
CANDIDATE
INFORMATION

DATA PROCESSING AND VISUALIZATION

Importing Data
• Import a mixture of data types from arbitrarily formatted text files.
• Import only required columns of data from a text file.
• Automatically read data from multiple files in a folder.
• Merge data from multiple files.

Processing Data
• Process data with missing elements.
• Create and modify categorical arrays and use them to group and extract data.
• Aggregate and count groups of data.

Customizing Visualizations
• Determine property names and values associated with graphics objects.
• Locate and manipulate graphics objects.
• Customize plots by modifying properties of graphics objects.

Working with Irregular Data
• Import data from separate sections of a text file.
• Extract data from container variables.
• Interpolate irregularly spaced three-dimensional data.
• Visualize three-dimensional data in two and three dimensions.

PROGRAMMING TECHNIQUES

Utilizing Development Tools
• Ensure code provides desired results by using integrated MATLAB® code analysis and debug-

ging tools.
• Measure code performance using tools like the MATLAB Profiler.
• Describe the concept of numerical accuracy.

Verifying Application Behavior
• Write code that provides tests for desired application behavior.
• Use a test suite to automatically verify application behavior.

CERTIFIED MATLAB
PROFESSIONAL EXAM
Earning the Certified MATLAB
Professional credential
demonstrates that you have
expanded your basic MATLAB
skills to a level of mastery on
par with the proficiency of the
most advanced members of the
MATLAB community.

PREREQUISITES
To properly prepare, we
recommend taking the following
MathWorks training courses:
MATLAB for Data Processing and
 Visualization
MATLAB Programming Techniques
Building Interactive Applications
 in MATLAB

SAMPLE PROBLEMS
View sample problems
representative of the format and
difficulty level expected on the
exam.

PREPARING FOR YOUR EXAM
OBJECTIVES TESTED
MathWorks training courses provide coverage across these objectives as well as
exercises if additional learning and practice are necessary.

https://www.mathworks.com/training-schedule/matlab-for-data-processing-and-visualization
https://www.mathworks.com/training-schedule/matlab-for-data-processing-and-visualization
https://www.mathworks.com/training-schedule/matlab-programming-techniques
https://www.mathworks.com/training-schedule/building-interactive-applications-in-matlab
https://www.mathworks.com/training-schedule/building-interactive-applications-in-matlab
https://www.mathworks.com/services/training/certification/ml-professional-exam/practice-test.html

Creating Robust Applications
• Call query functions to determine properties of variables.
• Define default values for function inputs.
• Implement a try-catch construct, along with MException objects, for handling error conditions.
• Write code to validate assumptions about function inputs and provide customized error messages

for violations.

Structuring Code
• Select an appropriate type of MATLAB® function based on requirements for function visibility

and workspace access.
• Create and call an anonymous function to change the interface to an existing function.
• Determine which function a program will call when multiple possibilities exist.

Structuring Data
• Select the most appropriate data type for an application by considering factors such as memory

usage and efficiency of data extraction.
• Convert and concatenate data stored in cell arrays, structures, and structure arrays.
• Extract and manipulate subsets of data from various data set organizations.

Managing Data Efficiently
• Write code for preallocating various types of arrays.
• Use vectorization techniques to improve code performance.
• Explain memory usage when passing arrays to functions.

Creating a Toolbox
• Create documentation for a custom toolbox.
• Package code and documentation as a custom toolbox.

BUILDING INTERACTIVE APPLICATIONS

Graphics Objects
• State the layers in the graphical object hierarchy in MATLAB
• Create a MATLAB graphics object
• Determine graphics object properties and acceptable values
• Obtain a variable that refers to a graphics object
• Modify properties of a graphics object

Components of an Interface
• State the order of execution of the application code throughout the lifetime of the application
• Add a graphical control, such as a pushbutton, to a MATLAB figure window
• Specify behavior of a graphical control by associating it with MATLAB code

Programming Considerations for Interactive Applications
• Organize graphics objects to facilitate passing them into callbacks
• Write a function for use as a callback
• Pass user-defined data into callback functions
• Organize interface creation code and callbacks into a single MATLAB file

ADDITIONAL
INFORMATION
For additional information
regarding the MathWorks
Certification program, visit
mathworks.com/certification

https://www.mathworks.com/certification

Creating Interfaces Using GUIDE
• Modify behavior of graphical objects created by GUIDE
• Use GUIDE to lay out user interface objects
• Assign unique names to graphical objects using the Tag property
• Modify layout and properties of graphical objects created by GUIDE

Programming Applications Using the GUIDE Template
• Use the handles structure created by GUIDE to manipulate graphics objects within a callback
• Write callbacks that can communicate with each other by adding local data to the application

TEST FORMAT
The MathWorks Certified MATLAB Professional (MCMP) exam consists of two
sections: 25 multiple-choice questions and 8 performance-based problems.
MATLAB access is not permitted during the multiple-choice section of the exam.
The performance-based problem section requires code segments to be written in
MATLAB. MATLAB and the documentation will be available during this portion
of the exam, though no other resources, online or otherwise, are permitted. To
earn the MCMP credential, submissions for both sections of the exam must meet or
exceed the passing criteria for the exam instance.

WRITING MATLAB CODE
The performance-based problems require code submissions written in MATLAB.
Submissions must meet all the requirements outlined in the problem statement as
well as the basic expectations outlined in the next section.

While there are always opportunities to improve upon submissions by adding
additional error checking, comments, or code for edge cases, these additions
need to be balanced with the time constraint of the exam. Consider moving on
to other problems if spending more than 15-20 minutes on a problem. There will
be no bonus points for solutions that go above and beyond the requirements.
Additionally, there are no bonus points for “clever tricks” or obscure syntax. Code
submissions should clearly communicate the solution to other MATLAB programmers.

Comments in the MATLAB code are welcome and appreciated to help explain the
intent of the code. However, given the time constraints of the exam, comments are
not required.

EXPECTATIONS FOR SUBMISSIONS
Each submission must meet minimum criteria to receive credit. The scoring process
also evaluates requirements set forth in the problems statement. The table below
outlines the minimum criteria:

Category Criteria

Meets
Requirements

Solutions must not:
• Make system calls using system command, ! operator, or any other meth-

od of accessing a system command prompt.
• Use MEX-files or Simulink blocks.
• Make calls through external interfaces to any other programming environ-

ments such as Java, Python, .NET, or ActiveX.
• Make calls to undocumented functionality, or anything that does not con-

tain explicit instructions in the documentation for use.
• Exception: Calls to any documented, pre-existing MATLAB functions that

may make use of any of the functionality outlined above are allowed.

Correct
Answer/
Stability

Solutions must not:
• Produce run-time errors as a result of default execution as outlined in the

problem statement.
• Produce warnings that indicate final results are incorrect, incorrect func-

tions are being called, or the correct functions are being called incorrectly.
• Exception: Errors are acceptable when a problem statement explicitly

requires an error for a given set of inputs or conditions.

Implementation

Solutions must not:
• Use functions which indirectly change the workspace such as assignin,

evalin, eval, and feval.
• Write new functions or code that replicate existing MATLAB functionality

(see table).
• Contain Code Analyzer warnings if there is an automatic fix or a fix with

instructions provided.
• Violate any of the stated Vectorization Rules (see table).
• Use variable names that collide with common MATLAB functions (see list

of common MATLAB functions).
• Contain code that grows the size of an array incrementally in a loop when

the final array size is known.
• Exception: Automatically generated code may contain Code Analyzer

messages. These messages do not need to be addressed.

VECTORIZATION RULES
Unless otherwise noted in a problem statement, the vectorization rules outlined in
the table below serve as the minimum criteria for all submissions

Rule Accepted Application Example Violation

Use element-wise operators
to perform mathematical,
relational, or logical opera-
tions on corresponding ele-
ments of arrays.

x = rand(1, 10);
y = rand(1, 10);
z = x .* y;

x = rand(1, 10);
y = rand(1, 10);
for i = 1:10
z(i) = x(i) * y(i);
end

Pass entire arrays to func-
tions that accept them
instead of passing smaller
subsets individually in a
loop.

x = 1:10;
y = sin(x);

x = 1:10;
for i = 1:10
y(i) = sin(x(i));
end

Call functions that return
entire arrays in a single func-
tion call rather than building
an array incrementally.

x = rand(1, 10)
for i = 1:10
x(i) = rand();
end

Use vectors for extracting
multiple elements of an array
when indexing.

x = rand(5);
y1 = x(:, 4);

x = rand(5);
for i = 1:5
y1(i) = x(i, 4);
end

Use logical indexing for the
extraction of elements of an
array based on a condition.

x = randn(1, 30);
y = x(x > 0);

x = randn(1, 30);
for i = 1:30
 if x(i) > 0
 y = [y x(i)];
end
end

MATLAB FUNCTIONALITY TO KNOW
Familiarity with the MATLAB operators, keywords, and functions in the table below
is assumed knowledge for the MCMP exam. Submissions for exam problems must
not recreate any of this functionality when the appropriate function already exists
to address the need. Care should also be taken not to choose variable names that
take precedence over these function names. Submissions for exam problems may
use any other documented functions not appearing in the table, as long as it is not
part of an add-on product (toolbox). Additionally, exam problems may introduce
other functions as part of the problem statement.

Mathematical Operators

+
-
*
/

\
^
.*
./

.\

.^

Data Types

cell

struct

categorical

table

datetime

duration

calendarDuration

Mathematical Functions

sin

cos

tan

asin

acos

atan

abs

exp

log

log10

log2

nthroot

round

sqrt

polyfit

polyval

pi

ceil

floor

mod

Array Creation Functions

ones
zeros
rand
randi
randn

true
false
eye
linspace
logspace

: (colon oper-
ator)
meshgrid

Statistical Functions

sum
prod
cumsum
cumprod
mean

median
min
max
diff

std
var
cov
fft

Array Dimensions length numel size

Set Operations
union
intersect
unique

sort
sortrows
ismember

setdiff
setxor

Grouping and Binning
accumarray
discretize

findgroups
splitapply

histcounts

String Operations
strcmp
strrep
strsplit

strjoin
strtrim
strfind

lower
upper
deblank

Dates and Time
datenum
datevec

datestr
now

clock
between

Plotting Functions

plot
plotyy
loglog
semilogx
semilogy
scatter
contour
surf
pie

bar
histogram
image
imagesc
subplot
xlabel
ylabel
title
legend

text
axis
ylim
xlim
grid
hold
colormap
colorbar
datetick

Graphics and UI
Components

get
set
findobj
findall
gcf
gca

uicontrol
uitable
uipanel
uimenu
uitoolbar
guidata

figure
axes
uigetfile
uiputfile
msgbox
errordlg
close

Logical and Relational
Operators

>
<
>=

<=
==
~=

~
&
|

Logical Functions

any
all
nnz
find
isequal

isnan
isinf
isempty
ismissing
isnumeric

isvector
isfinite
isbetween
isa
is* (where * is
a datatype)

MATLAB FUNCTIONALITY TO KNOW (CON’T)

File I/O

load
save
fopen
fclose
feof
fscanf

fprintf
disp
textscan
datastore
fgetl
imread

imwrite
xlsread
xlswrite
readtable
dlmread
dlmwrite

Conversion Functions

num2str
str2double
cell2mat
mat2cell
num2cell

cellstr
table2array
array2table
table2cell
cell2table

cell2struct
struct2cell
char
logical

Programming Keywords

break
case
catch
classdef
continue
else

elseif
end
for
function
if

otherwise
return
switch
try
while

Vectorization
repmat
reshape
bsxfun

arrayfun
cellfun
structfun

varfun
rowfun

Help and
Troubleshooting

doc
help
whos
which

ver
tic
toc
timeit

clc
clear
error
warning

MATLAB FUNCTIONALITY TO KNOW (CON’T)

HOW TO PREPARE
Review the Tested Objectives for the exam. MathWorks Training courses provide
coverage across these objectives as well as exercises if additional learning and
practice are necessary.

Review the “MATLAB functionality to Know” table. Study the documentation pages
for any functions are that are unfamiliar.

Work through exercises. MathWorks training courses provide additional exercises
for practice.

Read the Release Notes for the latest releases of MATLAB to stay up-to-date on new
functionality, as well as changes to older functionality.

Pay attention to Code Analyzer messages in the MATLAB Editor. Be able to fix
anything flagged in the code as potentially incorrect or inefficient. A list of the
Code Analyzer Messages for the current release can be found under the “Code
Analyzer” section of the MATLAB preferences.

Try the exam practice problems. These problems offer an idea of the difficulty and
format to expect on the exam.

