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Introduction

You can use MATLAB® to perform deep learning with multiple GPUs. Using multiple GPUs to train a 
single model provides greater memory and parallelism. These additional resources afford you larger 
networks and datasets; and for models which take hours or days to train, could save you time.

Deep learning is faster when you can use high-performance GPUs for training. If you don't have a 
suitable GPU available, you can use the new Amazon EC2 P2 instances to experiment. P2 instances 
are high-specification multi-GPU machines. You can use deep learning on  machines with a single 
GPU, and later scale up to 8 GPUs per machine to accelerate training, utilizing parallel computing to 
train a large, neural network with all of the processing power available.

 

Use the following sections to learn:

• How to train, test, and evaluate neural networks for deep learning problems in MATLAB

• How to scale up deep learning using high-performance multi-GPU machines in the  
Amazon Web Services cloud

Deep Learning in MATLAB

Deep learning is a branch of machine learning that teaches computers to do what comes naturally to 
humans and animals: learn from experience. Machine learning algorithms use computational meth-
ods to “learn” information directly from data without relying on a predetermined equation as a 
model. Deep learning is especially suited for image recognition, which is important for solving prob-
lems such as face recognition, motion detection, and advanced driver assistance technologies (such as 
autonomous driving, lane detection, and autonomous parking).

Deep learning uses neural networks to learn useful representations of features directly from data. 
Neural networks combine multiple nonlinear processing layers, using simple elements operating in 
parallel, inspired by biological nervous systems. Deep learning models can achieve state-of-the-art 
accuracy in object classification, sometimes exceeding human-level performance. You can train 
models using a large set of labeled data and neural network architectures that contain many layers, 
usually including some convolutional layers. Training these models is computationally intensive; you 
can usually accelerate training by using high-specification GPUs.
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Figure 1: Example of an image classification model.

For this paper, we use a well-known existing network called AlexNet (refer to ImageNet Classification 
with Deep Convolutional Neural Networks). AlexNet is a deep convolutional neural network (CNN), 
designed for image classification with 1000 possible categories. MATLAB has a built-in helper func-
tion to load a pre-trained AlexNet network:

% Load the AlexNet network

network = alexnet;

If the required package does not exist, you will be prompted to install it using the MATLAB Add-on 
Explorer. Inspect the layers of this network using the Layers property:

network.Layers

To learn more about any of the layers, refer to the Neural Network Toolbox™ documentation.

The goal is to classify images into the correct class. For this paper, we created our own image dataset 
using images available under a Creative Commons license. The dataset contains 96,000 color images 
in 55 classes. Here we show five random images from the first five classes.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://uk.mathworks.com/help/nnet/
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Figure 2: Example classes and images from our image dataset.

We resize and crop each image to 227x227 to match the size of the input layer of AlexNet. 

Transfer Learning

Training a large network, such as AlexNet, requires millions of images and several days of compute 
time. The original AlexNet was trained over several days on a subset of the ImageNet dataset, which 
consisted of over a million labelled images in 1000 categories (refer to ImageNet: A Large-Scale 
Hierarchical Image Database). AlexNet has learned rich feature representations for a wide range of 
images. To quickly train the AlexNet network to classify our new dataset, we use a technique called 
transfer learning. Transfer learning utilizes the idea that the features a network learns when trained 
on one dataset are also useful for other similar datasets. You can fix the initial layers of a pre-trained 
network, and only fine-tune the last few layers to learn the specific features of the new dataset. 
Transfer learning usually results in faster training times than training a new CNN and enables use of  
a smaller dataset without overfitting.

The following code shows how to apply transfer learning to AlexNet to classify your own dataset. 

1.   Load the AlexNet network and replace the final few classification layers. To minimize changes to 
the feature layers in the rest of the network, increase the learning rate of the new fully-connected 
layer.

http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf


Deep Learning with MATLAB and Multiple GPUs

W H I T E  PA P E R   |   5 

% Load the AlexNet network

networkOriginal = alexnet;

layersOriginal = networkOriginal.Layers;

% Copy all but the last 3 layers

layersTransfer = layersOriginal(1:end-3);

% Replace the fully connected layer with a higher learning rate

layersTransfer(end+1) = fullyConnectedLayer(55,...

    'WeightLearnRateFactor',10,...

    'BiasLearnRateFactor',20);

% Replace the softmax and classification layers

layersTransfer(end+1) = softmaxLayer();

layersTransfer(end+1) = classificationLayer();

2. Create the options for transfer learning. Compared to training a network from scratch, you can set 
a lower initial learning rate and train for fewer epochs.

% Define the transfer learning training options

optionsTransfer = trainingOptions('sgdm',...

    'MiniBatchSize',250,...

    'MaxEpochs',30,...

    'InitialLearnRate',0.00125,...

    'LearnRateDropFactor',0.1,...

    'LearnRateDropPeriod',20);

3. Supply the set of labelled training images to imageDatastore, specifying where you have saved 
the data. You can use an imageDatastore to efficiently access all of the image files.  
imageDatastore is designed to read batches of images for faster processing in machine learning 
and computer vision applications. imageDatastore can import data from image collections 
that are too large to fit in memory.
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% Define the training data

imdsTrain = imageDatastore('imageDataset/train',...

    'IncludeSubFolders',true,...

    'LabelSource','foldernames');

The dataset images are split into two sets: one for training, and a second for testing. The training set 
in this example is in a local folder called 'imageDataset/train'.

4. To train the network use the trainNetwork function:

net = trainNetwork(imdsTrain,layersTransfer,optionsTransfer);

The result is a fully-trained network which can be used to classify your new dataset.

Test the Network

After you create a fully-trained network, you can use it to classify a new set of images and measure 
how accurate it is. The following code tests the accuracy of classification using the test set of images 
located in a local folder called 'imageDataset/test'. The accuracy score is the percentage of correctly 
classified images using the test set.

% Define the testing data

imdsTest = imageDatastore('imageDataset/test',...

    'IncludeSubfolders',true,...

    'LabelSource','foldernames');

 

% Measure the accuracy

yTest = classify(net,imdsTest);

accuracy = sum(yTest == imdsTest.Labels) / numel(imdsTest.Labels);
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Training with Multiple GPUs

Cutting-edge neural networks rely on increasingly large training datasets and networks structures. In 
turn, this requires increased training times and memory resources. To support training such net-
works, MATLAB provides support for training a single network using multiple GPUs in parallel. 
Depending on your network and dataset, this can provide the following benefits.

Increased GPU Memory

Convolutional neural networks are typically trained iteratively using batches of images. This is done 
because the whole dataset is far too big to fit into GPU memory. The optimal batch size depends on 
the exact network and dataset in question, so you need to experiment. Too large a batch size can lead 
to slow convergence, while too small a batch size can lead to no convergence at all. Often the batch 
size is dictated by the GPU memory available. For larger networks, the memory requirements per 
image increases and the maximum batch size is reduced.

When training with multiple GPUs, each image batch is distributed between the GPUs. This effec-
tively increases the total GPU memory available, allowing larger batch sizes. Depending on your 
application, a larger batch size could provide better convergence or classification accuracy.

Reduced Training Time

Using multiple GPUs can provide a significant improvement in performance. When deciding if you 
expect multi-GPU training to deliver a performance gain, consider the following factors:

• How long is the iteration on each GPU? If each GPU iteration is short, the added overhead of com-
munication between GPUs can dominate. Try increasing the computation per iteration by using a 
larger batch size.

• Are you using more than 8 GPUs? Communication between more than 8 GPUs on a single 
machine introduces a significant communication delay.

• Are all the GPUs on a single machine? Communication between GPUs on different machines 
introduces a significant communication delay. 

By default, the trainNetwork function uses a GPU (if available), otherwise the CPU is used. If you 
have more than one GPU on your local machine, enable multiple GPU training by setting the 
'ExecutionEnvironment' option to 'multi-gpu' in your training options. As discussed above, you may 
also wish to increase the batch size and learning rate for better convergence and/or performance.
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% Define the multi-gpu training options

optionsTransfer = trainingOptions('sgdm',...

    'MiniBatchSize',2000,...

    'MaxEpochs',30,...

    'InitialLearnRate',0.01,...

    'LearnRateDropFactor',0.1,...

    'LearnRateDropPeriod',20,...

    'ExecutionEnvironment','multi-gpu');

If you do not have multiple GPUs on your local machine, you can use Amazon EC2 to lease a multi-
GPU cloud cluster.

Scale Up to Deep Learning in the Cloud

Having performed transfer learning on one desktop computer, you now want to make use of a high- 
specification multi-GPU machine. Amazon can provide suitable machines on demand, using their 
new P2 instances. The new Amazon EC2 P2 instances are machines specifically designed for com-
pute-intensive applications, providing up to 16 NVIDIA Tesla K80 GPUs per machine. In the follow-
ing sections, you can learn how to reserve a P2 instance, connect to the data, and train a model in 
parallel using multiple GPUs in the cloud.

To use deep learning in the cloud, you need:

• MATLAB, Neural Network Toolbox, Parallel Computing Toolbox™

• A MathWorks account

• Access to MATLAB Distributed Computing Server™ for Amazon EC2

• An Amazon Web Services account

Connecting to Amazon EC2 Using MathWorks Cloud Center

Amazon Elastic Compute Cloud (Amazon EC2) is a web service which you can use to set up compute 
capacity in the cloud. Amazon EC2 is ideally suited for intensive computational demands and large 
datasets found in deep learning. By using Amazon EC2, you can economically scale up your comput-
ing resources and gain access to domain-specific hardware. You can use a single GPU to take advan-
tage of the parallel nature of neural networks, dramatically reducing the time required to train a 
single model. You can use multiple GPUs to train larger models in less time. You can scale up beyond 
the desktop, and scale in a flexible way without requiring any long-term commitment. 

https://aws.amazon.com/ec2/instance-types/p2/
http://uk.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/distriben-ec2.html
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MathWorks Cloud Center is a web application for creating and accessing compute clusters in the 
Amazon Web Services cloud for parallel computing with MATLAB. You can access a cloud cluster 
from your client MATLAB session, like any other cluster in your own onsite network. To learn more, 
refer to MATLAB Distributed Computing Server for Amazon EC2. To set up your credentials and 
create a new cluster, refer to Create and Manage Clusters in the Cloud Center documentation. 

In the following example, we create a cluster of a single machine with 8 GPUs and 8 workers. Setting 
the number of workers equal to the number of GPUs ensures there is no competition between workers 
for GPU resources. The main steps are:

1. Log in to Cloud Center using your MathWorks email address and password. 

2. Click User Preferences and follow the on-screen instructions to set up your Amazon Web Services 
(AWS) credentials. For help, refer to the Cloud Center documentation:  
Set Up Your Amazon Web Services (AWS) Credentials. 

3. To create a cluster of Amazon EC2 instances, click Create a Cluster.

4. Complete the following steps, and then ensure your settings look similar to the screenshot below.

a.   Name the cluster

b.   Choose an appropriate Region

c.   Select Machine Type: Double Precision GPU (p2.8xlarge, 16 core, 8 GPU)

d.   For Number of Workers, select 8

e.   Leave the other settings as defaults and click Create Cluster

Figure 3: Cloud Center: Create a cluster with multiple GPUs.

http://uk.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/distriben-ec2.html
http://www.mathworks.com/help/cloudcenter/ug/cloud-computing-console.html
https://cloudcenter.mathworks.com/login
http://www.mathworks.com/help/cloudcenter/ug/cloud-computing-console.html#butnm_c-1
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5. To access your cluster from MATLAB, on the home tab select Parallel > Discover Clusters to 
search for your Amazon EC2 clusters. When you select the cluster, the wizard automatically sets it 
as your default cluster.

 

Confirm your cluster is online: either from Cloud Center, or from within MATLAB by creating a 
cluster instance and displaying the details:

cluster = parcluster();

disp(cluster);

By default, if the cluster is left idle for too long, it automatically shuts down to avoid incurring 
unwanted expense. If your cluster has shut down, bring it back online either by clicking Start Up in 
Cloud Center, or typing start(cluster); in MATLAB:

start(cluster);

After your cluster is online, query the GPU device of each worker:

wait(cluster)

spmd

    disp(gpuDevice());

end

This returns details of the GPU device visible to each worker process in your cluster. The spmd block 
automatically starts the workers in a parallel pool, if you have default preferences. The first time you 
create a parallel pool on a cloud cluster can take several minutes. 

You can start or shut down the parallel pool using the Parallel Pool menu in the bottom left of the 
MATLAB desktop.

To learn more about using parallel pools, refer to the Parallel Pools documentation.

https://www.mathworks.com/help/distcomp/parallel-pools.html
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Training with a GPU Cluster

To enable training on a compute cluster, set the 'ExecutionEnvironment' option to 'parallel' in your 
training options.

% Define the parallel training options

optionsTransfer = trainingOptions('sgdm',...

    'MiniBatchSize',2000,...

    'MaxEpochs',30,...

    'InitialLearnRate',0.01,...

    'LearnRateDropFactor',0.1,...

    'LearnRateDropPeriod',20,...

    'ExecutionEnvironment','parallel');

If no pool is open, trainNetwork will automatically open one using the default cluster profile. If 
the pool has access to GPUs, then they will be used.

When training on a cluster, the location passed to imageDatastore must exist on both the client 
MATLAB and on the worker MATLAB. For this reason, we store our data in an Amazon S3 bucket. 
An S3 location is referenced by a URL, hence the path is visible on all machines. For more informa-
tion on using data in S3, refer to Use Data in Amazon S3 Storage.

Use Data in Amazon S3 Storage

Amazon Simple Storage Service (S3) provides secure and scalable storage in the cloud. Once data is 
uploaded to Amazon S3, it can be accessed from anywhere, making it ideally suited for distributing 
machine learning datasets to cloud clusters. We uploaded our training and test images stored locally 
in the 'imageDataset' folder to an S3 bucket of the same name. More information about uploading and 
accessing data using S3 can be found in the Amazon S3 documentation.

By default, objects stored in Amazon S3 are private and can only be accessed by their owner. To 
access or modify these resources, the client must first have the correct authentication tokens. To gen-
erate these tokens, the resource owner can use the AWS Management Console to create an  
Access Key ID and corresponding Secret Access Key. Clients who they share tokens with will then 
have programmatic access to their data stored in Amazon S3. Further details about generating access 
keys can be found in the Amazon Access Keys documentation.

The following example demonstrates how you would configure your AWS authentication tokens as 
environment variables. Enter in your local MATLAB:

https://aws.amazon.com/s3/getting-started/
https://aws.amazon.com/developers/access-keys/
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% Set AWS credentials as environment variables on local client MATLAB

setenv('AWS_ACCESS_KEY_ID', 'AKIAIOSFODNN7EXAMPLE');

setenv('AWS_SECRET_ACCESS_KEY', ... 

'wJalrXUtnFEMI/K7MDENG/nPxRiCYEXAMPLEKEY');

To access training data, you now simply create an image datastore pointing to the URL of the S3 
bucket.

% Define the Amazon S3 training data

imdsTrain = imageDatastore('s3://imageDataset/train',...

    'IncludeSubfolders', true, ...

    'LabelSource', 'foldernames');

To access S3 resources from a cluster, you must set the same environment variables on your workers. 
The following code manually opens a parallel pool on your cloud cluster and copies the necessary 
environment variables to the workers.

% Set AWS credentials on all workers

aws_access_key_id = getenv('AWS_ACCESS_KEY_ID');

aws_secret_access_key_id = getenv('AWS_SECRET_ACCESS_KEY');

spmd

    setenv('AWS_ACCESS_KEY_ID',aws_access_key_id);

    setenv('AWS_SECRET_ACCESS_KEY',aws_secret_access_key_id);

end

The workers now have access to the Amazon S3 resources for the lifetime of the parallel pool.

Results

Having used Mathworks Cloud Center and Amazon EC2 to lease a multi-GPU compute cluster, we 
would now like to investigate the performance benefits which this affords. The following plot shows 
the classification accuracy of our network as a function of training time. The classification accuracy 
is defined as the accuracy achieved by the network on the mini batch of images for the current train-
ing iteration. The training was repeated four times, each using a different number of GPUs to train 
the network in parallel. As discussed in Increased GPU Memory, training across more GPUs permits 
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a larger image batch size. We therefore scale the image batch size with the number of GPUs to fully 
utilize the available memory. To normalize the learning rate per epoch, we also scale the learning rate 
with the image batch size, because a larger batch size provides fewer iterations per epoch.

Figure 4: Training convergence with varying numbers of GPUs.

These results show that the additional memory and parallelism of more GPUs can provide signifi-
cantly faster training. Smoothing out the data, we find that the time taken to reach a classification 
accuracy of 95% decreases by approximately 30-40% with each doubling of the number of GPUs used 
to train. This reduces the training time to around 10 minutes when using 8 GPUs, compared to more 
than 40 minutes with a single GPU. 

To further quantify these results, we plot the average image throughput, to normalize for the different 
batch sizes. This shows an increase in the number of images processed per unit time of approximately 
70% with each doubling of the number of GPUs.
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Figure 5: Image throughput with varying numbers of GPUs.

Using a separate dataset of test images, we measure the classification accuracy of our networks on 
unseen images. The four networks trained with different numbers of GPUs all achieve an accuracy of 
87%, to within half a percent.

To see the script for training AlexNet with your own data using a multi-GPU cluster, see  
Appendix – MATLAB code. 

Note: Creating a cluster and parallel pool in the cloud can take up to 10 minutes. For the small prob-
lem analyzed in this paper, this was a significant proportion of the total time. For other problems 
where the total training time can take hours or days, this cluster startup time becomes negligible.

Conclusions

In this paper, we show how you can use MATLAB to train a large, deep neural network. The code 
provides a worked example; demonstrating how to train a network to classify images, use it to classify 
a new set of images, and measure the accuracy of the classification. Using Mathworks Cloud Center 
with Amazon EC2 to lease a multi-GPU compute cluster, we demonstrate a significant reduction in 
training time by distributing the work across multiple GPUs in parallel. For large datasets, such a per-
formance increase can save hours or days.
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Useful links:

For more information, see the following resources:

• https://www.mathworks.com/discovery/deep-learning.html

Central resource for Deep Learning with MATLAB

• https://www.mathworks.com/help/nnet/convolutional-neural-networks.html

Neural Network Toolbox documentation on essential tools for deep learning

• https://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/

• https://aws.amazon.com/console/

Appendix – MATLAB Code

The following MATLAB code uses transfer learning to train AlexNet on a new image dataset stored in 
Amazon S3 using a cluster. To run this script, use your own Amazon S3 bucket and set the appropriate 
environment variables for your Amazon Access key.

% Number of workers to train with. Set this number equal to the number of

% GPUs on you cluster. If you specify more workers than GPUs, the remaining

% workers will be idle.

numberOfWorkers = 8;

 

% Scale batch size with expected number of GPUs

miniBatchSize = 250 * numberOfWorkers;

 

% Scale learning rate with batch size

learningRate = 0.00125 * numberOfWorkers;

 

%% Load the AlexNet network

networkOriginal = alexnet;

layersOriginal = networkOriginal.Layers;

 

% Copy all but the last 3 layers

layersTransfer = layersOriginal(1:end-3);

 

% Replace the fully connected layer with a higher learning rate

https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/help/nnet/convolutional-neural-networks.html
https://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud/
https://aws.amazon.com/console/
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% The output size should be equal to the number of labels in your 

dataset.

layersTransfer(end+1) = fullyConnectedLayer(55,...

    'WeightLearnRateFactor',10,...

    'BiasLearnRateFactor',20);

 

% Replace the softmax and classification layers

layersTransfer(end+1) = softmaxLayer();

layersTransfer(end+1) = classificationLayer();

 

%% Start a parallel pool if one is not already open

pool = gcp('nocreate');

if isempty(pool)

    parpool(numberOfWorkers);

elseif (pool.NumWorkers ~= numberOfWorkers)

    delete(pool);

    parpool(numberOfWorkers);

end

 

%% Copy local AWS credentials to all workers

aws_access_key_id = getenv('AWS_ACCESS_KEY_ID');

aws_secret_access_key_id = getenv('AWS_SECRET_ACCESS_KEY');

spmd

    setenv('AWS_ACCESS_KEY_ID',aws_access_key_id);

    setenv('AWS_SECRET_ACCESS_KEY',aws_secret_access_key_id);

end

 

%% Load the training and test data

imds = imageDatastore('s3://imageDataset',...

    'IncludeSubfolders',true, ...

    'LabelSource','foldernames');
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%% Shuffle and split data into training and testing

[imdsTrain,imdsTest] = splitEachLabel(shuffle(imds),0.9);

 

%% Define the transfer learning training options

optionsTransfer = trainingOptions('sgdm',...

    'MiniBatchSize',miniBatchSize,...

    'MaxEpochs',30,...

    'InitialLearnRate',learningRate,...

    'LearnRateDropFactor',0.1,...

    'LearnRateDropPeriod',20,...

    'Verbose',true,... 

    'ExecutionEnvironment','parallel');

    

%% Train the network on the cluster

net = trainNetwork(imdsTrain,layersTransfer,optionsTransfer);

 

%% Record the accuracy for this network

% Uses the trained network to classify the test images on the local machine

% and compares this to their ground truth labels.

YTest = classify(net,imdsTest);

accuracy = sum(YTest == imdsTest.Labels)/numel(imdsTest.Labels);

http://

