主要内容

Stress Concentration in Plate with Circular Hole

Perform a 2-D plane-stress elasticity analysis.

A thin rectangular plate under a uniaxial tension has a uniform stress distribution. Introducing a circular hole in the plate disturbs the uniform stress distribution near the hole, resulting in a significantly higher than average stress. Such a thin plate, subject to in-plane loading, can be analyzed as a 2-D plane-stress elasticity problem. In theory, if the plate is infinite, then the stress near the hole is three times higher than the average stress. For a rectangular plate of finite width, the stress concentration factor is a function of the ratio of hole diameter to the plate width. This example approximates the stress concentration factor using a plate of a finite width.

创建结构模型并包括几何形状

Create a structural model for static plane-stress analysis.

model = createpde('structural','静态分布');

板必须足够长,因此施加的载荷和边界条件远离圆形孔。这种情况确保了均匀张力状态在远场中占上风,因此近似无限长的板。在此示例中,板的长度比其宽度大四倍。指定问题的以下几何参数。

radius = 20.0; width = 50.0; totalLength = 4*width;

Define the geometry description matrix (GDM) for the rectangle and circle.

R1 = [3 4 -totalLength totalLength。。。totallength -totallength。。。-width -width width width]'; C1 = [1 0 0 radius 0 0 0 0 0 0]';

定义组合的GDM,名称空间矩阵和设置公式,以构建分解几何形状decsg

gdm = [R1 C1]; ns = char('R1',“C1”);g = decsg(gdm,'R1 - C1',ns');

创建几何形状并将其包括在结构模型中。

几何弗罗姆(Model,g);

绘制geometry displaying edge labels.

figure pdegplot(model,'EdgeLabel','on');axis([-1.2*totalLength 1.2*totalLength -1.2*width 1.2*width]) title'Geometry with Edge Labels';

图包含一个轴对象。带有边缘标签的标题几何形状的轴对象包含9个类型行,文本的对象。

绘制显示顶点标签的几何形状。

figure pdegplot(model,'顶板标签','on');axis([-1.2*totalLength 1.2*totalLength -1.2*width 1.2*width]) title“带顶点标签的几何形状”;

图包含一个轴对象。带有顶点标签的标题几何形状的轴对象包含9个类型行,文本的对象。

Specify Model Parameters

Specify Young's modulus and Poisson's ratio to model linear elastic material behavior. Remember to specify physical properties in consistent units.

structuralProperties(model,'Youngsmodulus',200E3,'Poissonsratio',0.25);

Restrain all rigid-body motions of the plate by specifying sufficient constraints. For static analysis, the constraints must also resist the motion induced by applied load.

设置x- 左侧边缘(边缘3)的位移的组件至零以抵抗施加的载荷。设置y- 左下角(顶点3)位移的组成部分为零以限制刚体运动。

结构BC(模型,'Edge',3,'xdisplacement',0);结构BC(模型,'顶点',3,'YDisplacement',0);

Apply the surface traction with a non-zerox- 组件位于板的右边缘。

structuralBoundaryLoad(model,'Edge',1,“表面流动”,[100; 0]);

生成网格并解决

要准确地捕获溶液中的等级,请使用细网格。生成网格,使用Hmaxto control the mesh size.

generateMesh(model,'hmax',半径/6);

绘制mesh.

figure pdemesh(model)

图包含一个轴对象。The axes object contains 2 objects of type line.

Solve the plane-stress elasticity model.

r = solve(型号);

绘制应力轮廓

绘制x- 正常应力分布的组成部分。应力等于远离圆形边界的施加张力。应力的最大值发生在圆形边界附近。

figure pdeplot(model,'XYData',R.Stress.sxx,'colormap','jet') axisequaltitle'Normal Stress Along x-Direction';

图包含一个轴对象。The axes object with title Normal Stress Along x-Direction contains an object of type patch.

插值应力

To see the details of the stress variation near the circular boundary, first define a set of points on the boundary.

thetahole = linspace(0,2*pi,200);xr =半径*cos(thetahole);yr =半径*sin(thetahole);circleCoorDinates = [xr; yr];

然后在这些点插入压力值s by usingInterpolatestress。此函数返回一个结构阵列,其字段包含插值应力值。

stressHole = interpolateStress(R,CircleCoordinates);

绘制normal direction stress versus angular position of the interpolation points.

figure plot(thetaHole,stressHole.sxx) xlabel('\ theta')ylabel('\ sigma_ {xx}') 标题'Normal Stress Around Circular Boundary';

图包含一个轴对象。轴对象在圆形边界周围具有正常应力的对象包含类型线的对象。

Solve the Same Problem Using Symmetric Model

The plate with a hole model has two axes of symmetry. Therefore, you can model a quarter of the geometry. The following model solves a quadrant of the full model with appropriate boundary conditions.

为静态平面压力分析创建结构模型。

symmodel = createpde('structural','静态分布');

Create the geometry that represents one quadrant of the original model. You do not need to create additional edges to constrain the model properly.

R1 = [3 4 0 Totallength/2 Totallength/2。。。0 0 0 width width]'; C1 = [1 0 0 radius 0 0 0 0 0 0]'; gm = [R1 C1]; sf ='R1-C1';ns = char('R1',“C1”);g = decsg(gm,sf,ns'); geometryFromEdges(symModel,g);

绘制geometry displaying the edge labels.

figure pdegplot(symModel,'EdgeLabel','on');axisequaltitle“与边缘标签的对称象限”;

图包含一个轴对象。带有标题的带有边缘标签的标题对称象限的轴对象包含6个类型行的对象。

Specify structural properties of the material.

structuralProperties(symModel,'Youngsmodulus',200E3,。。。'Poissonsratio',0.25);

Apply symmetric constraints on the edges 3 and 4.

结构BC(Symmodel,'Edge',[3 4],,'Constraint',“对称”);

Apply surface traction on the edge 1.

structuralBoundaryLoad(symModel,'Edge',1,“表面流动”,[100; 0]);

生成网格并求解对称平面压力模型。

generateMesh(symModel,'hmax',半径/6);rsym = solve(Symmodel);

绘制x- 正常应力分布的组成部分。结果与完整模型的第一个象限相同。

figure pdeplot(symModel,'XYData',rsym.stress.sxx,'colormap','jet');axisequaltitle“对称模型的X方向正常应力”;

图包含一个轴对象。The axes object with title Normal Stress Along x-Direction for Symmetric Model contains an object of type patch.