当你知道答案时,深度学习可以决定问题

机器学习从生物芯片的功能开始,然后向后设计其形式


计算机模拟在研究和设计中是无价的工具。这些数学模型用于预测物理系统的行为,可以预测飓风的路径,揭示运输网络的低效,复制星系的诞生,等等。调整变量——例如,风速或在飓风情况下的海洋温度——会产生不同的结果,使研究人员能够看到多种可能的情况。

但斯坦福大学博士后学者萨姆·雷蒙德博士说,一些模拟预测结果的优势也是他们的弱点。许多类型的模拟只在一个方向上工作。程序从一个时间点开始,并使用物理定律和某些用户定义的参数在另一个时间点结束。模拟一次又一次地运行,随着参数的细化,每次结果都会逐渐变化。对于同一个问题,它们会产生数千个甚至数万个稍有不同的答案,因为这些变量在每次运行之前都会改变。但是,对于许多类型的问题,它不会朝相反的方向工作。

“你可以问一个问题,然后得到答案,”雷蒙德说。“但知道答案并不总是能告诉你问题是什么。”

当声波穿过该区域的表面时,形状通道内的一微米颗粒(绿色)。图片来源:山姆·雷蒙德。

直到现在,的确如此。当他是一个博士生在麻省理工学院(MIT),雷蒙德和他的同事们结合计算机仿真数据和深度学习神经网络单独做技术都无法做的事情:找一个问题或使用一个答案,想另一种方法,使用最后一个设计来创建一个蓝图。他的技术发表在科学报告在生物芯片上进行了测试,这些芯片可以安排细胞用于各种用途,包括药物筛选和组织工程。这项研究不仅将这些被称为声流器件的生物芯片的设计推向了新的水平,该团队的“物理信息机器学习”方法还可以用于设计其他生物医学器件,并优化形状和功能密切相关的工程领域,让设计师能够从解决方案逆向工作。这将节省研究人员的开发时间,甚至有助于他们生产出以前从未想象过的生物芯片。

波澜

雷蒙德和他的同事开发的生物芯片是硅或玻璃制成的微型实验室。那些设计用于培养器官或组织的细胞有一个大的中央腔,在那里细胞以特定的形式排列,以促进适当的生长。但活细胞是脆弱的,移动它们很棘手。从对非生命粒子的研究中借用的操纵技术,如使用热力、磁力或静电,通常会伤害细胞。

雷蒙德说:“声学是在不损害生物材料的情况下做到这一点的少数方法之一。”。

研究人员使用超声波换能器将腔体变成一个微小的波池。来自一系列频率的振动将细胞集中在高压区域,并将它们扫到低压区域。蚀刻空腔的边界形状决定了高、低压声波场的模式,并最终决定了单元的排列。

“正向模拟不能反向进行。没有从声波压力场开始的方程可以告诉我们空腔的形状。”

山姆·雷蒙德博士,斯坦福大学博士后学者

用模拟数据训练神经网络设计细胞定位装置。图片来源:山姆·雷蒙德。

然而,一个空腔的边界形状会产生什么样的压力场,这并不明显。为了找到答案,科学家们可以进行这些传统的正向模拟——从问题到答案——并创建不同的空腔,看看它们会产生什么样的压力场。但是,随着所需电池和压力场的配置复杂性的增加,这项任务就变得更加困难。正向模拟不能反向进行。雷蒙德说,没有一个方程可以从声波压力场开始,告诉我们腔的形状应该是什么。

他把它比作烤蛋糕。如果有人制作了世界上最美味的巧克力蛋糕,然后说:“这是蛋糕,现在告诉我如何制作它,”他说,一个人会怎么做?这就是雷蒙德和他的物理机器学习方法的用武之地。“我们学会了如何从烤蛋糕到制作食谱,”他说。

回收数据

这个方法是雷蒙德在麻省理工学院攻读博士学位的第二年提出的。雷蒙德的家在澳大利亚,离家很远,他找到了一位生物医学工程师大卫·柯林斯,后来,一位博士后研究员,像雷蒙德一样,在维多利亚州克莱顿的莫纳什大学学习。两人开始闲逛,一起喝啤酒,讨论他们的研究。雷蒙德的背景是数值模拟,他正在研究固体和液体的相互作用。柯林斯正在从事微流控设备的博士后工作,研究生物芯片腔边界形状如何产生复杂的声波压力场。他告诉雷蒙德,他正在努力寻找一种优化研究的方法。雷蒙德向柯林斯展示了他将模拟与机器学习相结合的想法。

“我被山姆所展示的一些机器学习工作吹走了,如果应用得当,它可以用最少的计算费用来复制真实世界的物理学,”Collins说,他现在是澳大利亚墨尔本大学生物医学工程系的讲师。

“深度学习的好处或可怕之处在于,它不在乎物理定律。它会找到关系,即使它必须凭空创造它们。”

山姆·雷蒙德博士,斯坦福大学博士后学者

他们同意合作。雷蒙德使用MATLAB®创建模拟,基于前期研究来自柯林斯和新加坡科技与设计大学的合作者们的研究,以产生数以万计的潜在空腔边界形状和由此产生的声波场。他还使用MATLAB创建了深度学习神经网络,可以从模拟的合成数据中学习。他说,能够在同一个平台上用同一种语言编写所有内容,包括将两者结合在一起的底层工作流,而不必在不同的程序之间切换,这使他能够专注于问题,而不会被兼容性问题分心。

深度学习神经网络利用仿真结果来确定空腔形状和产生的声波场之间的关系。图片来源:山姆·雷蒙德。

雷蒙德说,一旦系统建成,生成的大多数模拟结果都是“随机结果”,在正常情况下会被丢弃。但是,深度学习神经网络使用它们从统计学上计算出腔体边界形状和声波场之间的最佳关系,即使没有方程可以将两者联系起来。他说:“深度学习的好处或可怕之处在于它不在乎物理定律。它会找到关系,即使它必须凭空创造它们。”。

回到问题

雷蒙德说他还记得第一次运行系统的那晚。他独自一人在麻省理工学院的办公室里。他向深度学习算法输入一个声波场形状,然后问它空腔边界应该是什么样子。答案出来了,为了检验结果是否正确,雷蒙德把结果放回了模拟器,在模拟器上运行,看看预测的边界形状是否真的会产生想要的声波压力场。令他惊讶的是,模拟器的结果显示了正确的答案。

“这种结合了物理学和设计的独特方法在组织工程、生物医学设备和优化设计方面有着独特的应用。”

澳大利亚墨尔本大学生物医学工程系讲师David Collins说

雷蒙德开玩笑说:“我很确定这是错误的。”他又运行了一次,得到了同样的答案。为了确保这不是某种奇怪的意外,雷蒙德和他的团队创造了许多不同的设计,他们已经在实验室里完成并测试了。他给人工智能输入其他声波场,得到了更多的正确答案。

但雷蒙德说,他们的成功既是祝福也是诅咒,因为他们最终产生了许多新的问题。研究人员现在正在研究潜在的工作流程,以评估为什么这种概念证明工作得如此之好。最终,他们将尝试创造更复杂的声波场形状,并进一步推进这个新的物理机器学习领域。

科林斯说:“我对我们能够完成的工作感到兴奋,这是第一次证明我们可以使用机器学习来调整设备的几何结构来定义声场。”。“我们还认为,这种物理学和设计交叉点的独特方法在组织工程、生物医学设备和优化设计方面有着独特的应用。”

左:模拟形状的空腔显示当声波从左向右传播时,压力最小位置将如何形成。右图:当波被应用时,绿色荧光1μm粒子在通道内的预测位置对齐。图片来源:山姆·雷蒙德。

面板的导航

学术界/人工智能

人工智能揭开了古代文物的秘密

使用深度学习和图像处理恢复和保存艺术品

面板的导航

机器人/自主系统

相信机器人能在新的空间中导航

新算法增强了机器人感知的鲁棒性

面板的导航

绿色科技/控制系统

清除数百万吨CO2港口每年的排放量

用氢燃料电池为商用车充电