMAAB: a

MATLAB® Version All

Rule

Sub ID Description Custom Parameter

a

Assignment statements for strings shall not be used in -
MATLAB functions.

[Incorrect]
An assignment statement for strings is being used in the MATLAB function.

215

|ﬂ Editor - Block: naD021a_NG/nal021a_NG/MATLAB Function
@mmw-@m
FILE NAVIGATE EDIT Breakpoints Run Stop Buid Model SIMULINK
- Model Model -
- - - -
BREAKPOINTS RUM
| nal021a_NG/MATLAE Function [=+ |
1 function vy = fon(u) [
2 %#codegen
3
4 - str = "A';
5
[for i = 1l:u
7 - ISt-I='[5t-I '3']:|
i end
g
10 = if strcmp (str, 'AEBE'")
17 = v = intlé(1l);
12 else
13 = v = intle(0);
14 end
15
1& end
Ln 1 Col 1
Rationale
Sub ID Description
- MATLAB functions store strings as character arrays.
a As a result, storing strings of different lengths in the same variable does not support
dynamic memory allocation, which prevents the strings from being stored.
(Consider using enumerated types when a string is used in [Switch Case])

na_0022: Recommended patters for Switch/Case statements

Rule ID: Title na_0022: Recommended patters for Switch/Case statements

Sub ID Recommendations NA-MAAB: a
JMAAB: Not supported

MATLAB® Version All

Rule

Sub Description Custom

ID Parameter
a Switch / Case statements shall use constant values for the “Case” arguments. -

Input variables shall not be used in the “Case” arguments.

[Correct])

216

function outVar = NA 0022 Pass(SwitchVar)

switch SwitchVar

case Case_ 1 Parameter % FParameter
outVar = 0O;

case NA 0022.Case 2 % Enumerated Data type
outVar = 1;

case 3 % Hard Code Value
outVar = 2;

otherwise

outVar = 10;
end
end

[Incorrect]

function outWVar = NA 0022 Fail (Case 1,Case 2,Case 3,SwitchVar)

switch SwitchVar
case Case 1
outVar = 1;
case Case_ 2
ocutvVar = 2;
case Case_S

outVar = 3;
otherwise
outVar = 10;
end
end
Rationale
Sub Description
ID
a - Improves model simulation and testability.

- Code generation may not be possible.

jc_0801: Prohibited use of the /* and */ comment symbols

Rule ID: Title jc_0801: Prohibited use of the /* and */ comment symbols
Sub ID NA-MAAB: a
Recommendations JMAAB: a
MATLAB® Version All
Rule
Sub ID Description Custom Parameter
a As comment symbols /* and */ are automatically assigned | -
in the generated code, the symbol shall not be used in:
- cgt file

- mpt Signal description
- mpt parameter description

[Incorrect]
In a cgt file.

217

| 2voFaL—va iS5 —a—FEs -7 70— |

s IIH AL -3 Ji5——: mo0004a_NG/Configuration (PH7(7) - olEl
ET | -k -t ~
| ij-‘bg‘}; ol hsThAge | YA TPANTIIL—h: lertcods template NGicst #2058 B
£ i _ A= J74 b T FL—b: ert code_template NG .cet 208 - .
| Q?E%gfl—v h IRl
. ,5:5%;&: AT S ert_code_template_NG.cgt A |
S, nog=grinzsa] R
1 ras Ak T EEESEEESEFFEFEEEFHEFEEEEEETETECHETEEFEEFFELTECEFEEFHF S
. :iki;:? A NRATAL %% Custom file banner section (optional)
_flzg = @ Jwrsnm] O . Y
. fé?t?‘% a—yothteL-5c] <FileBanner siyle="classic™
A
File: %FileNane>
| /%
Code generated for Simulink model '¥<ModelName>’.
%/
| Meclel i O T s e Y
O—F & Bk
/x
|l * File: mol004a_NG.c
7] * Sk , ,
, ¥ C?de generated for Simulink model "mo0004a_NG'.
* K
¥ Made| wersinn - 110

[Incorrect]
mpt Signal description (the same also applies to mpt.Parameter).

| ETILIHATO—S — Bl — AZARLDIEN — mpt.Signal(mpt.Parameter) I

]) 1920-3- - o IEN
Ir{{E) WE(E) R v-udI) Efa) ~nTH)
BEO LR BEHNDS M + &t
B &0 ME & BR
EFIDEAE W B 50 2T Base Workspace (03 7 2 mpt Signal: sig |
[Stk Root 1 . - . _ For [A
. ‘dljumsewmkswe FIE2— | Data Objects o [EEET ASUrhM g e 7O [sice v »
al motintta G Hame Valw DotaType Min Max Dimensions StorsgeClass WELIRRL (B =
o 2 sede 0 0 Gonstiolatile (Cust. g 0 wEE-F (@ =
[T sie1 single oo Global (Custom)
#uaang - ok E-F B8 -
BB 9] B (1
e v g
J-FERA A
ML= 532 | Global (Custom) -
DAL
Mz .
i8R
104
of | Asigl: input signal*/
A
P2 sigl

o O—F 4 B

Sosig) : mput sinale/

/% Exported data definition %/
const volatile real32_T TWO = 2.0F; SR /ATWO = 2%/ %/

volatile real32_T sigl; /% /xsigl ¢ oinput sienal®/ X/
0011
Rationale
Sub ID Description

Since comment symbols /* and */ are automatically assigned in the generated code,
comments can be unintentionally nested and behave differently than expected.

218

6. Glossary

This section provides clarification of terms that are used in the guidelines.

Terms Definition
Parameters When modificati(_)ns have not been made, this term refers to constants
that are defined in the base workspace/model workspace.
Built-in MATLAB MATLAB functions and scripts.
functions
Reserved MATLAB
words
All blocks (Type=Block), including:
e Subsystems
e Models
Block e charts (unless otherwise stated).

Standard Simulink library blocks are divided into two categories:
e Basic blocks
e Structural subsystems.

Basic Blocks

Built-in blocks in the standard Simulink library.
Blocks with undefined internal processing, such as subsystems, are not
considered basic blocks.

Basic blocks can include:

B 58 |

Int Out1 Ground Terminator .44

Scope

z z-1

>
T S I S R T |- S PN
5

Saturation1 Unit Delay Delay Discrete—Time Switch
Integrator

> > X 2 <= >AND b p

X o> Ixb I Jeo b AF

Gain Product Relational Logical Saturation

Operator Operator

[Subsystems], [models], [charts], and [MATLAB functions] are

Structural frameworks for defining the structure, blocks with user-defined internal

subsystem :
processing.

A subsystem that can be internally modeled by using Simulink basic
projection.

Subsystem Even if {BlockType} is "subsystem", [Chart], [MATLAB Function], etc.
blocks that describe the inside (other than Simulink basic projection) are
not included.

[Model] is not included.

Conditional A subsystem with conditional input ports.

subsystem

Atomic subsystem

A {BlockType} that is a “subsystem” and executes the structural
subsystem as a single unit.

Conditional subsystems, [Chart], and [MATLAB Function] are considered
atomic subsystems.

Port label name

The input/output port labels of a structural subsystem.

The names of [Inport] and [Outport] blocks are placed in a subsystem by
default.

Names of Stateflow input/output data are displayed by default.

The display option can be changed when masking a subsystem.

219

Conditional input
block

Includes [Trigger], [Enable], [Function Call], and [Reset].

Delay block

Two meanings:

1. The previous value reference block that is placed in the loop
route to specify the execution order in an algebraic loop (circular
reference). Uses [Unit Delay] and [Memory].

(As of R201b at later) [Delay] blocks can also be used

2. Ablock that retains past values. Uses [Unit Delay], [Memory],

[Delay], and [Tapped Delay].

Calculation block

Blocks with “Sum” {BlockType} that carry out addition and subtraction
operations. Includes [Sum], [Add], [Subtract], and [Sum of Elements].

Multiplication and
division block

Blocks with “Product” {BlockType} that carry out division and
multiplication operations. Includes [Product], [Divide] and [Product of
Elements].

Stateflow block

Includes [Chart], [State Transition Table], and [Truth Table].

Machine level

Flow chart

The part of a model that describes the action for the transition condition
by using transition conditions and condition actions. The start point is the
default transition line or internal transition line. The end point is the
connective junction. Does not include states that are between the start
and end points.

Graphical functions and the inside of states can be modelled as flow
charts.

State action type

Basic state action types and combined state action types.

Basic state action
type

Types include entry(en), during(du), and exit(ex).

Combined state

A combination of two or more of these basic state action types:
e entry(en), during(du)
e during(du), exit(ex)

action type e entry(en), exit(ex)
e entry(en), during(du), exit(ex)
State An atomic subchart is considered a state.

220

7. Determining Guideline Operation Rules

This section provides general information about identifying which guidelines to adopt and the application
of these guidelines to your project.

7.1. Process Definition and Development Environment

The model base development that utilizes simulation is suitable for developing a safe product. However,
this does not mean that a system is safe simply because the design can be simulated. While high quality
control and functions is necessary, the process definition and development environment being used is
equally important. The foundation for a safe system is determined at the start of the project, long before
development begins.

7.2. MATLAB/Simulink Version

The version of MATLAB/Simulink used at each development stage is determined at the start of the
project. That version must be used by everyone during that development stage.

Different MATLAB versions can be used for different stages in the development process. For example,
you can generate and verify the code in R2017b and then use Simulink Design Verifier to develop test
cases R2020a.

It is necessary to regularly check the bug report published by MathWorks

(https://www.mathworks.com/support/bugreports). Depending on the bug, a version change may be
required; a decision that can be reversed if necessary. During this evaluation, it is important to consider

|

Deleted Simulink
Check Chapters.msg

risk from both:
e Malfunctions that result from a bug
e Result from upgrading the version.
It is necessary to always have a process that allows adaptation to the latest version and to appropriately
evaluate and judge what is the safest option.

7.3. MATLAB/Simulink Settings

MATLAB/Simulink settings shall adhere to the project. It is important that Simulink settings that affect
appearance are applied consistently across the project.

Options to be unified are listed below.
-+ Simulink environment settings
o New model standard font settings (block, line, annotation)
- Mask (Edit mask)
o Icons and Ports
- Information display
o Library links
0 Sample Time
(Block) Sorted execution order
(Signals and ports) Wide Non-scalar Lines
(Signals and ports) Port data types

O 0o

See guidelines: na_0004 and db_0043

7.4. Usable Blocks

There are many blocks in Simulink, however, not all are suitable for all aspects of a project. For
example, only some blocks are suitable for generating production-quality code. Or, depending on the
block, a function using a combination of basic blocks can be represented by using one block. Usable
blocks and design should be defined and limited to the requirements and specifications of the project.

221

https://www.mathworks.com/support/bugreports

Note: Significantly limiting the number of available blocks can cause adverse effects, such decreased
readability due to variation within the descriptions for the same function, decreased code efficiency, and
increased user libraries.

Note: You must register custom blocks in the project’s user library.

- See guideline db_0143 for defining usable blocks

7.5. Using Optimization and Configuration Parameters

Optimization parameters

Optimization options significantly affect generated code. Closely evaluate and apply the optimization
options with regards to how they impact the security and safety considerations for your project or
product.

An example of how optimization parameters can impact a process:

For embedded automotive products, it is critical that processing time is fast and RAM/ROM
requirement are minimal. To accommodate these requirements, optimization parameters are applied on
the “Conditional Input Branch Execution” pane. These optimization parameters improve the computation
rate by executing only where the condition holds during execution of the conditional branch by using
[Switch].

In contrast, for the aviation industry, this pane is disabled because stabilizing the execution speed is
key. Calculation on both sides is preferred in order to maintain a stable computation time, even if
calculation is needed only on the side where the condition holds.

Configuration Parameters
- Hardware implementation settings
Describes model system hardware characteristics, including products and test hardware
configuration setup for simulation and code generation.
Configure these parameters so they are compatible with the microcomputer that the project uses.
Unintended utility functions can be inserted if signed integer division rounding is undefined.

- Model reference settings
Specified when using model references.
Refers to options to include other models in this model, options to include this model in another
model, and build options of simulation and code generation targets.

- Simulation target setting
Configures a simulation target of a model with [MATLAB Function], [Stateflow], or [Truth Table].

- High-integrity configuration Settings
Please refer to the MathWorks High-Integrity System Modeling Guidelines (hisl) for additional
information the configuration settings.

- Code Generation Configuration Settings
Please refer to the MathWorks Code Generation Modeling Guidelines (cgsl) for additional information
the configuration settings

7.6. Applying Guidelines for a Project

Using the model analysis process when applying guidelines

Model design specification should be defined prior to reviewing the guidelines. Doing so makes the
process of determining which guidelines to apply and the implementation of the guidelines more efficient.

For example, the analysis of a simple model can use [SLDiagnostics] to investigate how often a
specific block is used. Adjust the operation rules list by specifying blocks that are frequently used and
those that aren't.

Furthermore, reusability at a later stage is improved by adding rules that:

222

e Unify description styles

e Anticipate in advance the man-hours needed to correct models

e Measuring tendencies, such as where to place blocks that have feedback status variables ([Unit
Delay]), whether [Unit Delay] should be inside or outside the subsystem, or whether [Abs] should
be set on the output side of the subsystem, and if it should process at the input side after
receiving a signal.

Adoption of the guideline rule and process settings

At the start of the project, it should be determined which guidelines apply to each development
process. The guidelines should be evaluated and applied so that they correspond with the development
process. Considerations may include questions such as:

e Will the guideline be applied only at the code generation stage?
e Will the adopted guideline rule change for each process stage?

Setting the guideline rule application field and the clarifying the exclusion condition

The field to which the guidelines apply must be determined. For example, guidelines can be:

e Limited to a model that represents the AUTOSAR field of application

e Applied to a general software field, such as where models implement interrupts (add processes
that prohibit interruption during calculation).

e Specific to fields where general engineers edit the models. The intention of these rules is to
ensure that the models are easily understandable in those fields.
Note: Specialized fields can be excluded from the constraints of these guidelines by limiting the
scope and applying unique set of guidelines that are specific in this environment.

Specialized fields, such as those where modelers design custom library blocks, are not fields that are
typically targeted by these guidelines.

Furthermore, when having a control model that is operated with Rapid Control Prototyping (RCP), the
entire model should not be set as a target; instead, the field needs to be limited. It is necessary to
generate the code and review the areas that are implemented in the built-in microcomputer as well as
the areas that are not. These guidelines do not apply to control models such as those scheduler models
that are made solely for RCP and are not implemented, or for interface sections with blocks that
correspond to drivers such as CAN and PWM signals for operating actual machines.

Parameter recommendations in the guidelines

Guidelines should not be adopted as they are written without further evaluation.

Implementation of guideline rules and parameter recommendations should be evaluated to determine
the impact on the project and the development processes being used. In addition, consideration needs
to be taken as to the effect on other guidelines and how applying custom parameters can affect
simulation or code generation.

Verifying adherence to the guidelines

At the beginning of a project, it is important to determine how and when the project will be evaluated to
ensure adherence to the guidelines.

The decision whether to use an automated checking mechanism (third part or internal) or perform
manual checks is very important. Also, the stage at which the checks occur, as well as developing a
system for revising the check rule criteria, is important.

Automated checking can significantly reduce the time required for review. It is recommended that an
additional, manual review also be performed by a skilled person, even if everything can be checked
automatically.

Modifying adherence to a guideline

The decision to apply a guideline or a rule can change. When doing so, it is important to specify a
process and procedure for determine the root cause of the request and evaluate the potential impact the
change can have on the project and the organization.

223

When evaluating the change request, first listen to the needs of the modeler and determine the root
cause of the request. When the request is based on the user not understanding block usage or a
guideline rule, training should occur instead of revising the rule.

The procedure to relax the rules as needed should be implemented when there are restrictions due to
company objectives and control specifications or hardware (such as microcomputers).

224

8. Model Architecture Explanation

This section provides a high-level overview of model architecture that is suitable for model-based
development without specifying specific rules.

8.1. Roles of Simulink and Stateflow

When using Stateflow, Simulink is required for inputs, outputs, and structuring. Stateflow alone can
perform a variety of formula processing. When using Simulink, complex state variables can be realized
through methods such as [Switch Case].

Either Simulink or Stateflow can be used to model specific parts of control, however, the application of
either product in the development workflow is based on the user’s understanding of the underlying
algorithms and, ultimately, comes down to the organization to determine which tool is best suited for their
needs. Determining whether Simulink or Stateflow should be used for design should be determined by a
group of people in accordance with the task. Whether implementation in Stateflow is done by using state
transitions or with flow charts should also be specified.

In most cases, Stateflow is less efficient with regards to RAM. Therefore, Simulink has an advantage in
computations that use simple formulas. In addition, Simulink is more advantageous for situations where
state variables are operated with simple flip-flops and [Relay]. When evaluating whether to use Simulink
or Stateflow in a project, these topics should be taken into consideration:

¢ Increasing RAM: There must always be a RAM available for visualization of Stateflow inputs, outputs

and internal variables.

¢ Equation error handling: When general computational formulas are used internally, the user designs

ways to prevent overflow.

e Splitting and separating functions: When performing calculations that use Simulink outside of

Stateflow, there is a possibility that they may split, thus reducing readability. There are also times
where readability may improve. This can be difficult to judge.

There are cases where Stateflow has more efficient code than Simulink for optimum expressions that
are close to code, but most of these result in a model that is difficult to understand. If code already exists,
it is more advantageous to use S-functions instead of Stateflow modelling. Stateflow can note
computations where specific arrangements are specified, or computations using for-loops, more efficiently
than Simulink, but in recent years it has also become convenient to use MATLAB language for
descriptions. If needed, consider using MATLAB language for modelling.

For Stateflow models, when dealing with states as described below, readability improves by describing
them as state transitions:
e Different output values are output for identical inputs.
Multiple states exist (as a guide, three or more).
States with meaningful names instead of just numbers.
Inside a state, initialization (first time) and differentiation during execution (after the second time)
is required.

For instance, in flip-flop circuits, different values are outputted for inputs. State variables are limited to O
and 1. However, a meaningful name cannot be added to each state simply by retaining Boolean type
numbers. There is also no distinction between initialization and execution within the state. Thus, only one
flip-flop applies out of the four above, so Simulink can be said to be more beneficial.

In Stateflow, situations that can be represented as states are implemented as state transitions and
conditional branches that are not states are implemented as flow charts. Truth tables are classified as a
conditional branch implementation method.

When designing states as state transitions by using Stateflow, “Classic” should be selected as the state
machine type so that it is implemented as software into the control system’s embedded micro controller.

HDL Coder is supported by Stateflow. If using HDL Coder, Mealy or Moore must be selected., Moore
mode is more appropriate when protection is required against internal electric leaks.
Note: HDL Coder use cases are not described in these guidelines.

225

8.2. Hierarchical Structure of a Controller Model

This section provides a high-level overview of the hierarchical structuring in a basic model, using a

controller model as an example.

Types of Hierarchies

This table defines the layer concepts in a hierarchy.

Layer concept

Layer purpose

Top
Layer

Function layer

Broad functional division

Schedule layer

Expression of execution timing (sampling, order)

Bottom
Layer

Sub function layer

Detailed function division

Control flow layer

Division according to processing order (input —
judgment — output, etc.)

Selection layer

Division (select output with Merge) into a format
that switches and activates the active subsystem

Data flow layer

Layer that performs one calculation that cannot
be divided

When applying layer concepts:

e Layer concepts shall be assigned to layers and subsystems shall be divided accordingly.

e When a layer concepts is not needed, it does not need to be allocated to a layer.
e Multiple layer concepts can be allocated to one layer.

When building hierarchies, division into subsystems for the purpose of saving space within the layer shall

be avoided.

Top Layer

Layout methods for the top layer include:

e Simple control model — Represents both the function layer and schedule layer in the same layer.
Here, function = execution unit. For example, a control model has only one sampling cycle and all

functions are arranged in execution order

e Complex control model Type a — The schedule layer is positioned at the top. This method makes
integration with the code easy, but functions are divided, and the readability of the model is

impaired.

e Complex control model Type B — Function layers are arranged at the top and schedule layers are

positioned below the individual function layers.

226

Example | Schedule layer
Type a - :
Function layer Function layer
C1l > C2
» S1 P> >
S2 >
Subsystem for low speed Subsystem for high speed
Example | Function layer
Type B Schedule layer Schedule layer
S1 C1
S2 » C2 R
Sensing function subsystem Control function subsystem

The thick frame is an Atomic setting

Function Layers and Sub-Function Layers

When modeling function and sub-function layers:
e Subsystems shall be divided by function, with the respective subsystems representing
one function.

¢ “One function” is not always an execution unit so, for that reason, the respective subsystem is not
necessarily an atomic subsystem. In the type B example below, it is more appropriate for a function
layer subsystem to be a virtual subsystem. Algebraic loops are created when these change into
atomic subsystems.

« Individual functional units shall be described.

¢ When the model includes multiple large functions, consider using model references for each function
to partition the model.

227

Example | Schedule layer
Type a) :
Function layer Function layer
C1 > C2
» S1 > >
» S2 >
Subsystem for low speed Subsystem for high speed
Example | Function layer
Type B Schedule layer Schedule layer
S1 C1
»| S2 " C2 R
Sensing function subsystem Control function subsystem

Schedule Layers

When scheduling layers:

e System sampling intervals and execution priority shall be set. Use caution when setting multiple
sampling intervals. In connected systems with varying sampling intervals, ensure that the system
is split for each sampling interval. This minimizes the RAM needed to store previous values in
the situation where the processing of signals values differs for fast cycles and slow cycles.

e Priority ranking shall be set. This is important when designing multiple, independent functions.
When possible, computation sequence for all subsystems should be based on subsystem
connections.

e Two different types of priority rankings shall be set, one for different sampling intervals and the
other for identical sampling rates.

There are two types of methods that can be used for setting sampling intervals and priority rankings:
e For subsystems and blocks, set the block parameter {sample time} and block properties
{priority}.
e When using conditional subsystems, set independent priority rankings to match the scheduler.

Patterns exist for many different conditions, such as the configuration parameters for custom
sampling intervals, atomic subsystem settings, and the use of model references. The use of a
specific pattern is closely linked to the code implementation method and varies significantly
depending on the status of the project.
Models that are typically affected include:
e Models that have multiple sampling intervals
e Models that have multiple independent functions
e Usage of model references
¢ Number of models (and whether there is more than one set of generated code)
¢ For the generated code, affected factors include:
Applicability of a real-time OS
Consistency of usable sampling intervals and computation cycles to be implemented
Applicable area (application domain or basic software)
Source code type: AUTOSAR compliant - not compliant - not supported-

(e}

(el elNe]

228

o0 RAM, ROM margins (specifically RAM)

Control Flow Layers

In the hierarchy, the control layer expresses all input processing, intermediate processing, and output
processing by using one function. The arrangement of blocks and subsystems is important in this layer.
Multiple, mixed small functions should be grouped by dividing them between the three largest stages of
input processing, intermediate processing and output processing, which forms the conceptual basis of
control. The general configuration occurs close to the data flow layer and is represented in the horizontal
line. The difference in a data flow layer is its construction from multiple subsystems and blocks.

In control flow layers, the horizontal direction indicates processing with different significance; blocks
with the same significance are arranged vertically.

NXTway-GS Controller

e [- -]
== ll- 31
Cro e
.............. Ll
s Lt
= i = h
3 -
- e o] . T
i _ (| =
Input Intermediate Output
processing processing processing

Block groups are arranged horizontally and are given a provisional meaning. Red borders, which
signify the delimiter for processing that is not visible, correspond to objects called virtual objects. Using
annotations to mark the delimiters makes it easier to understand.

Output
processing

. Intermediate
=t processing
air
flow P feedfonward fuel rate
FiA MNorm
B
F/A Rich S
FE# = p0ssa g w1 =10+ = op
Shutdown Multipart fusl rate
@ <fsel_mods} Switch
3 FEBTFEA= =0~ =on W Frimes
Failres
|nput ¥ correction
feedbadc i
fotes processing
Switchable
Compensation

lirmit
output
48 = 100, TIE

fuel
raie

=

Control flow layers can co-exist with blocks that have a function. They are positioned between the sub-

function layer and the data flow layer.

229

Control flow layers are used when:
- The number of blocks becomes too large
- Allis described in the data flow layer
- Units that can be given a minimum partial meaning are made into subsystems

Placement in the hierarchy organizes the internal layer configuration and makes it easier to understand. It
also improves maintainability by avoiding the creation of unnecessary layers.

When the model consists solely of blocks and does not include a mix of subsystems, if the horizontal
layout can be split into input/intermediate/output processing, it is considered a control flow layer.

Selection Layers

When modeling selection layers:

e Selection layers should be written vertically or side-by-side. There is no significance to which
orientation is chosen.

e Selection layers shall mix with control flow layers.

When a subsystem has switch functions that allow only one subsystem to run depending on the
conditional control flow inside the red border, it is referred to as a selection layer. It is also described as
a control flow layer because it structures input processing/intermediate processing (conditional control
flow)/output processing.

In the control flow layer, the horizontal direction indicates processing with different significance. Parallel
processing with the same significance is structured vertically. In selection layers, no significance is
attached to the horizontal or vertical direction, but they show layers where only one subsystem can run.

For example:

- Switching coupled functions to run upwards or downwards, changing chronological order

- Switching the setting where the computation type switches after the first time (immediately after
reset) and the second time

- Switching between destination A and destination B

i ZL P . Layer with a conditional
b e e N i — control flow layer description is
i . represented as a selection

I o g : def;
e layer.
Q2 fail FIA Nerm2 S5 T 17 - I 0 - = oni
{warmug) T =2 HE H
case {} :
- ued rate g
feadforward 8.7696z-8.5104 o §
P oo o
fesdback 5
f;tdrm %
e H
The horizontal vaon o |) o |
H 20.74082 Merge THETULATESRA =001 [sc: H
sequence — st
control flow layer | i e
HEH RICH
I -
Loop Compensation ahd Filtering R
Input Intermediate Output
Processing Processing Processing

230

Data Flow Layers

A data flow layer is the layer below the control flow layer and selection layer.
A data flow layer represents one function as a whole; input processing, intermediate processing and
output processing are not divided. For instance, systems that perform one continuous computation that

cannot be split.
Data flow layers cannot co-exist with subsystems apart from those where exclusion conditions apply.

Exclusion conditions include:
e Subsystems where reusable functions are set
e Masked subsystems that are registered in the Simulink standard library
e Masked subsystems that are registered in a library by the user

Example of a simple data flow layer

o
AND

Inz

aiwaan

Feediorvard Comml

When input processing and i'ntermediate processing cannot be clearly divided as described above,

they are represented as a data flow layer.
A data flow layer becomes complicated when both the feed forward reply and feedback reply from the

same signal are computed at the same time. Even when the number of blocks in this type of cases is
large, the creation of a subsystem should not be included in the design when the functions cannot be
clearly divided. When meaning is attached through division, it should be designed as a control flow layer.

8.3. Relationship between Simulink Models and Embedded
Implementation

Running an actual micro controller requires embedding the code that is generated from the Simulink
model into the micro controller. This requirement affects the configuration Simulink model and is

dependent on:
e The extent to which the Simulink model will model the functions

e How the generated code is embedded
e The schedule settings on the embedded micro controller

The configuration is affected significantly when the tasks of the embedded micro controller differs from
those modeled by Simulink.

231

8.3.1.1. Scheduler Settings in Embedded Software
The scheduler in embedded software has single-task and multi-task settings.

Single-task schedule settings

A single-task scheduler performs all processing by using basic sampling. Therefore, when processing
of longer sampling is needed, the function is split so the CPU load is as evenly distributed as possible,
and then processed using basic sampling. However, as equal splitting is not always possible, functions
may not be able to be allocated to all cycles.

For example, basic sampling is 2 msec, and sampling rates of 2 msec, 8 msec and 10 msec exist
within the model. An 8 msec function is executed once for every four 2 msec cycles, and a 10 msec
function is executed once for every five. The number of executions is counted every 2 msec and the
sampling function specified by this frequency is executed. Attention needs to be paid to the fact that the
2 msec, 8 msec and 10 msec cycles are all computed with the same 2 msec. Because all computations
need to be completed within 2 msec, the 8 msec and 10 msec functions are split into several and
adjusted so that all 2 msec computations are of an almost equal volume.

The following diagram shows the 10 msec function split into 5, and the 8 msec function split into 4.

Functions Fundamental | Offset
frequency
8msec Omsec
2-2 8msec 2msec
2-3 8msec 4msec
2-4 8msec emsec
Functions Fundamental | Offset
frequency
3-1 10msec Omsec
3-2 10msec 2msec
3-3 10msec 4msec
3-4 10msec 6msec
3-5 10msec 8msec
2msec . | All computations must be
PRI i1 contained within the 2 msec I
|17 8msec L1 cycle. :
fi;lOmsec Ml > ' !
< .
i i ! !
Function 1 00 00 pil 00popopgB0DRER
Function 2 -1 E S 3 ! 8 !
28 g s S | v
a4 | SR 'Y Y g
Functon3-1 | H i B L g '
I A b 7
2ol e i 2 D :
2 i Yopll
5 i 8! B ‘o

To set frequency-divided tasking:
1. Set configuration parameter {Tasking mode for periodic sample times} to “Single Tasking” for
Simulink task setting.

232

& Configuration Parameters: jc_0738al_OK/Configuration (Active) - O X

Select: Simulation time

Solver

Data Import/Export
Optimization

Diagnostics

Hardware Implementation
Model Referencing
Simulation Target

Code Generation

Start time: | 0.0 Stop time: |10.U

Solver options

Type: Fixed-step ~ | Solver: | discrete (no continuous states) -

Fixed-step size (fundamental sample time): 0.1

Tasking and sample time options

Periodic sample time constraint: Unconstrained -

Tasking mode for periodic sample times: SingleTasking -

[Automatically handle rate transition for data transfer

[Higher priority value indicates higher task priority

2. Enter sampling period, offset” values in the subsystem block {Sample Time}” field. A subsystem for
which a sampling period can be specified is an atomic subsystem.

" Function Block Parameters: Atomic Subsystem Pad

Subsystem

Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.

Main Code Generation
Show port labels | FromPortlcon A

Read/Write permissions: | ReadWrite -

Name of error callback function:

Permit hierarchical resolution: |All -

Treat as atomic unit
[Minimize algebraic loop occurrences
Sample time (-1 for inherited):

[[0.010,0.002]

9 Cancel Help Apply

Multi-task scheduler settings

Multi-task sampling is executed by using a real-time OS that supports multi-task sampling. In single-
task sampling, equalizing the CPU load is not done automatically, but a person divides the functions and
allocates them to the appointed task. In multi-task sampling, the CPU performs the computations
automatically in line with the current status; there is no need to set detailed settings. Computations are
performed and results are output starting from the task with the highest priority, but the task priorities are
user-specified. Typically, fast tasks are assigned highest priority. The execution order for this task is
user-specified.

2msec | | |
> smsec ! ! ;
" lomsec | | ! !
) " : :
Funcions 1 0 B B @ B B 0P B P B RO B QP 0
Function 2 [y By | NI ST EEST
Function 3 A | BB A b | >:
1 1 1

It is important that computations are completed within the cycle, including slow tasks. When the
processing of a high priority computation finishes and the CPU is available, the computation for the
system with the next priority ranking begins. A high priority computation process can interrupt a low
priority computation, which is then aborted so the high priority computation process can execute first.

233

8.3.1.2. Effect of Connecting Subsystems with Sampling Differences

If subsystem B with a 20 msec sampling interval uses the output of subsystem A with a 10 msec
sampling interval, the output result of subsystem A can change while subsystem B is computing. If the
values change partway through, the results of subsystem B’s computation may not be as expected. For
example, a comparison is made in subsystem B’s first computation with the subsystem A output, and the
result is computed with the conditional judgment based on this output. At this point, the comparison
result is true. It is then compared again at the end of subsystem B; if the output from A is different, then
the result of the comparison can be false. Generally, in this type of function development it may happen
that the logic created with true, true has become true, false, and an unexpected computation result is
generated. To avoid this type of malfunction, when there is a change in task, output results from
subsystem A are fixed immediately before they are used by subsystem B as they are used in a different
RAM from that used by the subsystem A output signals. In other words, even if subsystem A values
change during the process, the values that subsystem B are looking at is in a different RAM, so no effect
is apparent.

When a model is created in Simulink and a subsystem is connected that has a different sampling
interval in Simulink, Simulink automatically reserves the required RAM.

However, if input values are obtained with a different sampling interval through integration with hand-
coded code, the engineer who does the embedding work should design these settings. For example, in
the RTW concept using AUTOSAR, different RAMs are all defined at the receiving and exporting side.

2msgec |
_> 1
8msec |
~ | 10msec g :
D If Function 2 uses computation results of
Function 1 " Function 1, computation results for Function
unction é 1 do not change during computation for
Function 2 -1 Functions 2-1, 2-2, 2-3, but there is a
-2 possibility that Functions 2-1, 2-2, 2-3 use
-3 different values that have been computed on
-4 the respective different time axes.
Function 3 -1 7
-2 =] A different RAM should be allocated for signal
-3 values with a different rate.
-4 2 ,
. | =,

Single-task scheduler settings

Signal values are the same within the same 2 msec cycle, but when there are different 2 msec cycles,
the computation value differs from the preceding one. When Function 2-1 and 2-2 uses signal A of
Function 1, be aware that 2-1 and 2-2 uses results from different times.

Multi-task scheduler settings

For multi-task, you cannot specify at what point to use the computation result to use. With multi-task,
always store signals for different tasks in new RAM.
Before new computations are performed within the task, all values are copied.

234

Function 1

Function 2

Function 3

2msec

8msec

»
>

A

10msec

v

A

SH=\
Y
\

Do not immediately
use values that are
being updated.

\ 4 (Z W

The value should be held at the

beginning of the task.

235

If Function 2 uses
computation results of
Function 1, it is possible that
computation results from
Function 1 will replace them
while Function 2 is
computing.

For that reason,
computation results that
vary at the point when
computation starts for each
sampling are generally
stored in a different RAM.

9. Appendices

9.1. Simulink Functions

9.1.1.1. Blocks with State Variables

Blocks with state variables are primarily grouped into Simulink and discrete types.
For most of these blocks, the user can set the state attributes and initial values by using the block
parameters. A conditional subsystem can have state variables, depending on the structure pattern.

In this example, [Unit Delay] has State Attributes.

"l Function Block Parameters: Unit Delay >
UnitDelay

Sample and hold with one sample period delay.

Main State Attributes

State name:

State name must resolve to Simulink signal object
Package: — Mone — Refresh

Code generation storage class: | Auto

J. Cancel Help Apply

In this example, [Tapped Delay] does not have State Attributes.

& Function Block Parameters: Tapped Delay >
Tapped Delay Line (mask) (link)

Delay a signal M sample periods and output all the delay versions.
FParameters
Initial condition:

.| |

Sample time:

B! |

HNumber of delays:

4 |

Order output vector starting with: | Oldest -

[] Include current input in output vector

J. Cancel Help Apply

See guideline: jc_0640

236

9.1.1.2. Branch Syntax with State Variables
[Switch] and conditional subsystems behave differently when state variables are used.

Depending on the configuration setting, when any state variable exists, [Switch] generally executes

subsystem A when the condition of the control port is satisfied. If the condition is not satisfied, it
executes only subsystem B without calculating subsystem A. However, when the subsystem A

contains a state variable, calculation for the state variable within the subsystem A is processed even

when the conditions of the control port are not satisfied.

In the conditional subsystem, subsystem A is calculated when the condition is satisfied. When is not
satisfied, subsystem B is calculated instead of subsystem A, regardless of the existence of any state

—

Int

D) ,_|*=o

Out1

A 4

Switch

variables in subsystem A.

Co—

In1

ul

if(ul "= 0)

else

B

vy

Outl

B

Merge

The reset action in a recalculation can be specified by using the {Action Port} setting.

The behavior of subsystem A when using [Switch] and a conditional control flow is listed in the

following tables. Familiarize yourself with these behaviors to determine which structure, [Switch], or

conditional subsystem is most suitable for the intended purpose.

Behavior of subsystem A

*Executed calculations related to the
state variables

Control (in subsystem A) Switch Conditional

port State variables subsystem

condition

Hold No Executed Executed
Yes

Not hold No Not executed Not executed
Yes Minimally-processed

Initialization timing of subsystem A

ActionPort Initialize

Switch — First time only
Conditional subsystem Hold First time only
Reset At returned by condition

237

See guidelines: jc_0656 and jc_0657

9.1.1.3. Subsystem
A subsystem is used for compiling various blocks and subsystems.

Subsystems can also be used for other purposes. Usage methods that are not functional subsystems
include:

e Mask display of the subsystem is used to describe the outline or display fixed form documents,
such as "classified"

e The open functions (callback functions in the block properties) of the subsystem is used for
running several tools or displaying explanatory text separate from the model

e Subsystems whose setting have changed to a mask subsystem (a subsystem that was simply
set to NoReadOrWrite) by a user with administrative rights to make a change, but other users
cannot see the content.

These non-typical subsystems are outside of the scope of the guidelines and, if excluded, should be
put on an exclusion list managed within the project.

See guidelines: jc_0201, jc_0243, db_0143, db_0144, db_0141, jc_0653, jc_0171, jc_0602, jc_0081,
db_0081

9.1.1.4. Signal Name

Signals can be named and are referred to as signal names. When a signal is named, that signal
name is displayed as a label. Updates to labels are reflected in the signal name and are also
displayed.

The signal name can be propagated to a signal line via a branched signal line or port block and
displayed as a signal name.

See guidelines: jc_0222 and jc_0245

Code can be generated by associating a signal name with a signal object (Simulink object or mpt
object). Type setting is configured through the data dictionary, setting of the storage class is optional.
The recommended data type settings for these blocks include:

- For [Inport], set the {Data type} to "auto”

- For [Outport], set the {Data type} to "auto”

- For [Sum], set the output {Data type} to "Inherit via back propagation”

See guideline: jc_0644

9.1.1.5. Vector Signals/Path Signal
Individual scholar signals that compose a vector shall have common functions, data type, and units.

Signals that do not fulfill the conditions as a vector can only be grouped as a bus signal. [Bus
Selector] shall be used only with bus signal inputs. It shall not be used to extract a scholar signal from
a vector signal.

Example
The following is an example of a vector signal:

Row vector [1n]
Column vector [n1]
Wheel speed subsystem [1 wheel number]

238

Types of vector Size

Cylinder vector [1 cylinder number]

Location vector based on a 2-dimensional coordination [12]

Location vector based on 3-dimensional coordination [13]
The following is an example of a bus signal:
Bus type Factor
Sensor bus Force vectors
Location

Wheel speed vector [Oy, Oy, O, O]

Acceleration

Pressure

Controller bus Sensor bus

Actuator bus

Serial data bus Circulating water temperature

Engine speed, front passenger seat door open

See guidelines: na_0010, jc_0222, jc_0245, db_0097, jc_0630, and jc_0659

9.1.1.6. Enumerated Types

"Enumerated type data refers to data that is restricted to a determined numerical value.

The type of blocks that can be used in an enumerated type in Simulink is limited.

To use an enumerated type, you must define the enumerate type by using .m file on MATLAB. For
additional information about defining enumeration data types, refer to the Simulink user help “Use
Enumerated Data in Simulink Models.

9.2. Stateflow Functions

9.2.1.1. Operators Available for Stateflow

For additional information about the Stateflow operators, see “ Supported Operations for Chart Data”
in the Stateflow user help.
Related ID: na_0001, jc_0655

9.2.1.2. Differences Between State Transition and Flow Chart
Stateflow can represent both a state transition and a flow chart.

Stateflow allows a flow chart to be designed within a state transition diagram.

An entry action is represented as a flow chart in a state, which starts from a default transition and
moves to junctions through transition lines, as illustrated below. Starting from an internal transition line
allows a during action to be represented in the flow chart.

A flow chart cannot maintain its active state between updates. As a result, a flow chart always ends
at a “terminating junction” (a connective junction that has no valid outgoing transitions).

239

In contrast, a state transition diagram stores its current state in memory to preserve local data and
active state between updates. As a result, state transition diagrams can begin executing where they

left off in the previous time step. This means that state transitions are suitable for modeling reactive or
supervisory systems that depend on history.

Flow chart and state transition diagram

Start point End point
Flow chart Default transition All terminations from the state are connected to the
Or, connective junction.
State transition | Default transition Either termination should be connected to the state
diagram Or,

Difference between a general flow chart and state transition diagram

Flow Chart
Flow chart outside a state Flow chart inside a state
o ——
3 { \
—
/ — | |
| J |
' I
| I
|
State Transition Diagram
State transition outside a state State transition inside a state
| o — -
- —= [\
: l—p | [
- —-— [
| |
< . I
N 7/

Mixture of flow charts and state transition diagrams with self-transition has more strict constraints.

240

Example of flow chart with self-transition
State Transition Diagram

Self transition outside a state Self transition inside a state
State transition
diagram
A self transition is formed outside a A self transition is formed inside a
state and then reset after execution. state and then reset using a during
action.

See guidelines: db_0132 and jc_0752

9.2.1.3. Backtrack
This example shows the behavior of transitions with junctions that force backtracking behavior in flow
charts. The chart uses implicit ordering of outgoing transitions.

) [c1Hat}
A 1 [c3Ka3} [c4Kad
=)
2
[c2Had}

Initially, state A is active and transition conditions c1, c2, and c¢3 are true and c4 is false:

1. The chart root checks to see if there is a valid transition from state A.

There is a valid transition segment marked with the transition condition c1 from state Ato a
connective junction.

Transition condition c1 is true, so action al executes.

Transition condition c3 is true, so action a3 executes.

Transition condition c4 is not true and, therefore, the control flow backtracks to state A.
The chart root checks to see if there is another valid transition from state A.

There is a valid transition segment marked with the transition condition c2 from state A to a
connective junction.

Transition condition c2 is true, so action a2 executes.

Transition condition c3 is true, so action a3 executes.

Transition condition c4 is not true and, therefore, the control flow backtracks to state A.
The chart goes to sleep.

TN

©o~NO®

To resolve this issue, consider adding unconditional transition lines to terminating junctions.
The terminating junctions allow flow to end if either ¢3 or c4 is not true. This design leaves state A
active without executing unnecessary actions.

241

g [C1Hat:
A 1 [c3Had [cd}{ad}

={ 1

h
ch]{az} E*b E‘b

See guidelines: jc_0751 and jc_0773

9.2.1.4. Flow Chart Outside the State
A flow chart associated with a state can be written inside or outside of the state; however, be
attentive to the execution order and backtracking.
The following flow chart, which evaluates transition from a to b after executing the flow chart outside
the state, appears to execute the transition within the same period as that of a newer calculation.
However, the transition line to b is not evaluated if the termination point is reached by calculating the
transition outside the state. This is a state transition diagram which always stays at a.

[State ==3]

B() ,‘>()

1
(2
] g
2
I /% E LI %/
- E

[nowger ==3]

nowger =4; nowger =3;

[State ==2]

nowger =2;

[State ==1]

1
1
1 }

nowger =1;

}

Done correctly, as with the line below, embed a transition condition that is intentionally not positioned
at the termination of the external flow chart; it should be described so that the transition line from ato b
is evaluated after the flow chart has been executed.

This enables the external flow chart to execute before the transition, and to be evaluated using the
most recent value at the instant of the transition. Note that this chart contains a dead path where the
transition condition will never hold, which can cause an error when the specification is changed in the

future. Use this chart structure with caution.

242

AEEERTIoh d6 0. AT —b AT - ARSI
ETIEFDRLOT. WERERLDE 1FEAR AT TER IS

a [state == 3]
1 =1 =0
{ 2
nowger = 4; [
) [State == 2] nowger = 3;
o }
2
{
(:}1 [State = 1] nowger = 2;
2 i }
/ EELE */ ;owger =1

-

? [nowger ==3]

T O IO IICL T ik Dek U EEEECL. %/
/* 27 FAORESEEITE DS */

In contrast, the following flow chart is inside a state, which means that the internal flow chart is
always calculated when executing state a and can be described as an easily comprehensible structure

without dead paths.

However, it should be noted that, as a performance characteristic, when state a is executed, the
transition from a to b is evaluated in the cycle following that in which the internal flow chart is

calculated.

Due to this characteristic, the timing of the execution of calculations and transitions for the external

flow chart may be off. Use with caution.
MELBE TR UL, SMBBBIHE®ICRTENZ0T,

l 1EHENTEBTD

(a

nowger = 4;

[State == 3]

[State == 2]

[State == 1]

nowger g

/% B LIg Ly */

nowger = |

c>()

nowger = 2;

nowger = 3;

~

[nowger==3]

See guidelines: jc_0751 and jc_0773

243

9.2.1.5. Pointer Variables
Describe using the example model sf_custom.

gMysStructVar is not defined in Stateflow.

Loading of C source code is set on the Code Generation pane of Configuration Parameter.

Normally, functions of my_function are called from C source for use in Stateflow.

However, direct reference to global variables exposed by the C source is also available from
Stateflow.

--------- my_header.h--------------
#include "tmwtypes.h"

extern real_T my_function(real_T x);

/* Definition of custom type */
typedef struct {

real T a;

int8_T b[10];

IMyStruct;

/* External declaration of a global struct variable */
extern MyStruct gMyStructVar;
extern MyStruct *gMyStructPointerVar;

——————————————— my_function.c--------------
#include "my_header.h"
#include <stdio.h>

/* Definition of global struct var */
MyStruct gMyStructVar;
MyStruct *gMyStructPointerVar=NULL;
real_T my_function(real_ T x)

{

real T y;

y=2%x;

return(y);

Inside of Stateflow

i
!
during J
ghlistructWara = nput; ;
1
1
1
1
1
1
1
1
1
1

;
]

(]

:

! durine
]

i output_a=ghMyE tructar a%3;

i

]

]

]

]

]

gMyStructVar b[1]=input+3;
ghlvistructPontervar = &ghvStruct\Var;

output b = my_function(input); output c=e My Struct Pointerya—>b[1];

..

244

TR
=R S T T T

T 91l -va By hRIGAA L T FOREEER
| EBBCSDENAAL O Ik

[Avmad2 [t [3-k2ndn [7

|2=3 I7 1) Ali= T
:;;]‘gftsgg» Hinclude “ my_headerh”
4T REEY

| EMTEhBIAN
A —F T LAk YR Frd Il
=3 Il :
=473 iy _function|

9.3. Initialization

9.3.1.1. Initial Value Setting in Initialization

When a signal needs to be initialized, the initial values shall be set correctly.
When initial values are set inside a block, use an initial value list that includes annotations so you can
visually confirm the initial values input.

Cases that require initial values include:

e When state variables are defined AND blocks that have state variables are used.
0 Use the internal block settings.
0 Use the external input values.

e When state variables are defined AND initial values are enabled for a block when a specific

configuration is performed.

0 Set initial values in Merge blocks.
0 Use signals registered in the data dictionary.

o When signal settings (with RAM) have been defined that can be referenced from the outside.
0 Use signals registered in the data dictionary.

9.3.1.2. Initial Values of Signals Registered in the Data Dictionary
Set initial values for signals registered in the data dictionary.

- Discrete block groups, such as [Unit Delay] and [Data Store Memory] have state variables.
In the case of automatic code generation, the signal name, type, and initial value can be set for
state variables by matching it to the signal in the data dictionary (associated with Simulink signal
objects). When using a signal defined in the data dictionary for a state variable, the respective initial
values should conform to the same value.

- When using a signal defined in the data dictionary for a state variable
For discrete blocks, such as a [Unit Delay] and [Data Store Memory], settings are performed not
when using signals defined in the data dictionary for the block output line, but for the state variables
inside the block. Even when the signal name of the data dictionary is assigned to the signal line,
RAM is reserved in duplicate, which is a waste of RAM.

245

[Correct] When the signal is defined for the [Incorrect] When the signal is defined for

state variables inside the block. the output signal of the block that has state
variables.
double n douhle " ouble
e —) e
Add Outl Add out
. ykiSignal | 1 |,
P v k1 Signal o
double ot bora
Unit Delay Unit pelay
Signal line/properties sltting Signal line gropertigs setting
"k Sgral ""F:t*ﬂ-: y_k_1_Sgne I] al Signal hm.-t,‘: 'f'_-;_l_'Slgl.:F y—
Sigral rame’ y b1 Skral I Sional name: v 1 Signal
C L L Foraar| Ry 4 et - L4
Logging and aecessbidity | (Code athon | Documentation LAFELNR K ST Sonoration | Doournentsion

Log tigral detn Teat
Lox sigral datn Test point

Unit Delay propefties setting

pnlt Delay propertie$ setting P yros -
i Function Bhock Pammetefs: Unit Delsy Ty
| UnitDe by Swvple wed hold with one ol peviod delsy
Seenpila and hold with one 4 b period delay Mlaks | Srabe At Eudes
Main | State Atirbutes e Ty l

State riend y k1 Sigral

o Stabe marne sk resoke to Seulink skl obleck

qﬂumt

Signal objects that are defined in the Workspace can be automatically associated with signal objects
and signal names of the same name by using disableimplicitsignalresolution (model
name. However, for state variables inside the block, they are associated with the state variables inside
the block and the signal name of the same name. If a globally set signal is associated with two
variables at the same time, it is better to perform settings so that the state variables inside a block and
the signal label on the signal line have different names, otherwise the model cannot be simulated.

9.3.1.3. Block Whose External Input Value is the Initial Value

T Funchon Bck PUSTMAS: OY] e e
Doy

Nu YU Dty it by 3 Floed o v st rumtess o sarncien. Baned o on evtermal sral
-2 -1 tha ook own resst Its stahs to the specilied inftil cordition [irem kg or input
Z '3 b E3 z 3 porth And She block can 3i80 be corenoed by the enable sloral. The biock paports
) XU both crouly snd sy butier for piaie storme
N x0
My | Eiete At
Delay Resettable Delay s = =
S Vakse Wippeer Lirwit
i el

it cordBion | Input por =

—=
Evtermal reset | Nore -
et processing | Elenments a4 channel (sample based] -

Use cirouls bufler for atats

Sarvgle tives (=1 for inbavited] -1

9 Lo || Concer s

When setting the initial value during initialization, the init function is called to set the signal to
either the value inside of the block or to the initial value that is defined in the data dictionary.
246

Next, the step function (the data flow executive function) is executed. Here, the external input

value is set as the initial value.
When modelling, be attentive to the execution functions and execution timing for initialization.

Initialization explanation Differences in code behavior

Y 1 sampling

&

A
Y
A
Y

init function
Set the specified initial
value to the signal

step function step function step function

Required

computation t
compute external function Functions
put value

L Set the exte¢rnal
input value only Do not execute
o for the first time after the second
time

function

9.3.1.4. Initial Value Settings in a System Configuration that Would Enable
Initialization Parameters

There are system configurations where, depending on their settings, initialization parameters are
enabled for combinations of conditional subsystems and [Merge]. When initial values are required in
theses combinations, either of the following modeling methods is performed:

- Set in [Outport]

- Setin [Merge]

- If an mpt signal is defined behind [Merge], set in mpt signal

Exception:
When there are successive blocks with initial values and the settings for each block are not needed
to clearly show the signal’s initial value.

[Correct] Initial value set in [Merge]

247

caza [1]

®_>u1 case [2]:
Inl

de fault: [
Switch Caze gsieild
In1 Outl
In2
If Action Subsystem Meree D)
r Cutl
Case: |
In1 = Functen Bock Paramneters: Mengs]
3 | Mere
1 Action SubSl utarge the input siensl into sinels cutmr siral whose inktial vakes i
wpeeci e by he “Thitisl oufget” perameter. I Tt ial coutput” is ermply, he

Marge bilock cutputs the initisl cutgut of one of 23 driving blocks

Terminator Pt s

Blurmber ol Inguts

>

it st

i A

Al ursvual fort widtha

gt port chasts

) [ow][cowm |[Heo |[Aol

[Correct] Initial value set in mpt object

case [1]:

(T —wut case [2]:
Ini

default: |- r
Switch Gase sl
In1 Outl
In2
- >
If Action Subsystem Merege o > 1)
n r 4 gu
case: {}
Ini Outi
Ini
If Action Subswsteml
Terminator %

[Incorrect] Despite the requirement for an initial value setting, it is not shown anywhere.

248

caza [1]

@-p ul case [2]:

Ini default: |

case: {1

\m Outl

In2
If Action Subsystem Meree ap)
| Out1
3 ’A \
U &

Switch Case

3 *a Functon Block Parzenebers: Menge e)

If Action Subg Merae

Marice the ngud digrall o 8 inde outpu! sikral shose infital vl B

e Wi by the it outpet” rrameter. B Tatis] outpat” @ enpty. the

darpe Bock ouipats the indbiad oufput of one of & Orving Slocika
Terminator

Pararrmbers

Bharnber of rgeits

|
Frvitial ooty
Al uragual port Wt
o port olfests
J K, Gl Hal

9.4. Miscellaneous

9.4.1.1. Atomic Subsystems and Virtual Subsystems

There are two types of subsystems, Virtual subsystem and Atomic subsystems. The primary
difference between these subsystems is whether the subsystem is treated as a single execution unit.
The virtual subsystem is the default subsystem block.

In a model, the border for a Virtual subsystem is thin as compared the border for the Atomic
subsystem, which is thick and bold.

A outi P A ot P

Virtual Subsystem Atomic Subsystem

For additional information, in the Simulink user help see:
e Subsystems
e Explanation of algebraic loops

Virtual Subsystem
A block that provides a visual representation is known as a "virtual block. ". For example, [Mux] that
compiles several signal lines, [From] that hands out the signal, and [Goto] blocks all correspond to a
virtual block. Since the subsystem block in the default setting only constitutes a visual hierarchical
structure, these blocks are considered virtual blocks. The subsystem is referred to as a virtual
subsystem.

Consider a subsystem that consults an external calculation result within a subsystem, as shown in
the following example. This system is calculated from these four equations.
templ= inl + in2
temp2= in3 + in4
outl= inl + in2 + temp2
249

out2= templ + in3 + in4

With virtual subsystem, it is
D K possible to consult the values
in (N »f+ within other subsystems.
in2 teml _;|+_, outl
-]
\ Virtual subsystem
I

N
s o
¥
5 —|
b out2
in4

Since mutual consultation is
possible, no delay occurs
even when it is turned into a
subsystem

Atomic Subsystem

An atomic subsystem is detached from the external system and is not subject to cross-border
optimization. Atomic subsystems do not use the results of the internal calculations of each subsystem.
Therefore, interim output value will use a calculation result that is delayed by a session.

templ= inl + in2

temp2= in4 + in5

outl= inl+ in2 + in3

out2= in4+ in5 + in6

in3= temp2

in6= templ

Atomic subsystems prohibit the direct referencing of the interim calculation results to other
subsystems.

Cross-referencing is not possible, so
D temp1 | delays need to be inserted on the lines
1

] = i
n——: ’—Ein] connecting subsystems.

in3

Atomic subsystem
1

z i
Unit Delayl

temp2

-
4

1 <

z

Unit Delay

Notes on atomic subsystems
e Atomic subsystems can select C-source function settings.
e As explained above, the internal section of an atomic subsystem will become encapsulated
(objectified).

250

e Depending on the relationship before and after, a static RAM section should be secured
inside the subsystem for the output signal.

e Atomic subsystems (including the addition of function settings) should be used with caution.
Factor setting will not simply have a factor name inserted within a C code. It should be
acknowledged that it is described as a mathematically independent system and the
conditions under which an atomic subsystem can be used should be reviewed.

e Include the relationship with the structure layer; it is necessary to determine an operation rule
per project and to determine its relationship with the guideline rules.

9.5. Modeling Knowledge / Usage Patterns

Appendix 1: Simulink Patterns for If, elseif, else Constructs

These patterns shall be used for if, elseif, else constructs.
Function Simulink pattern
[Switch] is used.
If, elseif, else construct

if (If_Condition)
{ \
output_signal = If Value; G =] |~ NaS)

Outl

}
else if (Else_If Condition)

output_signal Else If Value; e
}

»
ce

}

If, elseif, else construct using Action Subsystem

output_signal

Else_Value;

if (Fault_1 Active & Fault 2 Active)

{

ErrMsg = SaftyCrit; = — =
} o L
else if (Fault_1 Active | —)! '
Eault_Z_Actlve) EZZ}r_

ErrMsg = DriverWarn;
}
else
{

ErrMsg = NoFaults;
}

Appendix 2: Simulink Patterns for Case Constructs
These patterns shall be used for case constructs.

Function Simulink pattern
Case construct using if Action Subsystem
switch (PRNDL_Enum)
{
251

case 1
TqEstimate
break;

case 2
TgEstimate
break;

default
TqEstimate
break;

ParkV;

RevV;

NeutralV;

Case construct using Multiport Switch

switch (Selection)

{
case 1:
output_signal =
lookl _binlxpw(In2,y1,x1,3U);
break;
case 2:
output_signal =
lookl binlxpw(In3,y2,x2,3U);
break;
case 3:
output_signal =
lookl_binlxpw(In4d,y3,x3,3U);
break;
default:
output_signal =
lookl_binlxpw(In5,y4,x4,3U);
break;
}

FRNDL_Enum

defauft: — -
Sinitech Caze

sz (11— - —

—— plul case 2] - —

default
In1 &I}Jﬂ

Huetral

untd

TqEstimate

Merge

- H
T <Selection>
HLO AR = 001 [zec]
1-D Tiw)
u dz;bgl: double . 1
In2
l-[l_LLolokup
1-D Tiw)
double doubke (2 ||double
> : NGD)
ha {Ind> output_zignal ot
D Leskp
-0 Tl
: double double |3
e <Indx
D Leok
1-D Tiu)
: double double ity 4
e <Inbx
1-D Lookup (S
Tabled Muktiport
Switch

Appendix 3: Simulink Patterns for Logical Constructs
These patterns shall be used for Simulink logical constructs.

Conjunctive normal form

252

CO——

Input_signal

(2) > AND »

Input_signal2

Input_signal3

Input_signal4 AND

Input_signald

G

Input_signal6

) a0 >

Input_signal7

Input_signal8

Disjunctive normal form

G

Input_signal9

(10) » OR L

Input_signal10

Input_signal11

&

Output_signall

Input_signal 12 OR AND

Input_signal13

Input_signal14

(15) » OR L

Input_signal15

Input_signal16

Appendix 4: Simulink Patterns for Vector Signals
These patterns shall be used for vector signals.

Function

Vector signal and parameter (scalar) multiplication
for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] *
tunable_parameter_value;

}

(Reference: generated code of R2013b)
253

Qutput_signal2

Simulink pattern

tunable_parameter_value
input_vector oulput_vectar

Gain

for (i = @; i < input_vectorDim; i++)
output_vector[i] =
tunable_parameter_value *
input_vector[i];

}

{

(As the code is generated using a variable number of
dimensions, the upper limit of the normal loop is a

direct value.)

Multiplication of vector signals and parameters
(vectors)

for (i=0; i>input_vector_size; i++) {

- tunahle_parameter_vectar
input_vector output_vector

output_vector[i] = input_vector[i] * 3

tunable_parameter_vector[i];
}

Vector signal element multiplication

output_signal = 1;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal *
input_vector[i];

}

Vector signal element division

output_signal = 1;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal /
input_vector[i];

}

Vector signal and parameter (scalar) addition

for (i=0; i>input_vector_size; i++) {

output_vector[i] = input_vector[i] +

tunable_parameter_value;
}

Vector signal and parameter (vector) addition

for (i=0; i>input_vector_size; i++) {

output_vector[i] = input_vector[i] +

tunable_parameter_vector[i];

Gain

input_wector

> ﬂ autput_signal

Product

input_wvectar

TT | output_signal

Product

o

input_vector

tunable_parameter_wvalue }—>+

output_wvector

Constant

5um

=

input_vector

tunable_parameter_\rectnr)—b

output_wector

+

} Caonstant Sum
Vector signal and parameter (vector) addition
for (i=0; i>input_vector_size; i++) { . ..E; :
output_vector[i] = input_vector[i] + input_vector autput_signa
tunable_parameter_vector[i]; Sum

}

Vector signal element subtraction

output_signal = ©;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal -
input_vector[i];

ap3
input_vector

output_signal

Sum

254

?’
input_sianal ~ [min - -
» output_signal_min

hinhdax

LZ |
Unit_Delay

"
il

Retention of minimum value/maximum value

—
input_vector max
> autput_wector_max

Minhdax

RO =

Unit_Delay

Appendix 5: Using Switch and if-then-else Action Subsystems

[Switch] shall be used for modeling simple if, elseif, else structures when the associated elseif and else
actions involve only the assignment of constant values.

Recommended: For a simple if, elseif, else structure, use [Switch].

Out

- iK1 “= 0)

1
Int N else
I it}

Recommended: For a complex if, elseif, else structure, use [If], [If Action Subsystem].

255

int Pt
els=
y
E—‘—’ 7 70

IfFunc

r
els=[)
Dutl

Else Func

4

Dutl

Merge
Outi

Action Port

Not recommended: Using [Switch] for a complex if, elseif, else structure.

[—
E}—’+ X

Y

!
g

il'

[}——
E—’+ X
[

Y

Appendix 6: Use of if, elseif, else Action Subsystem to Replace Multiple Switches

Frequent use of [Switch] for condition bifurcation shall be avoided. Instead, the {upper limit target} shall be
used (such as up to three levels). When the target value is exceeded, a conditional control flow using the
if, elseif, else Action Subsystem shall be used.

Not recommended: Four levels of nesting.

256

[}
OIS Eﬂ 4”'_\

In2 < \
Int] pH =1 » (1)

Switch? 1 T

Constant?

7|
B

E
It
"

T

o
&
=5
a
£l
=
w
El
=
q
o
=
¥

o
E
8
; I
L ey
»
F

Switchd

L
T

Ind Gonstant i Switchl E'—L’
Congtant 10
s

Cornstantd _| ot
|

Congtant2 Switchd

H

Switchd

|
;‘/)

Switch2

Constantd

=
Y
2

Ed
|

Constanth Switchd
Recommended: By setting the fourth level as an if Action subsystem, nesting is limited to a single level.

ifful > 00

ul
elze

i

n?

n3
Out?

nd

n5

ine
s ;

;

Subzvstem Meree
else {1 hat iyt]

R

Acton Port

Gonstant 2

= D)

1
n2 Qut2
Constant? _| -9 3

[Switch?
— ;A—

Constantd Switchb "3

;

E?

:

o

:

Switch

Congtant 1

;

=10
In —I
¢

T

Congtanth Switchi

257

Not recommended: Not dividing by using an if Action subsystem.

o2 3 In2

Out2
8

Int Ot

Subsystem ! \
=0

P N2

Switchd

Out2 —

Subsystem!

Use atomic subsystem + function setting when the C code limit is applied. In this case, there is no need to
use the if, elseif, else Action Subsystem, but the configuration of [Switch] can be split and encapsulated in

the subsystem.

Example of model with five levels of nesting.

Not recommended:

o N
In1
Gotol Constant
o) H~o M—CD
Outl

o = L
In2

Goto2

2 Switch
- constnti

In3 [in1] —":u

Goto3

= =
Switchl

Ind
" Gotod

- i
InS

GotoS Constant2 4\

[in1] —’":o

From2

E}—' Switch2
o\

From3
—a

4\ Switch3
Constant4
e

Fromé
—a

Constant5 Switch4

258

Recommended: Use a description method that avoids layering of [Switch] nesting

if(ul "= 0)
CO—»u
nt else

If it}
1 Int Outl

Constant | Action
Subsystem

else {}

In2
" verge (1)

o
In3
outt

@—P In3

s

If Action
Subsystem1

Action Port
RHE = held
BEfES = 1/2

Constant1 If Action
Subsystem
else {} out
In2

If Action
Subsystem1

RN

A |
Action Port Cionstant? 4‘\
HAHE = held CTr—H{ =0 —(1)
Pefiga - 21 2o Gut1
| 1 FIEAIE = 0
! Switch
Corstantd %
O =0 J
Thd
=
Congtantd Switchd
T =0
Inl
s

Constant 1 Swwitch 4

While provided as an example, If Action Subsystem a are not typically used for switching the fixed value.
In these Recommended and Not Recommended examples, the generated C code will be the same if the
user does not add a function conversion setting. (Confirmed in R2010b to R2013a) The C code is
unconstrained.

259

Appendix 7: Usage Rules for Action Subsystems Using Conditional Control Flow
An If Action subsystem shall not be used when the associated actions do not have a status variable.

Recommended
iftul "= 0)
O——
" else
If
it {}
2 Int
In2
In4 outt \
15 \
>
If Action Subsystem \‘ Merge ———>(1)
p outt
else (]
In3 Int
; outt
In4 2

If Action Subsystem1

Action Port
er
£ Ly
In1
min +®
Outl
Tt + TER(E = [
Infb
FTERTE = 0
Example of model with 5 levels of nesting
Recommended
Layering by using a subsystem does not occur because there is no internal state.
D]
Int Gotot Constant .
.—V[unu H~-0 N—CD
D From L, Outl
in2 Goto2
Switch
n3 onstant.
From1 | .
In4 Gotod Switch1
—
5 Goto5 otz H\
-
From2
’I} <|—> Switch2
Tt
From3
. Switch3
Constant4 Il\»
From4 | .
Constant5 Switch4

260

Recommended
An atomic subsystem is used to split either side of [Switch] without using an Action subsystem.

1

Constart . »xo
. Corztant 1 iz if { Flag1 =0} Y1=x1
el iff Flag2 "=0) Y1=X2

Conztant 2 X4 M)
elss if{ Flagd "=0) ¥1=x3 e
C—frtast else Y14
Ini
C—»fft=e2
In2
1 { : —
Constants In3 i eloe block
2
#{ Flagl =0) 1=

Conztantd ; -
3 el if{ Flag2 ™=0) Y1=x2 v —

Constanth elze Y1=H3
@—.Flaﬂ
Ind
(5 p——»ffle2
ik T olos biock

261

Not recommended:
Layering through the use of an unnecessary Action subsystem.

Constant

If Action
Subsystem

n2

In3

Since there is no block that has a state
- variable in this level, there is no need to
CO——m use the Action subsystem.

In5

If Action
Subsystem1

y 4

elsgl(}

Actigh Port
KA held
P =1/2
iflul "= 0)

else

If

Action

Constant1

If Action
Subsystem

Action
Sibsystem1

This state variable is
initialized at the same time
as the initialization of the
upper layer and executed
several times in the same
cycle. ottt
While there is no problem
with the calculation result,
wasteful processes are
performed.

Ol 1
FIMENE - 0

Unit Delsy

If a function can be achieved by using the Action subsystem, then layering using the Action subsystem is
not performed.

In the Not Recommended example, when the lowest level [Unit Delay] on the third level is initialized, the
conditional subsystem initialization is first executed one time on the upper first level, and then again on the
second level for a total of two times of initial value settings. To prevent the generation of unnecessary

262

code, it is recommended that listing not be made in conditional subsystems that reside in levels where the
state variable does not exist.

This is based on the concept that the model complexity is reduced by dropping to a level. The purpose of
the rule is to avoid the execution of unnecessary initializations.

For bifurcation of systems where the bifurcation condition nest has a deep structure, split by using function
conversions to decrease the code bifurcation nesting. Functions before and after [Switch] are divided into
respective subsystems, and function settings are applied to the atomic subsystem+function. Be aware, it
is possible that this may result in unintentional implementation and unnecessary RAM requirements.

Appendix 8: Tests for Information From Errors

When functions that are used in Stateflow (graphical functions, MATLAB functions, etc.) results in an
error, the error information shall be transformed into a model structure that will facilitate testing.
Not reviewing the error information returned by the functions can result in unintended behavior.

Recommended
Error information is incorporated into the model structure, allowing the user to review and respond to the
errors.

»

i._l."l'_.1. on ret = tunction | pd|_-1

A A ey

% IEH ALIE

Not recommended:
Error information is not incorporated into the model structure.

function ret = functionTest{para)

263

Appendix 9: Flow Chart Patterns for Conditions

These patterns shall be used for conditions within Stateflow flow charts.

Equivalent Functionality

Flow Chart Pattern

ONE CONDITION:

[condition]

[condition]

fF comment */
[condition]

UP TO THREE CONDITIONS, SHORT FORM:
(The use of different logical operators in this form is
not allowed. Use sub conditions instead.)

[condition1 && condition2 && condition3]
[conditionl || condition2 || condition3]

[condition1 && condition2 && condition3]

() ={)

[condition1 || condition2 || condition3]
) =)

TWO OR MORE CONDITIONS, MULTILINE
FORM:

(The use of different logical operators in this form is
not allowed. Use sub conditions instead.)

[conditionl ...

&& condition2 ...

&& condition3]
[conditionl ...
|| condition2 ...
|| condition3]

[condition? ...
&& condition? ...
&& condition3]

=

O

[condition? ...
|| condition? ...
|| condition3]

264

CONDITIONS WITH SUBCONDITIONS: dition dition1b
(The use of different logical operators to connect [':Con IIIGU‘ a| con ItIOD') ...
sub conditions is not allowed. The use of brackets && (condition2a || condition2b) ...
is mandatory.) && condition3]
[(conditionla || conditionlb) ...
gi gcong?:!0”§§ || condition2b) ... [(condition1a && condition1b) ..
condition 4 T
[(conditionla && conditionilb) ... ” (Cor:jdtl.tm%?a && COI‘IdltIOf‘IQb)
|| (condition2a && condition2b) ... O” condition3] [:’O
|| (condition3)]
[condition] [condition2]
CONDITIONS THAT ARE VISUALLY
SEPARATED:
(This form can be combined with the preceding
patterns.)
dition

[conditionl && condition?2] [condition’]
[conditionl || condition2] E

[condition2]

Appendix 10: Flow Chart Patterns for Condition Actions

These patterns shall be used for condition actions within Stateflow flow charts.

Equivalent Functionality Flow Chart Pattern
{ f* comment */
ONE CONDITION ACTION: action; { ,
A } action,
action; }

TWO OR MORE CONDITION ACTIONS,
MULTILINE FORM:

(Two or more condition actions in one line are not
allowed.)

actionl;

action2;

265

action3;

-
action”;
action2
action3
h
O
actionia;
action1b;
CONDITION ACTIONS, WHICH ARE VISUALLY 1
SEPARATED: %
(This form can be combined with the preceding {
patterns.) action2
actionla; } '
actionlb;
action2;
action3; { .
action3;
'

&

Appendix 11: Flow Chart Patterns for if Constructs

These patterns shall be used for If constructs within Stateflow flow charts.

Function

Flow Chart Pattern

If construct

if (condition){
action;

}

action;

If, else construct

if (condition) {
actionl;

}

else {
action2;

}

266

V. [cordition]

Ot
2
& {
action?; actiont ;
I
[=2 ()
@
If, elseif, else construct I
s [corditiont] —~
if (conditionl) { '1.5.51 =)
actiond; { [arwitiarg’]
} O)
else if (condition2) { 2 N ;
action2; A ool : actiort
} . e 2 actior:
else if (condition3) { Lo {adbrﬁ_
action3; 1 ' '
) | ¥ 1
else { (O=)= (= G
actiond4; |
Cascade of if construct o ki
E 7 ! ctior
if (conditionl) { g
actioni; ‘.'T"',:1 [corditiore] O
if (condition2) { 2 [4
action2; JHeRe
if (condition3) { Moo lmmmiteddl =
. W T
action3; . "{
} aeters
} : !
} o] > O

i S g T
(=)=
]

267

Appendix 12: Flow Chart Patterns for Case Constructs
These patterns shall be used for case constructs in Stateflow flow charts.

Function

Case construct with exclusive selection

selection = ul;
switch (selection) {
case 1:
yl =1;
break;
case 2:
yl = 2;
break;
case 3:
yl = 4;
break;
default:
yl = 8;

Case construct with exclusive conditions

cl = ul;

c2 = u2;

c3 = u3;

if (c1 & ! c2 && ! c3) {
yl = 1;

}

elseif (! c1 && c2 && ! c3) {
yl = 2;

}

elseif (! cl & & ! c2 && c3) {
yl = 4;

}

else {
yl = 8;

}

Simulink pattern

selection = ut;

——C==<

[selection ==1]

Q1
{
£ yl =1
J j
Q1 [selection ==2]
{
2 <J> vl =2
J]
Q [selection ==3]
1
{
i <J> vl =4
‘)
{ %
yl =8
}
cl =ul
c2 = u2
c3 =ul
S [c1 && 'c2 && 'c3]
1

{

—

[lc1 && !c2 && c3]

Ol

y1 =1

}
['c1 && c2 && 'c3] C
7!
y1 =2
!

O———

Appendix 13: Flow Chart Patterns for Loop Constructs
These patterns shall be used to create loop constructs in Stateflow flow charts.

Function
For loop construct

for (index = 0;
index < number_of loops;
index++)

{

action;

268

Flow Chart Pattern

While loop construct

while (condition)

{

action;

}

Do while loop construct

do
{

action;

}

while (condition)

O [index < number of loops] - O

—

index = 0;

}
& -
2 action;

9 }

{
J

O 0

index++;

O ke

[condition]

L 5 [
01 action;

2 }

O |]action;

[condition]

Appendix 14: State Machine Patterns for Conditions

These patterns shall be used for conditions within Stateflow state machines.

Equivalent Functionality State Machine Pattern
ONE CONDITION: D [condition]
(condition)

UP TO THREE CONDITIONS, SHORT FORM: [condition1 && condition2]
(The use of different logical operators in this form A
is not allowed, use sub conditions instead)

. .. A [condition1 || condition2]
(conditionl && condition2)

(conditionl || condition2)

TWO OR MORE CONDITIONS, MULTILINE

FORM:
A sub condition is a set of logical operations, all
of the same type, enclosed in parentheses. [condition ...
(The use of different operators in this form is not &2 condition? ...
allowed, use sub conditions instead.) |A 8& conditiond]
(conditionl ... I[lcondétltqn12..
&& condition2 ... conaiionz ...
" dition3
&& condition3) |A conditon?]

(conditionl ...
|| condition2 ...
|| condition3)

Appendix 15: State Machine Patterns for Transition Actions

These patterns shall be used for transition actions within Stateflow state machines.

Equivalent Functionality State Machine Pattern

ONE TRANSITION ACTION: B faction;
action;

TWO OR MORE TRANSITION ACTIONS,
MULTILINE FORM:

(Two or more transition actions in one line are not faction?;
allowed.) action2,
A action3;
actionil; ‘ I
action2;
action3;

270

Appendix 16: Limiting State Layering

Within a single viewer (subviewer), multiple layering shall be limited by defining constraints for a single
view (subview). Subcharts shall be used to switch the screen when defined constraint goals are
exceeded.

Recommended
The fourth level is encapsulated in a subchart.

l
s ~

ﬂeveljfbl \
0
Level_3 b_a Level 3 b b
——

N -

Not recommended:

The constraint goal is set to three levels, but Level_4 _a and Level 4 b have more than three levels and
are nested.

ﬂVELU \
ﬁavelj_af \

Level 3 _a/ Level 3 b/

Level 4 a/ Level 4 b/

Appendix 17: Number of States per Stateflow Container

The number of states per Stateflow container shall be determined by the number of states that can be
viewed in the diagram. All states should be visible and readable.

271

Seven/

Appendix 18: Function Call from Stateflow

If a state exists in the Function Call Subsystem of the call target, and a “reset” of the state is required
when the state of the caller becomes inactive, the caller shall use a bind action.

for call

[

Tge In Fon Tge

v

[Held] function?
] o Court |2
Hald
Tale
Dwct o
I'}_Mcnde == [rwit] hind : Fojh_ Drwect
—_—
‘4
{Fon_DOwcth
1Count = Dwct_Ind

. vy

(T 8 — _ -
pbind_FonTgle |
en : Fon_Tgle;
Count = Tale _In;
du : Fon Tgle;
Count = Tgle_In;

(\U} A4 Mode == Tgle]

Appendix 19: Function Types Available in Stateflow
The functions types used in Stateflow shall be dependent on the required processing.

For graphical functions, use:
o If, elseif, else logic

For Simulink functions, use:
o Transfer functions
0 Integrators
0 Table look-ups

For MATLAB functions, use:
o Complex equations
o If, elseif, else logic

272

	Table of Contents
	1. Introduction
	1.1. Purpose of the guidelines
	1.2. Guideline template
	Rule ID
	Sub ID Recommendations
	MATLAB® Versions
	Sub ID
	Title
	Description
	Custom Parameters
	Rational
	See Also

	2. Naming Conventions
	2.1. General Conventions
	ar_0001: Usable characters for file names
	ar_0002: Usable characters for folder names
	jc_0241: Length restriction for model file names
	jc_0242: Length restriction for folder names

	2.2. Content Conventions
	jc_0201: Usable characters for subsystem names
	jc_0231: Usable characters for block names
	jc_0211: Usable characters for Inport block and Outport block
	jc_0243: Length restriction for subsystem names
	jc_0247: Length restriction for block names
	jc_0244: Length restriction for Inport and Outport names
	jc_0222: Usable characters for signal/bus names
	jc_0232: Usable characters for parameter names
	jc_0245: Length restriction for signal and bus names
	jc_0246: Length restriction for parameter names
	jc_0795: Usable characters for Stateflow data names
	jc_0796: Length restriction for Stateflow data names
	jc_0791: Duplicate data name definitions
	jc_0792: Unused data
	jc_0700: Unused data in Stateflow block
	na_0019: Restricted Variable Names

	3. Simulink
	3.1. Configuration Parameters
	jc_0011: Optimization parameters for Boolean data types
	jc_0642: Integer rounding mode setting
	jc_0806: Detecting incorrect calculation results
	jc_0021: Model diagnostic settings

	3.2. Diagram appearance
	na_0004: Simulink model appearance settings
	db_0043: Model font and font size
	jm_0002: Block resizing
	db_0142: Position of block names
	jc_0061: Display of block names
	db_0140: Display of block parameters
	jc_0603: Model description
	jc_0604: Using Block Shadow
	db_0081: Unconnected signals / blocks
	db_0032: Signal line connections
	db_0141: Signal flow in Simulink models
	jc_0110: Direction of block
	jc_0171: Clarification of connections between structural subsystems
	jc_0602: Consistency in model element names
	jc_0281: Trigger signal names
	db_0143: Usable block types in model hierarchy
	db_0144: Use of subsystems
	jc_0653: Delay block layout in feedback loops
	hd_0001: Prohibited Simulink sinks

	3.3. Signal
	na_0010: Usage of vector and bus signals
	jc_0008: Definition of signal names
	jc_0009: Signal name propagation
	db_0097: Position of labels for signals and busses
	na_0008: Display of labels on signals
	na_0009: Entry versus propagation of signal labels
	db_0110: Block parameters
	db_0112: Usage of index
	jc_0645: Parameter definition for calibration
	jc_0641: Sample time setting
	jc_0643: Fixed-point setting
	jc_0644: Type setting

	3.4. Conditional subsystem relations
	db_0146: Block layout in conditional subsystems
	jc_0640: Initial value settings for Outport blocks in conditional subsystems
	jc_0659: Usage restrictions of signal lines input to Merge blocks
	na_0003: Usage of If blocks
	jc_0656: Usage of Conditional Control blocks
	jc_0657: Retention of output value based on conditional control flow blocks and Merge blocks

	3.5. Operation blocks
	na_0002: Appropriate usage of basic logical and numerical operations
	jc_0121: Usage of add and subtraction blocks
	jc_0610: Operator order for multiplication and division blocks
	jc_0611: Input sign for multiplication and division blocks
	jc_0794: Division in Simulink
	jc_0805: Numerical operation block inputs
	jc_0622: Usage of Fcn blocks
	jc_0621: Usage of Logical Operator blocks
	jc_0131: Usage of Relational Operator blocks
	jc_0800: Comparing floating-point types in Simulink
	jc_0626: Usage of Lookup Table blocks
	jc_0623: Usage of continuous-time Delay blocks and discrete-time Delay blocks
	jc_0624: Usage of Tapped Delay blocks/Delay blocks
	jc_0627: Usage of Discrete-Time Integrator blocks
	jc_0628: Usage of Saturation blocks
	jc_0651: Implementing a type conversion

	3.6. Other blocks
	db_0042: Usage of Inport and Outport blocks
	jc_0081: Inport/Outport block icon display
	na_0011: Scope of Goto/From blocks
	jc_0161: Definition of Data Store Memory blocks
	jc_0141: Usage of Switch blocks
	jc_0650: Block input/output data type with switching function
	jc_0630: Usage of Multiport Switch blocks
	na_0020: Number of inputs to variant subsystems
	na_0036: Default variant
	na_0037: Use of single variable for variant condition

	4. Stateflow
	4.1. Stateflow blocks/data/events
	db_0122: Stateflow and Simulink interface signals and parameters
	db_0123: Stateflow port names
	db_0125: Stateflow local data
	db_0126: Defining Stateflow events
	jc_0701: Usable number for first index
	jc_0712: Execution timing for default transition path
	jc_0722: Local data definition in parallel states

	4.2. Stateflow diagram
	jc_0797: Unconnected transitions / states / connective junctions
	db_0137: States in state machines
	jc_0721: Usage of parallel states
	db_0129: Stateflow transition appearance
	jc_0531: Default transition
	jc_0723: Prohibited direct transition from external state to child state
	jc_0751: Backtracking prevention in state transition
	jc_0760: Starting point of internal transition
	jc_0763: Usage of multiple internal transitions
	jc_0762: Prohibition of state action and flow chart combination
	db_0132: Transitions in flow charts
	jc_0773: Unconditional transition of a flow chart
	jc_0775: Terminating junctions in flow charts
	jc_0738: Usage of Stateflow comments

	4.3. Conditional transition / Action
	jc_0790: Action language of Chart block
	jc_0702: Use of named Stateflow parameters/constants
	jm_0011: Pointers in Stateflow
	jc_0491: Reuse of Stateflow data
	jm_0012: Usage restrictions of events and broadcasting events
	jc_0733: Order of state action types
	jc_0734: Number of state action types
	jc_0740: Limitation on use of exit state action
	jc_0741: Timing to update data used in state chart transition conditions
	jc_0772: Execution order and transition conditions of transition lines
	jc_0753: Condition actions and transition actions in Stateflow
	jc_0711: Division in Stateflow
	db_0127: Limitation on MATLAB commands in Stateflow blocks
	jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow
	na_0001: Standard usage of Stateflow operators
	jc_0655: Prohibition of logical value comparison in Stateflow
	jc_0451: Use of unary minus on unsigned integers
	jc_0802: Prohibited use of implicit type casting in Stateflow
	jc_0803: Passing values to library functions

	4.4. Label description
	jc_0732: Distinction between state names, data names, and event names
	jc_0730: Unique state name in Stateflow blocks
	jc_0731: State name format
	jc_0501: Line breaks in state labels
	jc_0736: Uniform indentations in Stateflow blocks
	jc_0739: Describing text inside states
	jc_0770: Position of transition label
	jc_0771: Comment position in transition labels
	jc_0752: Condition action in transition label
	jc_0774: Comments for through transition

	4.5. Miscellaneous
	jc_0511: Return values from a graphical function
	jc_0804: Prohibited use of recursive calls with graphical functions
	na_0042: Usage of Simulink functions
	na_0039: Limitation on Simulink functions in Chart blocks

	5. MATLAB
	5.1. MATLAB Appearance
	na_0018: Number of nested if/else and case statements
	na_0025: MATLAB Function headers

	5.2. MATLAB Data and Operations
	na_0024: Shared data in MATLAB functions
	na_0031: Definition of default enumerated value
	na_0034: MATLAB Function block input/output settings

	5.3. MATLAB Usage
	na_0016: Source lines of MATALAB Functions
	na_0017: Number of called function levels
	na_0021: Strings in MATLAB functions
	na_0022: Recommended patters for Switch/Case statements
	jc_0801: Prohibited use of the /* and */ comment symbols

	6. Glossary
	7. Determining Guideline Operation Rules
	7.1. Process Definition and Development Environment
	7.2. MATLAB/Simulink Version
	7.3. MATLAB/Simulink Settings
	7.4. Usable Blocks
	7.5. Using Optimization and Configuration Parameters
	Optimization parameters
	Configuration Parameters

	7.6. Applying Guidelines for a Project
	Using the model analysis process when applying guidelines
	Adoption of the guideline rule and process settings
	Setting the guideline rule application field and the clarifying the exclusion condition
	Parameter recommendations in the guidelines
	Verifying adherence to the guidelines
	Modifying adherence to a guideline

	8. Model Architecture Explanation
	8.1. Roles of Simulink and Stateflow
	8.2. Hierarchical Structure of a Controller Model
	Types of Hierarchies
	Top Layer
	Function Layers and Sub-Function Layers
	Schedule Layers
	Control Flow Layers
	Selection Layers
	Data Flow Layers

	8.3. Relationship between Simulink Models and Embedded Implementation
	8.3.1.1. Scheduler Settings in Embedded Software
	8.3.1.2. Effect of Connecting Subsystems with Sampling Differences

	9. Appendices
	9.1. 　　Simulink Functions
	9.1.1.1. Blocks with State Variables
	9.1.1.2. Branch Syntax with State Variables
	9.1.1.3. Subsystem
	9.1.1.4. Signal Name
	9.1.1.5. Vector Signals/Path Signal
	9.1.1.6. Enumerated Types

	9.2. Stateflow Functions
	9.2.1.1. Operators Available for Stateflow
	9.2.1.2. Differences Between State Transition and Flow Chart
	9.2.1.3. Backtrack
	9.2.1.4. Flow Chart Outside the State
	9.2.1.5. Pointer Variables

	9.3. Initialization
	9.3.1.1. Initial Value Setting in Initialization
	9.3.1.2. Initial Values of Signals Registered in the Data Dictionary
	9.3.1.3. Block Whose External Input Value is the Initial Value
	9.3.1.4. Initial Value Settings in a System Configuration that Would Enable Initialization Parameters

	9.4. Miscellaneous
	9.4.1.1. Atomic Subsystems and Virtual Subsystems

	9.5. Modeling Knowledge / Usage Patterns
	Appendix 1: Simulink Patterns for If, elseif, else Constructs
	Appendix 2: Simulink Patterns for Case Constructs
	Appendix 3: Simulink Patterns for Logical Constructs
	Appendix 4: Simulink Patterns for Vector Signals
	Appendix 5: Using Switch and if-then-else Action Subsystems
	Appendix 6: Use of if, elseif, else Action Subsystem to Replace Multiple Switches
	Appendix 7: Usage Rules for Action Subsystems Using Conditional Control Flow
	Appendix 8: Tests for Information From Errors
	Appendix 9: Flow Chart Patterns for Conditions
	Appendix 10: Flow Chart Patterns for Condition Actions
	Appendix 11: Flow Chart Patterns for if Constructs
	Appendix 12: Flow Chart Patterns for Case Constructs
	Appendix 13: Flow Chart Patterns for Loop Constructs
	Appendix 14: State Machine Patterns for Conditions
	Appendix 15: State Machine Patterns for Transition Actions
	Appendix 16: Limiting State Layering
	Appendix 17: Number of States per Stateflow Container
	Appendix 18: Function Call from Stateflow
	Appendix 19: Function Types Available in Stateflow

