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Using an aerospace system model as an 
example, this article describes the paral-
lelization of a controller parameter tuning 
task using Parallel Computing Toolbox™and 
Simulink Design Optimization™. Topics 
covered include setting up an optimiza-
tion problem for parallel computing, the 
types of models that benefit from parallel 
optimization, and the typical optimization 
speed-up that can be achieved.

Using Parallel Optimization 
to Tune an HL20 Vehicle Glide 
Slope Controller
The HL-20 (Figure 1) is a lifting body re-
entry vehicle designed to complement the 
Space Shuttle orbiter. During landing, the 
aircraft is subjected to wind gusts causing 
the aircraft to deviate from the nominal 
trajectory on the runway. 
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Estimating plant model parameters and tuning controllers are challenging 

tasks. Optimization-based methods help to systematically accelerate the tun-

ing process and let engineers tune multiple parameters at the same time. Further 

efficiencies can be gained by running the optimization in a parallel setting and 

distributing the computational load across multiple MATLAB® workers—but how do 

you know when an optimization problem is a good candidate for parallelization? 
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We tune three glide slope controller pa-
rameters so as to limit the aircraft’s lateral 
deviation from a nominal trajectory in the 
presence of wind gusts to five meters. This 
task is a good candidate for parallel opti-
mization because the model is complex 
and takes over a minute to simulate once 
(optimization can require from tens to 
hundreds of simulations).

Products Used
 
■	 �MATLAB®

■	 ��Simulink®

■	 Simulink Design Optimization™

■	 Parallel Computing Toolbox™

■	� Genetic Algorithm and Direct Search 
Toolbox™

 Figure 1. Simulink model of the HL-20 aircraft.
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To optimize the controller parameters, 
we use Simulink Design Optimization 
(Figure 2). 

For comparison, we run the optimiza-
tion both serially and in parallel1. To run 
a Simulink Design Optimization problem 
in parallel, we launch multiple MATLAB 
workers with the matlabpool command 
for an interactive parallel computing ses-
sion2 and enable a Simulink Design Op-
timization option; no other model con-
figuration is necessary. Figure 3 shows the 
optimization speed-up when running the 
HL-20 problem in parallel. 

Parallel computing accelerates optimi-
zation by up to 2.81 times (the exact speed-
up depends on the number of workers and 
the optimization method used). This is a 
good result, but notice that the speed-up 
ratio is not two in the dual-core case or 
four in the quad-core case, and that the 
quad-core speed-up is not double the dual-

core speed-up. In the rest of the article we 
investigate the speed-up in more detail.

Running Multiple Simulations 
in Parallel
Before considering the benefit of solving op-
timization problems in parallel, let’s briefly 
consider the simpler issue of running simu-
lations in a parallel setting. To illustrate the 
effect of parallel computing on running 
multiple simulations, we will investigate a 
Monte-Carlo simulation scenario.

Our model, which consists of a third-order 
plant with a PID controller, is much simpler 
than the HL20 model. It takes less than a sec-
ond to simulate, and will help demonstrate 
the benefits of running many simulations 
in parallel. The model has two plant uncer-
tainties, the model parameters a1 and a2. We 
generate multiple experiments by varying 
values for a1 and a2 between fixed minimum 
and maximum bounds. The largest experi-
ment includes 50 values for a1 and 50 for a2, 
resulting in 2500 simulations. 

1 Our setup comprises a dual-core 64-bit AMD®; 2.4GHz, 3.4GB, and quad-core 64-bit AMD; and 2.5GHz, 7.4GB Linux® machines. 
2 We use the matlabpool command to launch 2 workers on the dual-core machine and 4 workers on the quad-core machine for an interactive parallel computing session.

Optimization 
algorithm

Dual-core processor  
(two workers)

Quad-core processor  
(four workers)

serial
(secs)

parallel
(secs)

ratio 
serial:parallel

serial
(secs)

parallel 
(secs)

ratio
serial:parallel

Gradient descent 
based 2140 1360 1.57 2050 960  2.14

Pattern search 
based 3690 2140  1.72 3480 1240  2.81

Figure 2. Using the Signal Constraint Block from Simulink Design Optimization (green) to specify design constraints and launch the optimization.

Figure 3. Optimization results for HL-20 controller parameter-tuning problem.
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Figure 4 compares the time taken to 
run multiple experiments of different 
sizes in serial and parallel settings. The 
parallel runs were conducted on the same 
multicore machines that were used in the 
HL20 example. Network latency, result-
ing from data transfer between client and 
workers, did not play a significant role, as 
inter-process communication was limited 
to a single machine. We used two worker 
processes on the dual-core machine, and 
four on the quad-core machine, maximiz-
ing core usage. To optimize computing 
capacity, the machines were set up with 
the absolute minimum of other processes 
running. 

The plots in Figure 4 show that the 
speed-up when running simulations in 
parallel approaches the expected speed-

up: the dual-core experiments using 2 
MATLAB workers run in roughly half the 
time, while the quad-core experiments us-
ing 4 MATLAB workers run in roughly a 
quarter of the time.

Because of the overhead associated with 
running a simulation in parallel, a mini-
mum number of simulations is needed 
to benefit from parallel computing. This 
crossover point can be seen on the ex-
treme left of the two plots in Figure 4. It 
corresponds to 8 simulations in the dual-
core case and 6 in the quad-core case. 

The results show clear benefits from 
running simulations in parallel. How does 
this translate to optimization problems 
that run some, but not all, simulations in 
parallel? 

When Will an Optimization 
Benefit from Parallel 
Computing?
Many factors influence the effect of paral-
lel computing on speed-up. We will con-
centrate on the two that affect Simulink 
Design Optimization performance: the 
number of parameters being optimized 
and the complexity of the model being 
optimized. 

Number of Parameters 
The number of simulations that an opti-
mization algorithm performs depends 
on the number of parameters being op-
timized. To illustrate this point, consider 
the two optimization algorithms used to 
optimize the HL20 model: gradient de-
scent and pattern search. 

Figure 4. Simulation time as a function of number of 
simulations for serial and parallel settings.
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Gradient Descent Optimization 
At each iteration, a gradient-based opti-
mization algorithm requires the following 
simulations:

• �A simulation for the current solution 
point

• �Simulations to compute the gradient of 
the objective at the current design point 
with respect to the optimized parameters

• �Line-search evaluations (simulations to 
evaluate the objective along the direc-
tion of the gradient) 

Simulations required to compute gra-
dients are independent of each other, and 
can be distributed. Figure 5 shows the the-
oretically best expected speed-up. The plot 
in Figure 5 shows that the relative speed-
up increases as parameters are added. 
There are four MATLAB workers in this 
example, giving a potential speed-up limit 
of 4, but because some of the simulations 
cannot be distributed, the actual speed-up 
is less than 4. 

The plot also shows local maxima at 
4,8,12,16 parameters. These local maxima 
correspond to cases where the parameter 
gradient calculations can be distributed 
evenly among the MATLAB workers. For 
the HL20 aircraft problem, which has 3 
parameters, the quad-core processor 
speed-up observed was 2.14, which closely 
matches the speed-up shown in Figure 5.

In Figure 5 we kept the number of parallel 
MATLAB workers constant and increased 

%We compute the theoretically best expected speedup as follows:

Np = 1:32;  �%Number of parameters (32 parameters are needed to 

%define 8 filtered PID controllers)

Nls = 0;    %Number of line search simulations, assume 0 for now

%The gradients are computed using central differences so there 

%are 2 simulations per parameter. We also need to include  

%the line search simulations to give the total number of  

%simulations per iteration: 

Nss = 1+Np*2+Nls; �%Total number of serial simulations, one nominal, 

%2 per parameter and then line searches

 

%The computation of gradients with respect to each parameter 

%can be distributed or run in parallel. Running the gradient  

%simulations in parallel reduces the equivalent number of  

%simulations that run in series, as follows:

 

Nw  = 4;                     %Number of MATLAB workers

Nps = 1 + ceil(Np/Nw)*2+Nls; �%Number of serial simulations          

%when distributing gradient  

%simulations

%The ratio Nss/Nps gives us the best expected speed-up 

 Figure 5. Parallel optimization speed-up 
with gradient descent based optimization.  
The upper solid line represents the theoretically 
best possible speed-up with no line-search 
simulations, while the lighter dotted curves 
show the speed-up with up to 5 line-search 
simulations
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date solutions in the search and poll sets. 
During evaluation of the candidate solu-
tions, simulations are distributed evenly 
among the MATLAB workers. The number 
of simulations that run in series after dis-
tribution thus reduces to 

Nds = �ceil(Nsearch/Nw)+ceil(Npoll/

Nw);

When evaluating the candidate solutions 
in series, the optimization solver terminates 

each iteration as soon as it finds a solution 
better than the current solution. Experience 
suggests that about half the candidate solu-
tions will be evaluated. The number of serial 
simulations is thus approximately 

Nss = 0.5*(Nsearch+Npoll);

The search set is used only in the first 
couple of optimization iterations, after 
which only the poll set is used. In both 
cases, the ratio Nss/Nds gives us the speed-

the problem complexity by increasing the 
number of parameters. In Figure 6 we in-
crease the number of  MATLAB workers as 
we increase the number of parameters. The 
plot shows that, if we have enough workers, 
running an optimization problem with 
more parameters takes the same amount of 
time as one with fewer parameters. 

Pattern Search Algorithm 
Pattern search optimization algorithms 
evaluate sets of candidate solutions at each 
iteration. The algorithms evaluate all candi-
date solutions and then generate new can-
didate solution sets for the next iteration. 
Because each candidate solution is indepen-
dent, the evaluation of the candidate solu-
tion set can be parallelized.

Pattern search uses two candidate solution 
sets: search and poll. The number of elements 
in these sets is proportional to the number of 
optimized parameters: 

%Default number of elements in the 

%solution set

Nsearch = 15*Np; �

%Number of elements in the poll 

%set with a 2N poll method

Npoll  = 2*Np; �

The total number of simulations per it-
eration is the sum of the number of candi-

%This code is a modification of the code shown in Figure 5.

Nw  = Np;   �%Ideal scenario with one  

%processor per parameter

Nps = 1 + ceil(Np/Nw)*2+Nls; �%Total number of serial 

%simulations--  

%in this case, ceil(Np/Nw)=1 

%The ratio Nss/Nps gives us the best expected speed-up.

Figure 6. Parallel optimization speed-up with gradient descent based optimization as the number of MATLAB workers increases. The upper solid line repre-
sents the theoretically best possible speed-up with no line- search simulations, while the dotted curves show the speed-up with up to 5 line-search simulations. 

 Figure 7. Parallel optimization speed-
up with pattern search algorithm. The 
dark curve represents the speed-up when 
the solution and poll sets are evaluated, 
and the lighter upper curve represents 
the speed-up when only the poll set is 
evaluated.

Figure 8. Parallel optimization speed-up    
with pattern search algorithm as the  
number of MATLAB workers increases.  
The dark curve represents the speed-up  
when the solution and poll sets are  
evaluated, and the lighter upper curve  
represents the speed-up when only the  
poll set is evaluated.
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up (Figure 7). Figure 8 shows the corre-
sponding speed-up when the number of 
MATLAB workers is increased.

The expected speed-up over a serial opti-
mization should lie between the two curves. 
Notice that even with only one parameter, 
a pattern search algorithm benefits from 
distribution. Also recall that for the HL20 
aircraft problem, which has 3 parameters, 
the quad-core speed-up observed was 2.81, 
which closely matches the speed-up plotted 
in Figure 7. 

How Simulation Complexity 
Affects Speed-Up
Our simplified analysis of parallel optimiza-
tion has taken no account of the overhead 
associated with transferring data between 
the remote workers, but this overhead could 
limit the expected speed-up. The optimiza-
tion algorithm relies on shared paths to give 
remote workers access to models, and the 
returned data is limited to objective and con-
straint violation values, making the overhead 
typically very small. We can therefore expect 
that performing optimizations in paral-
lel will speed up the problem, except when 
model simulation time is nearly zero. For 
example, the simple PID model required the 
distribution of 6 or more simulations to see a 
benefit. If we were to optimize the three PID 
controller parameters for this model, there 
would be 1+2*3+Nls simulations per optimi-
zation iteration, and we would not expect to 
see much benefit from parallelization3. 

The Effect of Uncertain 
Parameters on Parallel 
Optimization
Optimization must often take account of 
uncertain parameters (parameters such as 
the a1 and a2 variables in the simple model, 

which vary independently of those being 
optimized). Uncertain parameters result in 
additional simulations that must be evalu-
ated at each iteration, influencing the speed-
up effect of parallelization. These additional 
simulations are evaluated inside a parameter 
loop in the optimization algorithm, and can 
be considered as one, much longer simula-
tion. As a result, uncertain parameters do 
not affect the overhead-free speed-up calcu-
lations shown in Figures 5 – 8, but they have 
a similar effect to increasing simulation com-
plexity, and reduce the effect of the overhead 
on parallel optimization speed-up. 

Further Possibilities for 
Optimization Speed-up
Optimization-based methods make plant 
model parameter estimation and controller 
parameter tuning more systematic and ef-
ficient. Even more efficiency can be gained 
for certain optimization problems by using 
parallel optimization. Simulink Design Op-
timization can be easily configured to solve 
problems in parallel, and problems with 
many parameters to optimize, complex sim-
ulations with long simulation times, or both 
can benefit from parallel optimization. 

Another way to accelerate the optimiza-
tion process is to use an acceleration mode 
in Simulink. Simulink provides an Accel-
erator mode that replaces the normal in-
terpreted code with compiled target code.  
Using compiled code speeds up simulation 
of many models, especially those where run 
time is long compared to the time associat-
ed with compilation. Combining the use of 
parallel computing with Accelerator simu-
lation mode can achieve even more speed-
up of the optimization task. ■

 3 To configure MATLAB for an interactive parallel computing session, you need to open a pool of MATLAB workers using the matlabpool command. This takes a few seconds,but 
once you have set up the matlabpool and updated the model, optimizations almost always benefit from parallel computations. The setup needs to be executed only once for your 
entire parallel computing session.

For More Information
 
■	 �Webinar: Introduction to Simulink 
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■	 �Improving Optimization Performance 
with Parallel Computing, MATLAB 
Digest, March 2009 
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