Main Content

dsp。CICInterpolator

Interpolate signal using cascaded integrator-comb filter

Description

Thedsp。CICInterpolatorSystem object™ interpolates an input signal using a cascaded integrator-comb (CIC) interpolation filter. The CIC interpolation filter structure consists ofNsections of cascaded comb filters, followed by a rate change by a factor ofR, followed byNsections of cascaded integrators. For details, seeAlgorithms. TheNumSectionsproperty specifiesN,number of sections in the CIC filter. TheInterpolationFactorproperty specifiesR,interpolation factor. ThegetFixedPointInfofunction returns the word lengths and fraction lengths of the fixed-point sections and the output for thedsp。CICInterpolatorSystem object. You can also generate HDL code for this System object using thegeneratehdlfunction.

Note

This object requires a Fixed-Point Designer™ license.

To interpolate a signal using a CIC filter:

  1. Create thedsp。CICInterpolatorobject and set its properties.

  2. Call the object with arguments, as if it were a function.

了解更多关于系统对象是如何工作的,看到的What Are System Objects?.

Creation

Description

example

cicInterp= dsp.CICInterpolatorcreates a CIC interpolation System object that applies a CIC interpolation filter to the input signal.

example

cicInterp= dsp.CICInterpolator(R,M,Ncreates a CIC interpolation object with theInterpolationFactorproperty set toR,DifferentialDelayproperty set toM, and theNumSectionsproperty set toN.

cicInterp= dsp.CICInterpolator(Name,Valuecreates a CIC interpolation object with each specified property set to the specified value. Enclose each property name in single quotes. You can use this syntax with any previous input argument combinations.

Properties

expand all

Unless otherwise indicated, properties arenontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and thereleasefunction unlocks them.

If a property istunable, you can change its value at any time.

For more information on changing property values, seeSystem Design in MATLAB Using System Objects.

Factor by which the input signal is interpolated, specified as a positive integer.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

延迟微分值用于每一个梳子sections of the filter, specified as a positive integer. For details, seeAlgorithms. If the differential delay is of built-in integer class data type, the interpolation factor must be the same integer data type ordouble. For example, if the differential delay is anint8,n the interpolation factor must be anint8ordouble.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Number of integrator and comb sections of the CIC filter, specified as a positive integer. This number indicates the number of sections in either the comb part or the integrator part of the filter. The total number of sections in the CIC filter is twice the number of sections given by this property.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Fixed-point property designations, specified as one of the following:

  • Full precision– The word length and fraction length of the CIC filter sections and the object output operate in full precision.

  • Minimum section word lengths– Specify the output word length through theOutputWordLengthproperty. The object determines the filter section data type and the output fraction length that give the best possible precision. For details, seegetFixedPointInfoandcicInterpOutargument.

  • Specify word lengths– Specify the word lengths of the CIC filter sections and the object output through theSectionWordLengthsandOutputWordLengthproperties. The object determines the corresponding fraction lengths to give the best possible precision. For details, seegetFixedPointInfoand thecicInterpOutargument.

  • Specify word and fraction lengths– Specify the word length and fraction length of the CIC filter sections and the object output through theSectionWordLengths,SectionFractionLengths,OutputWordLength, andOutputFractionLengthproperties.

Fixed-point word lengths to use for each filter section, specified as a scalar or a row vector of integers. The word length must be greater than or equal to 2. If you specify a scalar, the value applies to all the sections of the filter. If you specify a vector, the vector must be of length 2 ×NumSections.

Example:32

Example:[32 32 32 32]

依赖关系

This property applies when you set theFixedPointDataTypeproperty to'Specify word lengths'or'Specify word and fraction lengths'.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Fixed-point fraction lengths to use for each filter section, specified as a scalar or a row vector of integers. The fraction length can be negative, 0, or positive. If you specify a scalar, the value applies to all the sections of the filter. If you specify a vector, the vector must be of length 2 ×NumSections.

Example:-2

Example:[-2 0 5 8]

依赖关系

This property applies when you set theFixedPointDataTypeproperty to'Specify word and fraction lengths'.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Fixed-point word length to use for the filter output, specified as a scalar integer greater than or equal to 2.

依赖关系

This property applies when you set theFixedPointDataTypeproperty to one of'Minimum section word lengths','Specify word lengths', or'Specify word and fraction lengths'.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Fixed-point fraction length to use for the filter output, specified as a scalar integer.

依赖关系

This property applies when you set theFixedPointDataTypeproperty to'Specify word and fraction lengths'.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64

Usage

Description

example

cicInterpOut= cicInterp(input)interpolates the input using a CIC interpolator.

Input Arguments

expand all

数据输入,指定为一个向量或矩阵。如果the input is of single or double data type, property settings related to the fixed-point data types are ignored.

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64|fi
Complex Number Support:Yes

Output Arguments

expand all

Interpolated output, returned as a vector or a matrix. The output frame size equals (InterpolationFactor)× input frame size. The complexity of the output data matches that of the input data. If the input issingleordouble,output data type matches the input data type.

如果the input is of built-in integer data type or of fixed-point data type, the output word length and fraction length depend on the fixed-point data type setting you choose through theFixedPointDataTypeproperty.

Full precision

When theFixedPointDataTypeproperty is set to'Full precision',following relationship applies:

W L output = W L input + N u m S e c t F L output = F L input

where,

  • WLoutput–– Word length of the output data.

  • FLoutput–– Fraction length of the output data.

  • WLinput–– Word length of the input data.

  • FLinput–– Fraction length of the input data.

  • NumSect–– Number of sections in the CIC filter specified through theNumSectionsproperty.

WLinputandFLinputare inherited from the data input you pass to the object algorithm. For built-in integer inputs, the fraction length is 0.

Minimum section word lengths

When theFixedPointDataTypeproperty is set to'Minimum section word lengths',output word length is the value you specify inOutputWordLengthproperty. The output fraction length,FLoutputis given by the following equation:

F L output = W L output ( W L input F L input + N u m S e c t

Specify word and fraction lengths

When theFixedPointDataTypeis set to'Specify word and fraction lengths',output word length and fraction length are the values you specify in theOutputWordLengthandOutputFractionLengthproperties.

Specify word lengths

When theFixedPointDataTypeis set to'Specify word lengths',output word length is the value you specify in theOutputWordLengthproperty. The output fraction length,FLoutputis given by the following equation:

F L output = W L output ( W L input F L input + N u m S e c t

Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64|fi
Complex Number Support:Yes

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object namedobj, use this syntax:

release(obj)

expand all

generatehdl Generate HDL code for quantized DSP filter (requiresFilter Design HDL Coder
impz Impulse response of discrete-time filterSystem object
freqz Frequency response of discrete-time filterSystem object
phasez Phase response of discrete-time filterSystem object(unwrapped)
fvtool Visualize frequency response of DSP filters
gain Gain of CIC filterSystem object
getFixedPointInfo Get fixed-point word and fraction lengths
info Information about filterSystem object
step RunSystem objectalgorithm
release Release resources and allow changes toSystem objectproperty values and input characteristics
reset Reset internal states ofSystem object

For a list of filter analysis methods this object supports, typedsp。CICInterpolator.helpFilterAnalysisin the MATLAB®command prompt. For the corresponding function reference pages, seeAnalysis Methods for Filter System Objects.

Examples

collapse all

Note: If you are using R2016a or an earlier release, replace each call to the object with the equivalentstepsyntax. For example,obj(x)becomesstep(obj,x).

Create adsp。CICInterpolatorSystem object™ withInterpolationFactorset to 2. Interpolate a fixed-point signal by a factor of 2 from 22.05 kHz to 44.1 kHz.

cicint = dsp。CICInterpolator(2)
cicint = dsp。CICInterpolator with properties: InterpolationFactor: 2 DifferentialDelay: 1 NumSections: 2 FixedPointDataType: 'Full precision'

Create adsp。SineWaveobject withSampleRateset to 22.05 kHz,SamplesPerFrameset to 32, andOutputDataTypeset to'Custom'. To generate a fixed-point signal, set theCustomOutputDataTypeproperty to anumerictypeobject. For the purpose of this example, set the value tonumerictype([],16). The fraction length is computed based on the values of the generated sinusoidal signal to give the best possible precision.

To generate a fixed-point signal, set theMethodproperty of thedsp。SineWaveobject to'Table lookup'. This method of generating the sinusoidal signal requires that the period of every sinusoid in the output be evenly divisible by the sample period. That is, 1 / f i T s = k i must be an integer value for every channeli= 1, 2, ...,N.The value of T s equals 1 / F s ,variable f i is the frequency of the sinusoidal signal, and F s is the sample rate of the signal. In other words, the ratio F s / f i must be an integer. For more details, see theAlgorithmssection on thedsp。SineWaveobject page.

In this example, F s is set to 22050 Hz and f i is set to 1050 Hz.

Fs = 22.05e3; sine = dsp.SineWave('Frequency',1050,'SampleRate',Fs,'SamplesPerFrame',32,...'Method','Table lookup','OutputDataType','Custom'
sine = dsp.SineWave with properties: Amplitude: 1 Frequency: 1050 PhaseOffset: 0 ComplexOutput: false Method: 'Table lookup' TableOptimization: 'Speed' SampleRate: 22050 SamplesPerFrame: 32 OutputDataType: 'Custom' Show all properties

In each loop of the iteration, stream in a frame of the fixed-point sinusoidal signal sampled at 22.05 kHz. Interpolate the streamed signal by a factor of 2. The interpolated output has 64 samples per frame.

fori = 1:16 x = sine(); y = cicint(x);end

The output of the CIC interpolation filter is amplified by a specific gain value. You can determine this value using thegainfunction. This gain equals the gain of the 2 N th stage of the CIC interpolation filter and equals ( I × D N / I , where I is the interpolation factor, D is the differential delay, and N is the number of sections of the CIC interpolator.

gainCIC = gain(cicint)
gainCIC = 2

To adjust this amplified output and to match it to the amplitude of the original signal, divide the CIC interpolated signal with the computed gain value.

Compare the last frames of the original and the interpolated signals. While plotting, account for the output latency of 2 samples.

n = (0:63)'; stem(n(1:31)/Fs, double(x(1:31)),'r','filled')holdon; I = cicint.InterpolationFactor; stem(n(1:61)/(Fs*I),...double(y(4:end))/gainCIC,'b')xlabel('Time (sec)')ylabel('Signal Amplitude')legend('Original Signal','Interpolated Signal',...'location','north')holdoff;

Using theinfofunction in the'long'format, obtain the word lengths and fraction lengths of the fixed-point filter sections and the filter output.

info(cicint,'long'
ans = 'Discrete-Time FIR Multirate Filter (real) ----------------------------------------- Filter Structure : Cascaded Integrator-Comb Interpolator Interpolation Factor : 2 Differential Delay : 1 Number of Sections : 2 Stable : Yes Linear Phase : Yes (Type 1) Implementation Cost Number of Multipliers : 0 Number of Adders : 4 Number of States : 4 Multiplications per Input Sample : 0 Additions per Input Sample : 6 Fixed-Point Info Section word lengths : 17 17 17 17 Section fraction lengths : 14 14 14 14 Output word length : 17 Output fraction length : 14 '

Using thegetFixedPointInfofunction, you can determine the word lengths and fraction lengths of the fixed-point sections and the output of thedsp。CICDecimatoranddsp。CICInterpolatorSystem objects. The data types of the filter sections and the output depend on theFixedPointDataTypeproperty of the filter System object™.

Full precision

Create adsp。CICDecimatorobject. The default value of theNumSectionsproperty is 2. This value indicates that there are two integrator and comb sections. The WLs and FLs vectors returned by thegetFixedPointInfofunction contain five elements each. The first two elements represent the two integrator sections. The third and fourth elements represent the two comb sections. The last element represents the filter output.

cicD = dsp.CICDecimator
cicD = dsp.CICDecimator with properties: DecimationFactor: 2 DifferentialDelay: 1 NumSections: 2 FixedPointDataType: 'Full precision'

By default, theFixedPointDataTypeproperty of the object is set to'Full precision'. Calling thegetFixedPointInfofunction on this object with the input numeric type,nt, yields the following word length and fraction length vectors.

nt = numerictype(1,16,15)
nt = DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 16 FractionLength: 15
[WLs,FLs] = getFixedPointInfo(cicD,nt)%#ok
WLs =1×518 18 18 18 18
FLs =1×515 15 15 15 15

For details on how the word lengths and fraction lengths are computed, see the description forOutput Arguments.

If you lock thecicDobject by passing an input to its algorithm, you do not need to pass thentargument to thegetFixedPointInfofunction.

input = int64(randn(8,1))
input =8x1 int64 column vector1 2 -2 1 0 -1 0 0
output = cicD(input)
output=4×1 object0 1 3 0 DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 66 FractionLength: 0
[WLs,FLs] = getFixedPointInfo(cicD)%#ok
WLs =1×566 66 66 66 66
FLs =1×50 0 0 0 0

The output and section word lengths are the sum of input word length, 64 in this case, and the number of sections, 2. The output and section fraction lengths are 0 since the input is a built-in integer.

Minimum section word lengths

Release the object and change theFixedPointDataTypeproperty to'Minimum section word lengths'. Determine the section and output fixed-point information when the input is fixed-point data,fi(randn(8,2),1,24,15).

release(cicD); cicD.FixedPointDataType ='Minimum section word lengths'
cicD = dsp.CICDecimator with properties: DecimationFactor: 2 DifferentialDelay: 1 NumSections: 2 FixedPointDataType: 'Minimum section word lengths' OutputWordLength: 32
inputF = fi(randn(8,2),1,24,15)
inputF=8×2 object3.5784 -0.1241 2.7694 1.4897 -1.3499 1.4090 3.0349 1.4172 0.7254 0.6715 -0.0630 -1.2075 0.7148 0.7172 -0.2050 1.6302 DataTypeMode: Fixed-point: binary point scaling Signedness: Signed WordLength: 24 FractionLength: 15
[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF))%#ok
WLs =1×526 26 26 26 32
FLs =1×515 15 15 15 21

Specify word and fraction lengths

Change theFixedPointDataTypeproperty to'Specify word and fraction lengths'. Determine the fixed-point information using thegetFixedPointInfofunction.

cicD.FixedPointDataType ='Specify word and fraction lengths'
cicD = dsp.CICDecimator with properties: DecimationFactor: 2 DifferentialDelay: 1 NumSections: 2 FixedPointDataType: 'Specify word and fraction lengths' SectionWordLengths: [16 16 16 16] SectionFractionLengths: 0 OutputWordLength: 32 OutputFractionLength: 0
[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF))%#ok
WLs =1×516 16 16 16 32
FLs =1×50 0 0 0 0

The section and output word lengths and fraction lengths are assigned as per the respective fixed-point properties of thecicDobject. These values are not determined by the input numeric type. To confirm, call thegetFixedPointInfofunction without passing thenumerictypeinput argument.

[WLs, FLs] = getFixedPointInfo(cicD)%#ok
WLs =1×516 16 16 16 32
FLs =1×50 0 0 0 0

Specify word lengths

To specify the word lengths of the filter section and output, set theFixedPointDataTypeproperty to'Specify word lengths'.

cicD.FixedPointDataType ='Specify word lengths'
cicD = dsp.CICDecimator with properties: DecimationFactor: 2 DifferentialDelay: 1 NumSections: 2 FixedPointDataType: 'Specify word lengths' SectionWordLengths: [16 16 16 16] OutputWordLength: 32

ThegetFixedPointInfofunction requires the input numeric type because that information is used to compute the section and word fraction lengths.

[WLs, FLs] = getFixedPointInfo(cicD,numerictype(inputF))
WLs =1×516 16 16 16 32
FLs =1×55 5 5 5 21

For more details on how the function computes the word and fraction lengths, see the description forOutput Arguments.

More About

expand all

Algorithms

expand all

References

[1] Hogenauer, E.B. "An Economical Class of Digital Filters for Decimation and Interpolation."IEEE Transactions on Acoustics, Speech and Signal Processing. Volume 29, Number 2, 1981, 155–162.

[2] Meyer-Baese, U.Digital Signal Processing with Field Programmable Gate Arrays. New York: Springer, 2001.

[3] Harris, Fredric J.Multirate Signal Processing for Communication Systems. Indianapolis, IN: Prentice Hall PTR, 2004.

Extended Capabilities

Introduced in R2012a