
1 MATLAB Digest www.mathworks.com

Using an aerospace system model as an
example, this article describes the paral-
lelization of a controller parameter tuning
task using Parallel Computing Toolbox™and
Simulink Design Optimization™. Topics
covered include setting up an optimiza-
tion problem for parallel computing, the
types of models that benefit from parallel
optimization, and the typical optimization
speed-up that can be achieved.

Using Parallel Optimization
to Tune an HL20 Vehicle Glide
Slope Controller
The HL-20 (Figure 1) is a lifting body re-
entry vehicle designed to complement the
Space Shuttle orbiter. During landing, the
aircraft is subjected to wind gusts causing
the aircraft to deviate from the nominal
trajectory on the runway.

By Alec Stothert and Arkadiy Turevskiy

Estimating plant model parameters and tuning controllers are challenging

tasks. Optimization-based methods help to systematically accelerate the tun-

ing process and let engineers tune multiple parameters at the same time. Further

efficiencies can be gained by running the optimization in a parallel setting and

distributing the computational load across multiple MATLAB® workers—but how do

you know when an optimization problem is a good candidate for parallelization?

Improving Simulink Design Optimization
Performance Using Parallel Computing

MATLAB Digest

We tune three glide slope controller pa-
rameters so as to limit the aircraft’s lateral
deviation from a nominal trajectory in the
presence of wind gusts to five meters. This
task is a good candidate for parallel opti-
mization because the model is complex
and takes over a minute to simulate once
(optimization can require from tens to
hundreds of simulations).

Products Used

■	 �MATLAB®

■	 ��Simulink®

■	 Simulink Design Optimization™

■	 Parallel Computing Toolbox™

■	� Genetic Algorithm and Direct Search
Toolbox™

 Figure 1. Simulink model of the HL-20 aircraft.

2 MATLAB Digest www.mathworks.com

To optimize the controller parameters,
we use Simulink Design Optimization
(Figure 2).

For comparison, we run the optimiza-
tion both serially and in parallel1. To run
a Simulink Design Optimization problem
in parallel, we launch multiple MATLAB
workers with the matlabpool command
for an interactive parallel computing ses-
sion2 and enable a Simulink Design Op-
timization option; no other model con-
figuration is necessary. Figure 3 shows the
optimization speed-up when running the
HL-20 problem in parallel.

Parallel computing accelerates optimi-
zation by up to 2.81 times (the exact speed-
up depends on the number of workers and
the optimization method used). This is a
good result, but notice that the speed-up
ratio is not two in the dual-core case or
four in the quad-core case, and that the
quad-core speed-up is not double the dual-

core speed-up. In the rest of the article we
investigate the speed-up in more detail.

Running Multiple Simulations
in Parallel
Before considering the benefit of solving op-
timization problems in parallel, let’s briefly
consider the simpler issue of running simu-
lations in a parallel setting. To illustrate the
effect of parallel computing on running
multiple simulations, we will investigate a
Monte-Carlo simulation scenario.

Our model, which consists of a third-order
plant with a PID controller, is much simpler
than the HL20 model. It takes less than a sec-
ond to simulate, and will help demonstrate
the benefits of running many simulations
in parallel. The model has two plant uncer-
tainties, the model parameters a1 and a2. We
generate multiple experiments by varying
values for a1 and a2 between fixed minimum
and maximum bounds. The largest experi-
ment includes 50 values for a1 and 50 for a2,
resulting in 2500 simulations.

1 Our setup comprises a dual-core 64-bit AMD®; 2.4GHz, 3.4GB, and quad-core 64-bit AMD; and 2.5GHz, 7.4GB Linux® machines.
2 We use the matlabpool command to launch 2 workers on the dual-core machine and 4 workers on the quad-core machine for an interactive parallel computing session.

Optimization
algorithm

Dual-core processor
(two workers)

Quad-core processor
(four workers)

serial
(secs)

parallel
(secs)

ratio
serial:parallel

serial
(secs)

parallel
(secs)

ratio
serial:parallel

Gradient descent
based 2140 1360 1.57 2050 960 2.14

Pattern search
based 3690 2140 1.72 3480 1240 2.81

Figure 2. Using the Signal Constraint Block from Simulink Design Optimization (green) to specify design constraints and launch the optimization.

Figure 3. Optimization results for HL-20 controller parameter-tuning problem.

3 MATLAB Digest www.mathworks.com

Figure 4 compares the time taken to
run multiple experiments of different
sizes in serial and parallel settings. The
parallel runs were conducted on the same
multicore machines that were used in the
HL20 example. Network latency, result-
ing from data transfer between client and
workers, did not play a significant role, as
inter-process communication was limited
to a single machine. We used two worker
processes on the dual-core machine, and
four on the quad-core machine, maximiz-
ing core usage. To optimize computing
capacity, the machines were set up with
the absolute minimum of other processes
running.

The plots in Figure 4 show that the
speed-up when running simulations in
parallel approaches the expected speed-

up: the dual-core experiments using 2
MATLAB workers run in roughly half the
time, while the quad-core experiments us-
ing 4 MATLAB workers run in roughly a
quarter of the time.

Because of the overhead associated with
running a simulation in parallel, a mini-
mum number of simulations is needed
to benefit from parallel computing. This
crossover point can be seen on the ex-
treme left of the two plots in Figure 4. It
corresponds to 8 simulations in the dual-
core case and 6 in the quad-core case.

The results show clear benefits from
running simulations in parallel. How does
this translate to optimization problems
that run some, but not all, simulations in
parallel?

When Will an Optimization
Benefit from Parallel
Computing?
Many factors influence the effect of paral-
lel computing on speed-up. We will con-
centrate on the two that affect Simulink
Design Optimization performance: the
number of parameters being optimized
and the complexity of the model being
optimized.

Number of Parameters
The number of simulations that an opti-
mization algorithm performs depends
on the number of parameters being op-
timized. To illustrate this point, consider
the two optimization algorithms used to
optimize the HL20 model: gradient de-
scent and pattern search.

Figure 4. Simulation time as a function of number of
simulations for serial and parallel settings.

4 MATLAB Digest www.mathworks.com

Gradient Descent Optimization
At each iteration, a gradient-based opti-
mization algorithm requires the following
simulations:

• �A simulation for the current solution
point

• �Simulations to compute the gradient of
the objective at the current design point
with respect to the optimized parameters

• �Line-search evaluations (simulations to
evaluate the objective along the direc-
tion of the gradient)

Simulations required to compute gra-
dients are independent of each other, and
can be distributed. Figure 5 shows the the-
oretically best expected speed-up. The plot
in Figure 5 shows that the relative speed-
up increases as parameters are added.
There are four MATLAB workers in this
example, giving a potential speed-up limit
of 4, but because some of the simulations
cannot be distributed, the actual speed-up
is less than 4.

The plot also shows local maxima at
4,8,12,16 parameters. These local maxima
correspond to cases where the parameter
gradient calculations can be distributed
evenly among the MATLAB workers. For
the HL20 aircraft problem, which has 3
parameters, the quad-core processor
speed-up observed was 2.14, which closely
matches the speed-up shown in Figure 5.

In Figure 5 we kept the number of parallel
MATLAB workers constant and increased

%We compute the theoretically best expected speedup as follows:

Np = 1:32; �%Number of parameters (32 parameters are needed to

%define 8 filtered PID controllers)

Nls = 0; %Number of line search simulations, assume 0 for now

%The gradients are computed using central differences so there

%are 2 simulations per parameter. We also need to include

%the line search simulations to give the total number of

%simulations per iteration:

Nss = 1+Np*2+Nls; �%Total number of serial simulations, one nominal,

%2 per parameter and then line searches

%The computation of gradients with respect to each parameter

%can be distributed or run in parallel. Running the gradient

%simulations in parallel reduces the equivalent number of

%simulations that run in series, as follows:

Nw = 4; %Number of MATLAB workers

Nps = 1 + ceil(Np/Nw)*2+Nls; �%Number of serial simulations

%when distributing gradient

%simulations

%The ratio Nss/Nps gives us the best expected speed-up

 Figure 5. Parallel optimization speed-up
with gradient descent based optimization.
The upper solid line represents the theoretically
best possible speed-up with no line-search
simulations, while the lighter dotted curves
show the speed-up with up to 5 line-search
simulations

5 MATLAB Digest www.mathworks.com

date solutions in the search and poll sets.
During evaluation of the candidate solu-
tions, simulations are distributed evenly
among the MATLAB workers. The number
of simulations that run in series after dis-
tribution thus reduces to

Nds = �ceil(Nsearch/Nw)+ceil(Npoll/

Nw);

When evaluating the candidate solutions
in series, the optimization solver terminates

each iteration as soon as it finds a solution
better than the current solution. Experience
suggests that about half the candidate solu-
tions will be evaluated. The number of serial
simulations is thus approximately

Nss = 0.5*(Nsearch+Npoll);

The search set is used only in the first
couple of optimization iterations, after
which only the poll set is used. In both
cases, the ratio Nss/Nds gives us the speed-

the problem complexity by increasing the
number of parameters. In Figure 6 we in-
crease the number of MATLAB workers as
we increase the number of parameters. The
plot shows that, if we have enough workers,
running an optimization problem with
more parameters takes the same amount of
time as one with fewer parameters.

Pattern Search Algorithm
Pattern search optimization algorithms
evaluate sets of candidate solutions at each
iteration. The algorithms evaluate all candi-
date solutions and then generate new can-
didate solution sets for the next iteration.
Because each candidate solution is indepen-
dent, the evaluation of the candidate solu-
tion set can be parallelized.

Pattern search uses two candidate solution
sets: search and poll. The number of elements
in these sets is proportional to the number of
optimized parameters:

%Default number of elements in the

%solution set

Nsearch = 15*Np; �

%Number of elements in the poll

%set with a 2N poll method

Npoll = 2*Np; �

The total number of simulations per it-
eration is the sum of the number of candi-

%This code is a modification of the code shown in Figure 5.

Nw = Np; �%Ideal scenario with one

%processor per parameter

Nps = 1 + ceil(Np/Nw)*2+Nls; �%Total number of serial

%simulations--

%in this case, ceil(Np/Nw)=1

%The ratio Nss/Nps gives us the best expected speed-up.

Figure 6. Parallel optimization speed-up with gradient descent based optimization as the number of MATLAB workers increases. The upper solid line repre-
sents the theoretically best possible speed-up with no line- search simulations, while the dotted curves show the speed-up with up to 5 line-search simulations.

 Figure 7. Parallel optimization speed-
up with pattern search algorithm. The
dark curve represents the speed-up when
the solution and poll sets are evaluated,
and the lighter upper curve represents
the speed-up when only the poll set is
evaluated.

Figure 8. Parallel optimization speed-up 
with pattern search algorithm as the
number of MATLAB workers increases.
The dark curve represents the speed-up
when the solution and poll sets are
evaluated, and the lighter upper curve
represents the speed-up when only the
poll set is evaluated.

6 MATLAB Digest www.mathworks.com

Resources

visit
www.mathworks.com

Technical Support
www.mathworks.com/support

Online User Community
www.mathworks.com/matlabcentral

Demos
www.mathworks.com/demos

Training Services
www.mathworks.com/training

Third-Party Products
and Services
www.mathworks.com/connections

Worldwide CONTACTS
www.mathworks.com/contact

e-mail
info@mathworks.com

91716v00 05/09

© 2009 The MathWorks, Inc. MATLAB and Simulink
are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trade-
marks or registered trademarks of their respective holders.

up (Figure 7). Figure 8 shows the corre-
sponding speed-up when the number of
MATLAB workers is increased.

The expected speed-up over a serial opti-
mization should lie between the two curves.
Notice that even with only one parameter,
a pattern search algorithm benefits from
distribution. Also recall that for the HL20
aircraft problem, which has 3 parameters,
the quad-core speed-up observed was 2.81,
which closely matches the speed-up plotted
in Figure 7.

How Simulation Complexity
Affects Speed-Up
Our simplified analysis of parallel optimiza-
tion has taken no account of the overhead
associated with transferring data between
the remote workers, but this overhead could
limit the expected speed-up. The optimiza-
tion algorithm relies on shared paths to give
remote workers access to models, and the
returned data is limited to objective and con-
straint violation values, making the overhead
typically very small. We can therefore expect
that performing optimizations in paral-
lel will speed up the problem, except when
model simulation time is nearly zero. For
example, the simple PID model required the
distribution of 6 or more simulations to see a
benefit. If we were to optimize the three PID
controller parameters for this model, there
would be 1+2*3+Nls simulations per optimi-
zation iteration, and we would not expect to
see much benefit from parallelization3.

The Effect of Uncertain
Parameters on Parallel
Optimization
Optimization must often take account of
uncertain parameters (parameters such as
the a1 and a2 variables in the simple model,

which vary independently of those being
optimized). Uncertain parameters result in
additional simulations that must be evalu-
ated at each iteration, influencing the speed-
up effect of parallelization. These additional
simulations are evaluated inside a parameter
loop in the optimization algorithm, and can
be considered as one, much longer simula-
tion. As a result, uncertain parameters do
not affect the overhead-free speed-up calcu-
lations shown in Figures 5 – 8, but they have
a similar effect to increasing simulation com-
plexity, and reduce the effect of the overhead
on parallel optimization speed-up.

Further Possibilities for
Optimization Speed-up
Optimization-based methods make plant
model parameter estimation and controller
parameter tuning more systematic and ef-
ficient. Even more efficiency can be gained
for certain optimization problems by using
parallel optimization. Simulink Design Op-
timization can be easily configured to solve
problems in parallel, and problems with
many parameters to optimize, complex sim-
ulations with long simulation times, or both
can benefit from parallel optimization.

Another way to accelerate the optimiza-
tion process is to use an acceleration mode
in Simulink. Simulink provides an Accel-
erator mode that replaces the normal in-
terpreted code with compiled target code.
Using compiled code speeds up simulation
of many models, especially those where run
time is long compared to the time associat-
ed with compilation. Combining the use of
parallel computing with Accelerator simu-
lation mode can achieve even more speed-
up of the optimization task. ■

 3 To configure MATLAB for an interactive parallel computing session, you need to open a pool of MATLAB workers using the matlabpool command. This takes a few seconds,but
once you have set up the matlabpool and updated the model, optimizations almost always benefit from parallel computations. The setup needs to be executed only once for your
entire parallel computing session.

For More Information

■	 �Webinar: Introduction to Simulink

Design Optimization
www.mathworks.com/wbnr33133

■	 �Improving Optimization Performance
with Parallel Computing, MATLAB
Digest, March 2009
www.mathworks.com/parallel-optimization

