
Image Acquisition Toolbox™
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Image Acquisition Toolbox™ User's Guide
© COPYRIGHT 2003–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2003 First printing New for Version 1.0 (Release 13+)
September 2003 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.5 (Release 14)
July 2004 Online only Revised for Version 1.6 (Release 14+)
October 2004 Online only Revised for Version 1.7 (Release 14SP1)
March 2005 Online only Revised for Version 1.8 (Release 14SP2)
March 2005 Second printing Minor Revision for Version 1.8
August 2005 Third printing Minor Revision for Version 1.8
September 2005 Online only Revised for Version 1.9 (Release 14SP3)
March 2006 Fourth printing Revised for Version 1.10 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Fifth printing Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)
September 2010 Online only Revised for Version 4.0 (Release 2010b)
April 2011 Online only Revised for Version 4.1 (Release 2011a)
September 2011 Online only Revised for Version 4.2 (Release 2011b)
March 2012 Online only Revised for Version 4.3 (Release 2012a)
September 2012 Online only Revised for Version 4.4 (Release 2012b)
March 2013 Online only Revised for Version 4.5 (Release 2013a)
September 2013 Online only Revised for Version 4.6 (Release 2013b)
March 2014 Online only Revised for Version 4.7 (Release 2014a)
October 2014 Online only Revised for Version 4.8 (Release 2014b)
March 2015 Online only Revised for Version 4.9 (Release 2015a)
September 2015 Online only Revised for Version 4.10 (Release 2015b)
October 2015 Online only Rereleased for Version 4.9.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 6.0 (Release 2019a)
September 2019 Online only Revised for Version 6.1 (Release 2019b)
March 2020 Online only Revised for Version 6.2 (Release 2020a)
September 2020 Online only Revised for Version 6.3 (Release 2020b)
March 2021 Online only Revised for Version 6.4 (Release 2021a)
September 2021 Online only Revised for Version 6.5 (Release 2021b)
March 2022 Online only Revised for Version 6.6 (Release 2022a)
September 2022 Online only Revised for Version 6.7 (Release 2022b)

Getting Started
1

Image Acquisition Toolbox Product Description . 1-2

Product Overview . 1-3
Introduction . 1-3
Installation and Configuration Notes . 1-3
The Image Processing Toolbox Software Required to Use the Image

Acquisition Toolbox Software . 1-4
Related Products . 1-4
Supported Hardware . 1-4

Image Acquisition Tool (GUI) . 1-5

Getting Started Doing Image Acquisition Programmatically 1-6
Overview . 1-6
Step 1: Install Your Image Acquisition Device . 1-7
Step 2: Retrieve Hardware Information . 1-7
Step 3: Create a Video Input Object . 1-9
Step 4: Preview the Video Stream (Optional) . 1-10
Step 5: Configure Object Properties (Optional) . 1-11
Step 6: Acquire Image Data . 1-14
Step 7: Clean Up . 1-16

Introduction
2

Toolbox Components Overview . 2-2
Introduction . 2-2
Toolbox Components . 2-3
The Image Acquisition Explorer App . 2-3
Supported Devices . 2-3

Setting Up Image Acquisition Hardware . 2-5
Introduction . 2-5
Setting Up Frame Grabbers . 2-5
Setting Up Generic Windows Video Acquisition Devices 2-5
Setting Up DCAM Devices . 2-6
Resetting Your Image Acquisition Hardware . 2-6
A Note About Frame Rates and Processing Speed 2-6

Preview Live Data from Image Acquisition Device 2-7
Introduction . 2-7

v

Contents

Opening a Video Preview Window . 2-7
Stopping the Preview Video Stream . 2-8
Closing a Video Preview Window . 2-9
Previewing Data in Custom GUIs . 2-9
Performing Custom Processing of Previewed Data 2-11

Using the Image Acquisition Explorer
3

Image Acquisition Explorer Overview . 3-2
Open the App . 3-2
Parts of the App . 3-2

Get Started with Image Acquisition Explorer . 3-5

Select Your Device and Configure Format in Image Acquisition Explorer
. 3-10

Select Device . 3-10
Configure Device Format . 3-11
Use Camera File . 3-12

Set Acquisition Parameters in Image Acquisition Explorer 3-13
Acquisition Parameters Panels . 3-13
Set Region of Interest . 3-13
Set Device-Specific Parameters . 3-15
Set Up Hardware Triggering . 3-16

Log Data in Image Acquisition Explorer . 3-18
Log Data to Workspace . 3-18
Log Data to File . 3-18

Preview and Acquire Data in Image Acquisition Explorer 3-22
Set Up Preview for Acquisition . 3-23
Capture Image Snapshot . 3-23
Record Video . 3-24

Export Code from Image Acquisition Explorer . 3-27
Connect and Configure . 3-27
Generate Snapshot Script . 3-27
Generate Record Script . 3-28
Clean Up . 3-30

Visualize and Analyze Data from Image Acquisition Explorer 3-31

Saving Image Acquisition Tool Configurations . 3-32

Exporting Image Acquisition Tool Hardware Configurations to MATLAB
. 3-33

Getting Started with the Image Acquisition Tool 3-35

vi Contents

Image Acquisition Support Packages
4

Image Acquisition Support Packages for Hardware Adaptors 4-2

Installing the Support Packages for Image Acquisition Toolbox Adaptors
. 4-5

Install the MATLAB Support Package for USB Webcams 4-7

Connecting to Hardware
5

Getting Hardware Information . 5-2
Getting Hardware Information . 5-2
Determining the Device Adaptor Name . 5-2
Determining the Device ID . 5-3
Determining Supported Video Formats . 5-4

Creating Image Acquisition Objects . 5-6
Types of Objects . 5-6
Video Input Objects . 5-6
Video Source Objects . 5-6
Creating a Video Input Object . 5-7
Specifying the Video Format . 5-8
Specifying the Selected Video Source Object . 5-10
Getting Information About a Video Input Object 5-11

Configuring Image Acquisition Object Properties 5-12
About Image Acquisition Object Properties . 5-12
Viewing the Values of Object Properties . 5-12
Viewing the Value of a Particular Property . 5-14
Getting Information About Object Properties . 5-14
Setting the Value of an Object Property . 5-15

Using Tab Completion for Functions . 5-17

Use Advanced Property Support in the GigE Vision and GenICam GenTL
Interfaces . 5-18

Advanced Property Support . 5-18
Change Properties While the Acquisition Is Running 5-18
Dynamic Accessibility and Readability . 5-19
Dynamic Constraints . 5-19
Grouped Selector Properties . 5-20

Use Advanced Property Support with Point Grey Camera 5-22
Change Properties While the Acquisition Is Running 5-22
Update Property Constraints Dynamically . 5-23

Starting and Stopping a Video Input Object . 5-25

vii

Deleting Image Acquisition Objects . 5-28

Saving Image Acquisition Objects . 5-30
Using the save Command . 5-30
Using the obj2mfile Command . 5-30

Image Acquisition Toolbox Properties . 5-31

Acquiring Image Data
6

Acquiring Image Data . 6-2

Data Logging . 6-3
Overview . 6-3
Trigger Properties . 6-4

Setting the Values of Trigger Properties . 6-6
About Trigger Properties . 6-6
Specifying Trigger Type, Source, and Condition . 6-6

Specifying the Trigger Type . 6-8
Comparison of Trigger Types . 6-8
Using an Immediate Trigger . 6-9
Using a Manual Trigger . 6-10
Using a Hardware Trigger . 6-12
Setting DCAM-Specific Trigger Modes . 6-14

Controlling Logging Parameters . 6-19
Data Logging . 6-19
Specifying Logging Mode . 6-19
Specifying the Number of Frames to Log . 6-20
Determining How Much Data Has Been Logged 6-21
Determining How Many Frames Are Available . 6-22
Delaying Data Logging After a Trigger . 6-24
Specifying Multiple Triggers . 6-25

Waiting for an Acquisition to Finish . 6-27
Using the wait Function . 6-27
Blocking the Command Line Until an Acquisition Completes 6-28

Managing Memory Usage . 6-30
Freeing Memory . 6-30

Logging Image Data to Disk . 6-32
Formats for Logging Data to Disk . 6-32
Logging Data to Disk Using VideoWriter . 6-32

viii Contents

Working with Acquired Image Data
7

Image Acquisition Overview . 7-2

Bringing Image Data into the MATLAB Workspace 7-3
Overview . 7-3
Moving Multiple Frames into the Workspace . 7-3
Viewing Frames in the Memory Buffer . 7-5
Bringing a Single Frame into the Workspace . 7-7

Working with Image Data in MATLAB Workspace 7-9
Understanding Image Data . 7-9
Determining the Dimensions of Image Data . 7-9
Determining the Data Type of Image Frames . 7-12
Viewing Acquired Data . 7-12

Specifying the Color Space . 7-14
Specifying the Color Space . 7-14
Converting Bayer Images . 7-15

Retrieving Timing Information . 7-18
Introduction . 7-18
Determining When a Trigger Executed . 7-18
Determining When a Frame Was Acquired . 7-19
Determining the Frame Delay Duration . 7-19

Using Events and Callbacks
8

Using Events and Callbacks . 8-2

Using the Default Callback Function . 8-3

Event Types . 8-4

Retrieving Event Information . 8-7
Introduction . 8-7
Event Structures . 8-7
Accessing Data in the Event Log . 8-8

Creating and Executing Callback Functions . 8-10
Introduction . 8-10
Creating Callback Functions . 8-10
Specifying Callback Functions . 8-11
Viewing a Sample Frame . 8-13

ix

Using the From Video Device Block in Simulink
9

Open Image Acquisition Toolbox Block Library . 9-2
From the Command Line . 9-2
From the Simulink Library Browser . 9-2

Code Generation with From Video Device Block . 9-4
Code Generation Workflow . 9-4
Code Generation with Simulink Coder . 9-4
Shared Library Dependencies . 9-4

Save Video Data to a File . 9-6
Step 1: Create a New Model . 9-6
Step 2: Open the Image Acquisition Toolbox Library 9-6
Step 3: Drag the From Video Device Block into the Model 9-7
Step 4: Drag Other Blocks to Complete the Model 9-8
Step 5: Connect the Blocks . 9-9
Step 6: Specify From Video Device Block Parameter Values 9-10
Step 7: Run the Simulation . 9-11

Configuring GigE Vision Devices
10

Types of Setups . 10-2

Network Hardware Configuration Notes . 10-3

Network Adaptor Configuration Notes . 10-4
Windows Configuration . 10-4
Linux Configuration . 10-5
Mac Configuration . 10-5

Software Configuration . 10-10

Setting Preferences . 10-11

Troubleshooting . 10-13

Using the GigE Vision Interface
11

GigE Vision Acquisition: gigecam Object vs. videoinput Object 11-2

Connect to GigE Vision Cameras . 11-3

Set Properties for GigE Acquisition . 11-4
Property Display . 11-4

x Contents

Set GigE Properties . 11-6
Use GigE Commands . 11-7

Acquire Images from GigE Vision Cameras . 11-8
Create the gigecam Object . 11-8
Acquire One Image Frame from a GigE Camera 11-10

Using the Kinect for Windows Adaptor
12

Important Information About the Kinect Adaptor 12-2

Data Streams Returned by the Kinect . 12-3

Detecting the Kinect Devices . 12-5

Acquiring Image and Skeletal Data Using Kinect 12-7

Acquiring from Color and Depth Devices Simultaneously 12-17

Using Skeleton Viewer for Kinect Skeletal Data 12-18

Installing the Kinect for Windows Sensor Support Package 12-20

Using the Matrox Interface
13

Matrox Acquisition – matroxcam Object vs videoinput Object 13-2

Connect to Matrox Frame Grabbers . 13-3

Set Properties for Matrox Acquisition . 13-4

Acquire Images from Matrox Frame Grabbers . 13-6
Create the matroxcam Object . 13-6
Acquire One Image Frame from a Matrox Frame Grabber 13-7

Using the VideoDevice System Object
14

VideoDevice System Object Overview . 14-2

Creating the VideoDevice System Object . 14-3

xi

Using VideoDevice System Object to Acquire Frames 14-4
Kinect for Windows Metadata . 14-5

Using Properties on a VideoDevice System Object 14-8

Code Generation with VideoDevice System Object 14-11
Using the codegen Function . 14-11
Shared Library Dependencies . 14-11
Usage Rules for System Objects in Generated MATLAB Code 14-12
Limitations on Using System Objects in Generated MATLAB Code 14-12

Adding Support for Additional Hardware
15

Support for Additional Hardware . 15-2

Troubleshooting
16

Troubleshooting Overview . 16-2

DALSA Sapera Hardware . 16-3
Troubleshooting DALSA Sapera Devices . 16-3
Determining the Driver Version for DALSA Sapera Devices 16-4

DCAM IEEE 1394 (FireWire) Hardware on Windows 16-5
Troubleshooting DCAM IEEE 1394 Hardware on Windows 16-5
Manually Installing the CMU DCAM Driver on Windows 16-6
Running the CMU Camera Demo Application on Windows 16-6

Matrox Hardware . 16-10
Troubleshooting Matrox Devices . 16-10
Determining the Driver Version for Matrox Devices 16-10

National Instruments Hardware . 16-12
Troubleshooting National Instruments Devices 16-12
Determining the Driver Version for National Instruments Devices 16-13

Point Grey Hardware . 16-14
Device Discovery . 16-14
Troubleshooting Point Grey Devices . 16-15
Determining the Driver Version for Point Grey Devices 16-16

Kinect for Windows Hardware . 16-17

GigE Vision Hardware . 16-19
Troubleshooting GigE Vision Devices on Windows 16-19
Troubleshooting GigE Vision Devices on Linux 16-20
Troubleshooting GigE Vision Devices on macOS 16-21

xii Contents

GenICam GenTL Hardware . 16-24
Device Discovery . 16-24

Windows Video Hardware . 16-25
Troubleshooting Windows Video Devices . 16-25

Linux Video Hardware . 16-27
Device Discovery for Linux Video Devices . 16-27

Linux DCAM IEEE 1394 Hardware . 16-29
Troubleshooting Linux DCAM Devices . 16-29

Macintosh Video Hardware . 16-30
Troubleshooting Macintosh Video Devices . 16-30

Macintosh DCAM IEEE 1394 Hardware . 16-31
Troubleshooting Macintosh DCAM Devices . 16-31

Video Preview Window Troubleshooting . 16-32

Contacting MathWorks and Using the imaqsupport Function 16-33

Image Acquisition Toolbox Examples
17

Identifying Available Devices . 17-2

Accessing Devices and Video Sources . 17-5

Working with Properties . 17-8

Managing Video Input Objects . 17-13

Logging Data to Memory . 17-16

Logging Data to Disk . 17-21

Working with Triggers . 17-24

Acquiring a Single Image in a Loop . 17-27

Configuring Callback Properties . 17-31

Viewing Events . 17-33

Alpha Blending Streamed Image Pairs . 17-36

Alpha Blending Streamed Image Pairs . 17-40

Averaging Images Over Time . 17-43

xiii

Calculating the Length of a Pendulum in Motion 17-49

Color-Based Segmentation of Fabric Using the L*a*b Color Space . . . 17-55

Determining the Rate of Acquisition . 17-65

Laser Tracking . 17-69

Logging Data at Constant Intervals . 17-82

Video Display with Live Histogram . 17-84

Live Motion Detection Using Optical Flow . 17-87

Synchronizing Two NI Frame Grabbers . 17-89

Synchronizing an NI Frame Grabber and Data Acquisition Card 17-93

Using the Kinect for Windows V1 from Image Acquisition Toolbox . . . 17-97

Creating Time-Lapse Video Using a Noncontiguous Acquisition 17-104

Creating Time-Lapse Video Using Timer Events 17-107

Creating Time-Lapse Video Using Postprocessed Data 17-110

Barcode Recognition Using Live Video Acquisition 17-112

Live Image Acquisition and Histogram Display 17-114

Edge Detection on Live Video Stream . 17-116

Acquire Images Using Parallel Workers . 17-119

Functions
18

Properties
19

Blocks
20

xiv Contents

Getting Started

The best way to learn about Image Acquisition Toolbox capabilities is to look at a simple example.
This chapter introduces the toolbox and illustrates the basic steps to create an image acquisition
application by implementing a simple motion detection application. The example cross-references
other sections that provide more details about relevant concepts.

• “Image Acquisition Toolbox Product Description” on page 1-2
• “Product Overview” on page 1-3
• “Image Acquisition Tool (GUI)” on page 1-5
• “Getting Started Doing Image Acquisition Programmatically” on page 1-6

1

Image Acquisition Toolbox Product Description
Acquire images and video from industry-standard hardware

Image Acquisition Toolbox provides functions and blocks for connecting cameras to MATLAB® and
Simulink®. It includes a MATLAB app that lets you interactively detect and configure hardware
properties. You can then generate equivalent MATLAB code to automate your acquisition in future
sessions. The toolbox enables acquisition modes such as processing in-the-loop, hardware triggering,
background acquisition, and synchronizing acquisition across multiple devices.

Image Acquisition Toolbox supports all major standards and hardware vendors, including USB3
Vision, GigE Vision®, and GenICam™ GenTL. You can connect to machine vision cameras and frame
grabbers, as well as high-end scientific and industrial devices.

1 Getting Started

1-2

Product Overview
In this section...
“Introduction” on page 1-3
“Installation and Configuration Notes” on page 1-3
“The Image Processing Toolbox Software Required to Use the Image Acquisition Toolbox Software”
on page 1-4
“Related Products” on page 1-4
“Supported Hardware” on page 1-4

Introduction
The Image Acquisition Toolbox software is a collection of functions that extend the capability of the
MATLAB numeric computing environment. The toolbox supports a wide range of image acquisition
operations, including:

• Acquiring images through many types of image acquisition devices, from professional grade frame
grabbers to USB-based webcams

• Viewing a preview of the live video stream
• Triggering acquisitions (includes external hardware triggers)
• Configuring callback functions that execute when certain events occur
• Bringing the image data into the MATLAB workspace

Many of the toolbox functions are MATLAB files. You can view the MATLAB code for these functions
using this statement:

type function_name

You can extend Image Acquisition Toolbox capabilities by writing your own MATLAB files, or by using
the toolbox in combination with other toolboxes, such as the Image Processing Toolbox™ software
and the Data Acquisition Toolbox™ software.

The Image Acquisition Toolbox software also includes a Simulink block, called From Video Device,
that you can use to bring live video data into a model.

Installation and Configuration Notes
To determine if the Image Acquisition Toolbox software is installed on your system, type this
command at the MATLAB prompt:

ver

When you enter this command, MATLAB displays information about the version of MATLAB you are
running, including a list of all toolboxes installed on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation Guide.

For the most up-to-date information about system requirements, see the system requirements page,
available in the products area of the MathWorks website.

 Product Overview

1-3

https://www.mathworks.com

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons.

The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software
The Image Acquisition Toolbox now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to do anything.

If you do not have the Image Processing Toolbox product, the Image Acquisition Toolbox software
R2008a and earlier will continue to work. If you want to use R2008b or future releases, and you have
a current active license for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase both products to use the
Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

Related Products
MathWorks provides several products that are relevant to the kinds of tasks you can perform with the
Image Acquisition Toolbox software and that extend the capabilities of MATLAB. For information
about these related products, see Image Acquisition Toolbox on the MathWorks website.

Supported Hardware
The list of hardware that the Image Acquisition Toolbox software supports can change in each
release, since hardware support is frequently added. The MathWorks website is the best place to
check for the most up to date listing. To see the full list of hardware that the toolbox supports, see
Hardware Support from Image Acquisition Toolbox.

1 Getting Started

1-4

https://www.mathworks.com/products/image-acquisition.html
https://www.mathworks.com/hardware-support/image-acquisition-hardware.html

Image Acquisition Tool (GUI)
The functionality of the Image Acquisition Toolbox software is available in a desktop application. You
connect directly to your hardware in the tool and can set acquisition parameters, and preview and
acquire image data. You can log the data to MATLAB in several formats, and also generate a
VideoWriter file, right from the tool.

To open the tool, type imaqtool at the MATLAB command line, or select Image Acquisition on the
Apps tab in MATLAB. The tool has extensive Help in the desktop. As you click in different panes of
the user interface, the relevant Help appears in the Image Acquisition Tool Help pane.

Most of the User's Guide describes performing tasks using the toolbox via the MATLAB command
line. To learn how to use the desktop tool, see “Getting Started with the Image Acquisition Tool” on
page 3-35.

 Image Acquisition Tool (GUI)

1-5

Getting Started Doing Image Acquisition Programmatically

In this section...
“Overview” on page 1-6
“Step 1: Install Your Image Acquisition Device” on page 1-7
“Step 2: Retrieve Hardware Information” on page 1-7
“Step 3: Create a Video Input Object” on page 1-9
“Step 4: Preview the Video Stream (Optional)” on page 1-10
“Step 5: Configure Object Properties (Optional)” on page 1-11
“Step 6: Acquire Image Data” on page 1-14
“Step 7: Clean Up” on page 1-16

Overview
This section illustrates the basic steps required to create an image acquisition application by
implementing a simple motion detection application. The application detects movement in a scene by
performing a pixel-to-pixel comparison in pairs of incoming image frames. If nothing moves in the
scene, pixel values remain the same in each frame. When something moves in the image, the
application displays the pixels that have changed values.

The example highlights how you can use the Image Acquisition Toolbox software to create a working
image acquisition application with only a few lines of code.

Note To run the sample code in this example, you must have an image acquisition device connected
to your system. The device can be a professional grade image acquisition device, such as a frame
grabber, or a generic Microsoft® Windows® image acquisition device, such as a webcam. The code
can be used with various types of devices with only minor changes.

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons.

To use the Image Acquisition Toolbox software to acquire image data, you must perform the following
basic steps.

Step Description
Step 1 on page 1-
7:

Install and configure your image acquisition device

Step 2: on page 1-
7

Retrieve information that uniquely identifies your image acquisition device to the
Image Acquisition Toolbox software

Step 3 on page 1-
9:

Create a video input object

1 Getting Started

1-6

Step Description
Step 4 on page 1-
10:

Preview the video stream (Optional)

Step 5: on page 1-
11

Configure image acquisition object properties (Optional)

Step 6 on page 1-
14:

Acquire image data

Step 7 on page 1-
16:

Clean up

Step 1: Install Your Image Acquisition Device
Follow the setup instructions that come with your image acquisition device. Setup typically involves:

• Installing the frame grabber board in your computer.
• Installing any software drivers required by the device. These are supplied by the device vendor.
• Connecting a camera to a connector on the frame grabber board.
• Verifying that the camera is working properly by running the application software that came with

the camera and viewing a live video stream.

Generic Windows image acquisition devices, such as webcams and digital video camcorders, typically
do not require the installation of a frame grabber board. You connect these devices directly to your
computer via a USB or FireWire port.

After installing and configuring your image acquisition hardware, start MATLAB on your computer by
double-clicking the icon on your desktop. You do not need to perform any special configuration of
MATLAB to perform image acquisition.

Step 2: Retrieve Hardware Information
In this step, you get several pieces of information that the toolbox needs to uniquely identify the
image acquisition device you want to access. You use this information when you create an image
acquisition object, described in “Step 3: Create a Video Input Object” on page 1-9.

The following table lists this information. You use the imaqhwinfo function to retrieve each item.

Device Information Description
Adaptor name An adaptor is the software that the toolbox uses to communicate with an

image acquisition device via its device driver. The toolbox includes adaptors
for certain vendors of image acquisition equipment and for particular classes
of image acquisition devices. See “Determining the Adaptor Name” on page 1-
8 for more information.

 Getting Started Doing Image Acquisition Programmatically

1-7

Device Information Description
Device ID The device ID is a number that the adaptor assigns to uniquely identify each

image acquisition device with which it can communicate. See “Determining
the Device ID” on page 1-8 for more information.

Note Specifying the device ID is optional; the toolbox uses the first available
device ID as the default.

Video format The video format specifies the image resolution (width and height) and other
aspects of the video stream. Image acquisition devices typically support
multiple video formats. See “Determining the Supported Video Formats” on
page 1-9 for more information.

Note Specifying the video format is optional; the toolbox uses one of the
supported formats as the default.

Determining the Adaptor Name

To determine the name of the adaptor, enter the imaqhwinfo function at the MATLAB prompt
without any arguments.

imaqhwinfo
ans =

 InstalledAdaptors: {'dcam' 'winvideo'}
 MATLABVersion: '7.4 (R2007a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '2.1 (R2007a)'

In the data returned by imaqhwinfo, the InstalledAdaptors field lists the adaptors that are
available on your computer. In this example, imaqhwinfo found two adaptors available on the
computer: 'dcam' and 'winvideo'. The listing on your computer might contain only one adaptor
name. Select the adaptor name that provides access to your image acquisition device. For more
information, see “Determining the Device Adaptor Name” on page 5-2.

Determining the Device ID

To find the device ID of a particular image acquisition device, enter the imaqhwinfo function at the
MATLAB prompt, specifying the name of the adaptor as the only argument. (You found the adaptor
name in the first call to imaqhwinfo, described in “Determining the Adaptor Name” on page 1-8.) In
the data returned, the DeviceIDs field is a cell array containing the device IDs of all the devices
accessible through the specified adaptor.

Note This example uses the DCAM adaptor. You should substitute the name of the adaptor you would
like to use.

info = imaqhwinfo('dcam')
info =

 AdaptorDllName: [1x77 char]
 AdaptorDllVersion: '2.1 (R2007a)'

1 Getting Started

1-8

 AdaptorName: 'dcam'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

Determining the Supported Video Formats

To determine which video formats an image acquisition device supports, look in the DeviceInfo
field of the data returned by imaqhwinfo. The DeviceInfo field is a structure array where each
structure provides information about a particular device. To view the device information for a
particular device, you can use the device ID as a reference into the structure array. Alternatively, you
can view the information for a particular device by calling the imaqhwinfo function, specifying the
adaptor name and device ID as arguments.

To get the list of the video formats supported by a device, look at SupportedFormats field in the
device information structure. The SupportedFormats field is a cell array of character vectors where
each character vector is the name of a video format supported by the device. For more information,
see “Determining Supported Video Formats” on page 5-4.

dev_info = imaqhwinfo('dcam',1)

dev_info =

 DefaultFormat: 'F7_Y8_1024x768'
 DeviceFileSupported: 0
 DeviceName: 'XCD-X700 1.05'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('dcam', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('dcam', 1)'
 SupportedFormats: {'F7_Y8_1024x768' 'Y8_1024x768'}

Step 3: Create a Video Input Object
In this step you create the video input object that the toolbox uses to represent the connection
between MATLAB and an image acquisition device. Using the properties of a video input object, you
can control many aspects of the image acquisition process. For more information about image
acquisition objects, see “Creating Image Acquisition Objects” on page 5-6.

To create a video input object, use the videoinput function at the MATLAB prompt. The
DeviceInfo structure returned by the imaqhwinfo function contains the default videoinput
function syntax for a device in the VideoInputConstructor field. For more information the device
information structure, see “Determining the Supported Video Formats” on page 1-9.

The following example creates a video input object for the DCAM adaptor. Substitute the adaptor
name of the image acquisition device available on your system.

vid = videoinput('dcam',1,'Y8_1024x768')

The videoinput function accepts three arguments: the adaptor name, device ID, and video format.
You retrieved this information in step 2. The adaptor name is the only required argument; the
videoinput function can use defaults for the device ID and video format. To determine the default
video format, look at the DefaultFormat field in the device information structure. See “Determining
the Supported Video Formats” on page 1-9 for more information.

Instead of specifying the video format, you can optionally specify the name of a device configuration
file, also known as a camera file. Device configuration files are typically supplied by frame grabber

 Getting Started Doing Image Acquisition Programmatically

1-9

vendors. These files contain all the required configuration settings to use a particular camera with
the device. See “Using Device Configuration Files (Camera Files)” on page 5-9 for more
information.

Viewing the Video Input Object Summary

To view a summary of the video input object you just created, enter the variable name vid at the
MATLAB command prompt. The summary information displayed shows many of the characteristics of
the object, such as the number of frames that will be captured with each trigger, the trigger type, and
the current state of the object. You can use video input object properties to control many of these
characteristics. See “Step 5: Configure Object Properties (Optional)” on page 1-11 for more
information.
vid

Summary of Video Input Object Using 'XCD-X700 1.05'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 10 frames per trigger using the selected source.
 'Y8_1024x768' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

Trigger Parameters: 1 'immediate' trigger(s) on START.
 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

Step 4: Preview the Video Stream (Optional)
After you create the video input object, MATLAB is able to access the image acquisition device and is
ready to acquire data. However, before you begin, you might want to see a preview of the video
stream to make sure that the image is satisfactory. For example, you might want to change the
position of the camera, change the lighting, correct the focus, or make some other change to your
image acquisition setup.

Note This step is optional at this point in the procedure because you can preview a video stream at
any time after you create a video input object.

To preview the video stream in this example, enter the preview function at the MATLAB prompt,
specifying the video input object created in step 3 as an argument.

preview(vid)

The preview function opens a Video Preview figure window on your screen containing the live video
stream. To stop the stream of live video, you can call the stoppreview function. To restart the
preview stream, call preview again on the same video input object.

While a preview window is open, the video input object sets the value of the Previewing property to
'on'. If you change characteristics of the image by setting image acquisition object properties, the
image displayed in the preview window reflects the change.

The following figure shows the Video Preview window for the example.

1 Getting Started

1-10

Video Preview Window

To close the Video Preview window, click the Close button in the title bar or use the closepreview
function, specifying the video input object as an argument.

closepreview(vid)

Calling closepreview without any arguments closes all open Video Preview windows.

Step 5: Configure Object Properties (Optional)
After creating the video input object and previewing the video stream, you might want to modify
characteristics of the image or other aspects of the acquisition process. You accomplish this by
setting the values of image acquisition object properties. This section

• Describes the types of image acquisition objects on page 1-11 used by the toolbox
• Describes how to view all the properties on page 1-12 supported by these objects, with their

current values
• Describes how to set the values on page 1-13 of object properties

Types of Image Acquisition Objects

The toolbox uses two types of objects to represent the connection with an image acquisition device:

• Video input objects
• Video source objects

 Getting Started Doing Image Acquisition Programmatically

1-11

A video input object represents the connection between MATLAB and a video acquisition device at a
high level. The properties supported by the video input object are the same for every type of device.
You created a video input object using the videoinput function in step 3 on page 1-9.

When you create a video input object, the toolbox automatically creates one or more video source
objects associated with the video input object. Each video source object represents a collection of one
or more physical data sources that are treated as a single entity. The number of video source objects
the toolbox creates depends on the device and the video format you specify. At any one time, only one
of the video source objects, called the selected source, can be active. This is the source used for
acquisition. For more information about these image acquisition objects, see “Creating Image
Acquisition Objects” on page 5-6.

Viewing Object Properties

To view a complete list of all the properties supported by a video input object or a video source
object, use the get function. To list the properties of the video input object created in step 3, enter
this code at the MATLAB prompt.

get(vid)

The get function lists all the properties of the object with their current values.

General Settings:
 DeviceID = 1
 DiskLogger = []
 DiskLoggerFrameCount = 0
 EventLog = [1x0 struct]
 FrameGrabInterval = 1
 FramesAcquired = 0
 FramesAvailable = 0
 FramesPerTrigger = 10
 Logging = off
 LoggingMode = memory
 Name = Y8_1024x768-dcam-1
 NumberOfBands = 1
 Previewing = on
 ReturnedColorSpace = grayscale
 ROIPosition = [0 0 1024 768]
 Running = off
 Tag =
 Timeout = 10
 Type = videoinput
 UserData = []
 VideoFormat = Y8_1024x768
 VideoResolution = [1024 768]
 .
 .
 .

To view the properties of the currently selected video source object associated with this video input
object, use the getselectedsource function in conjunction with the get function. The
getselectedsource function returns the currently active video source. To list the properties of the
currently selected video source object associated with the video input object created in step 3, enter
this code at the MATLAB prompt.

get(getselectedsource(vid))

1 Getting Started

1-12

The get function lists all the properties of the object with their current values.

Note Video source object properties are device specific. The list of properties supported by the
device connected to your system might differ from the list shown in this example.

General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:
 FrameRate = 15
 Gain = 2048
 Shutter = 2715

Setting Object Properties

To set the value of a video input object property or a video source object property, you reference the
object property as you would a field in a structure, using dot notation.

Some properties are read only; you cannot set their values. These properties typically provide
information about the state of the object. Other properties become read only when the object is
running. To view a list of all the properties you can set, use the set function, specifying the object as
the only argument.

To implement continuous image acquisition, the example sets the TriggerRepeat property to Inf.
To set this property, enter this code at the MATLAB prompt.

vid.TriggerRepeat = Inf;

To help the application keep up with the incoming video stream while processing data, the example
sets the FrameGrabInterval property to 5. This specifies that the object acquire every fifth frame
in the video stream. (You might need to experiment with the value of the FrameGrabInterval
property to find a value that provides the best response with your image acquisition setup.) This
example shows how you can set the value of an object property by referencing the property as you
would reference a field in a MATLAB structure.

vid.FrameGrabInterval = 5;

To set the value of a video source object property, you must first use the getselectedsource
function to retrieve the object. (You can also get the selected source by searching the video input
object Source property for the video source object that has the Selected property set to 'on'.)

To illustrate, the example assigns a value to the Tag property.

vid_src = getselectedsource(vid);

vid_src.Tag = 'motion detection setup';

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For

 Getting Started Doing Image Acquisition Programmatically

1-13

information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Step 6: Acquire Image Data
After you create the video input object and configure its properties, you can acquire data. This is
typically the core of any image acquisition application, and it involves these steps:

• Starting the video input object — You start an object by calling the start function. Starting an
object prepares the object for data acquisition. For example, starting an object locks the values of
certain object properties (they become read only). Starting an object does not initiate the
acquiring of image frames, however. The initiation of data logging depends on the execution of a
trigger.

The following example calls the start function to start the video input object. Objects stop when
they have acquired the requested number of frames. Because the example specifies a continuous
acquisition, you must call the stop function to stop the object.

• Triggering the acquisition — To acquire data, a video input object must execute a trigger.
Triggers can occur in several ways, depending on how the TriggerType property is configured.
For example, if you specify an immediate trigger, the object executes a trigger automatically,
immediately after it starts. If you specify a manual trigger, the object waits for a call to the
trigger function before it initiates data acquisition. For more information, see “Acquiring Image
Data” on page 6-2.

In the example, because the TriggerType property is set to 'immediate' (the default) and the
TriggerRepeat property is set to Inf, the object automatically begins executing triggers and
acquiring frames of data, continuously.

• Bringing data into the MATLAB workspace — The toolbox stores acquired data in a memory
buffer, a disk file, or both, depending on the value of the video input object LoggingMode
property. To work with this data, you must bring it into the MATLAB workspace. To bring multiple
frames into the workspace, use the getdata function. Once the data is in the MATLAB
workspace, you can manipulate it as you would any other data. For more information, see
“Working with Image Data in MATLAB Workspace” on page 7-9.

Note The toolbox provides a convenient way to acquire a single frame of image data that doesn't
require starting or triggering the object. See “Bringing a Single Frame into the Workspace” on page
7-7 for more information.

Running the Example

To run the example, enter the following code at the MATLAB prompt. The example loops until a
specified number of frames have been acquired. In each loop iteration, the example calls getdata to
bring the two most recent frames into the MATLAB workspace. To detect motion, the example
subtracts one frame from the other, creating a difference image, and then displays it. Pixels that have
changed values in the acquired frames will have nonzero values in the difference image.

The getdata function removes frames from the memory buffer when it brings them into the MATLAB
workspace. It is important to move frames from the memory buffer into the MATLAB workspace in a
timely manner. If you do not move the acquired frames from memory, you can quickly exhaust all the
memory available on your system.

1 Getting Started

1-14

Note The example uses functions in the Image Processing Toolbox software.

% Create video input object.
vid = videoinput('dcam',1,'Y8_1024x768')

% Set video input object properties for this application.
vid.TriggerRepeat = 100;
vid.FrameGrabInterval = 5;

% Set value of a video source object property.
vid_src = getselectedsource(vid);
vid_src.Tag = 'motion detection setup';

% Create a figure window.
figure;

% Start acquiring frames.
start(vid)

% Calculate difference image and display it.
while(vid.FramesAvailable >= 2)
 data = getdata(vid,2);
 diff_im = imabsdiff(data(:,:,:,1),data(:,:,:,2));
 imshow(diff_im);
 drawnow % update figure window
end

stop(vid)

Note that a drawnow is used after the call to imshow in order to ensure that the figure window is
updated. This is good practice when updating a GUI or figure inside a loop.

The following figure shows how the example displays detected motion. In the figure, areas
representing movement are displayed.

Figure Window Displayed by Example

 Getting Started Doing Image Acquisition Programmatically

1-15

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Image Data in the MATLAB Workspace

In the example, the getdata function returns the image frames in the variable data as a 480-by-640-
by-1-by-10 array of 8-bit data (uint8).

whos
 Name Size Bytes Class

 data 4-D 3072000 uint8 array
 dev_info 1x1 1601 struct array
 info 1x1 2467 struct array
 vid 1x1 1138 videoinput object
 vid_src 1x1 726 videosource object

The height and width of the array are primarily determined by the video resolution of the video
format. However, you can use the ROIPosition property to specify values that supersede the video
resolution. Devices typically express video resolution as column-by-row; MATLAB expresses matrix
dimensions as row-by-column.

The third dimension represents the number of color bands in the image. Because the example data is
a grayscale image, the third dimension is 1. For RGB formats, image frames have three bands: red is
the first, green is the second, and blue is the third. The fourth dimension represents the number of
frames that have been acquired from the video stream.

Step 7: Clean Up
When you finish using your image acquisition objects, you can remove them from memory and clear
the MATLAB workspace of the variables associated with these objects.

delete(vid)
clear
close(gcf)

For more information, see “Deleting Image Acquisition Objects” on page 5-28.

1 Getting Started

1-16

Introduction

This chapter describes the Image Acquisition Toolbox software and its components.

• “Toolbox Components Overview” on page 2-2
• “Setting Up Image Acquisition Hardware” on page 2-5
• “Preview Live Data from Image Acquisition Device” on page 2-7

2

Toolbox Components Overview

In this section...
“Introduction” on page 2-2
“Toolbox Components” on page 2-3
“The Image Acquisition Explorer App” on page 2-3
“Supported Devices” on page 2-3

Introduction
Image Acquisition Toolbox enables you to acquire images and video from cameras and frame
grabbers directly into MATLAB and Simulink. You can detect hardware automatically, and configure
hardware properties. Advanced workflows let you trigger acquisitions while processing in-the-loop,
perform background acquisitions, and synchronize sampling across several multimodal devices. With
support for multiple hardware vendors and industry standards, you can use imaging devices, ranging
from inexpensive Web cameras to high-end scientific and industrial devices that meet low-light, high-
speed, and other challenging requirements.

The Image Acquisition Toolbox software implements an object-oriented approach to image
acquisition. Using toolbox functions, you create an object that represents the connection between
MATLAB and specific image acquisition devices. Using properties of the object you can control
various aspects of the acquisition process, such as the amount of video data you want to capture.
“Creating Image Acquisition Objects” on page 5-6 describes how to create objects.

Once you establish a connection to a device, you can acquire image data by executing a trigger. In the
toolbox, all image acquisition is initiated by a trigger. The toolbox supports several types of triggers
that let you control when an acquisition takes place. For example, using hardware triggers you can
synchronize an acquisition with an external device. “Acquiring Image Data” on page 6-2 describes
how to trigger the acquisition of image data.

To work with the data you acquire, you must bring it into the MATLAB workspace. When the frames
are acquired, the toolbox stores them in a memory buffer. The toolbox provides several ways to bring
one or more frames of data into the workspace where you can manipulate it as you would any other
multidimensional numeric array. “Bringing Image Data into the MATLAB Workspace” on page 7-3
describes this process.

Finally, you can enhance your image acquisition application by using event callbacks. The toolbox has
defined certain occurrences, such as the triggering of an acquisition, as events. You can associate the
execution of a particular function with a particular event. “Using Events and Callbacks” on page 8-
2 describes this process.

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons.

2 Introduction

2-2

Toolbox Components
The toolbox uses components called hardware device adaptors to connect to devices through their
drivers. The toolbox includes adaptors that support devices produced by several vendors of image
acquisition equipment. In addition, the toolbox includes an adaptor for generic Windows video
acquisition devices.

The following figure shows these components and their relationship.

The Image Acquisition Toolbox Software Components

The Image Acquisition Explorer App
The functionality of the Image Acquisition Toolbox software is available in a desktop application. You
connect directly to your hardware in the app and can then set acquisition parameters, and preview
and acquire image data. You can log the data to a file or to the MATLAB workspace, and also generate
a MATLAB script with the device configuration, right from the app.

To open the app, type imageAcquisitionExplorer at the MATLAB command line, or select Image
Acquisition Explorer on the Apps tab in MATLAB. For more information, see “Get Started with
Image Acquisition Explorer” on page 3-5.

Supported Devices
The Image Acquisition Toolbox software includes adaptors that provide support for several vendors of
professional grade image acquisition equipment, devices that support the IIDC 1394-based Digital
Camera Specification (DCAM), and devices that provide Windows Driver Model (WDM) or Video for
Windows (VFW) drivers, such as USB and IEEE® 1394 (FireWire, i.LINK®) Web cameras, Digital video

 Toolbox Components Overview

2-3

(DV) camcorders, and TV tuner cards. For the latest information about supported hardware, visit the
Image Acquisition Toolbox product page at the MathWorks Web site (www.mathworks.com/
products/image-acquisition).

The DCAM specification, developed by the 1394 Trade Association, describes a generic interface for
exchanging data with IEEE 1394 (FireWire) digital cameras that is often used in scientific
applications. The toolbox's DCAM adaptor supports Format 7, also known as partial scan mode. The
toolbox uses the prefix F7_ to identify Format 7 video format names.

Note The toolbox supports only connections to IEEE 1394 (FireWire) DCAM-compliant devices using
the Carnegie Mellon University DCAM driver. The toolbox is not compatible with any other vendor-
supplied driver, even if the driver is DCAM compliant.

You can add support for additional hardware by writing an adaptor. For more information, see
“Support for Additional Hardware” on page 15-2.

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons.

2 Introduction

2-4

https://www.mathworks.com/products/image-acquisition.html
https://www.mathworks.com/products/image-acquisition.html

Setting Up Image Acquisition Hardware

In this section...
“Introduction” on page 2-5
“Setting Up Frame Grabbers” on page 2-5
“Setting Up Generic Windows Video Acquisition Devices” on page 2-5
“Setting Up DCAM Devices” on page 2-6
“Resetting Your Image Acquisition Hardware” on page 2-6
“A Note About Frame Rates and Processing Speed” on page 2-6

Introduction
To acquire image data, you must perform the setup required by your particular image acquisition
device. In a typical image acquisition setup, an image acquisition device, such as a camera, is
connected to a computer via an image acquisition board, such as a frame grabber, or via a Universal
Serial Bus (USB) or IEEE 1394 (FireWire) port. The setup required varies with the type of device.

After installing and configuring your image acquisition hardware, start MATLAB on your computer by
double-clicking the icon on your desktop. You do not need to perform any special configuration of
MATLAB to acquire data.

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons.

Setting Up Frame Grabbers
For frame grabbers, also known as imaging boards, setup typically involves the following tasks:

• Installing the frame grabber in your computer
• Installing any software drivers required by the frame grabber. These are supplied by the device

vendor.
• Connecting the camera, or other image acquisition device, to a connector on the frame grabber
• Verifying that the camera is working properly by running the application software that came with

the frame grabber and viewing a live video stream

Setting Up Generic Windows Video Acquisition Devices
IEEE 1394 (FireWire) and generic Windows video acquisition devices that use Windows Driver Model
(WDM) or Video for Windows (VFW) device drivers typically require less setup. Plug the device into
the USB or IEEE 1394 (FireWire) port on your computer and install the device driver provided by the
vendor.

 Setting Up Image Acquisition Hardware

2-5

Setting Up DCAM Devices
If you intend to access a DCAM-compliant IEEE 1394 (FireWire) camera, you must install and
configure the Carnegie Mellon University (CMU) DCAM driver. The toolbox is not compatible with
any other vendor-supplied driver, even if the driver is DCAM compliant. See “Manually Installing the
CMU DCAM Driver on Windows” on page 16-6 for more information.

Resetting Your Image Acquisition Hardware
To return MATLAB and your image acquisition hardware to a known state, where no image
acquisition objects exist and the hardware is not configured, use the imaqreset function.

If you connect another image acquisition device to your system after MATLAB is started, you can use
imaqreset to make the toolbox aware of the new hardware.

A Note About Frame Rates and Processing Speed
The frame rate describes how fast an image acquisition device provides data, typically measured as
frames per second.

Devices that support industry-standard video formats must provide frames at the rate specified by the
standard. For RS170 and NTSC, the standard dictates a frame rate of 30 frames per second (30 Hz).
The CCIR and PAL standards define a frame rate of 25 Hz. Nonstandard devices can be configured to
operate at higher rates. Generic Windows image acquisition devices, such as webcams, might support
many different frame rates. Depending on the device being used, the frame rate might be
configurable using a device-specific property of the image acquisition object.

The rate at which the Image Acquisition Toolbox software can process images depends on the
processor speed, the complexity of the processing algorithm, and the frame rate. Given a fast
processor, a simple algorithm, and a frame rate tuned to the acquisition setup, the Image Acquisition
Toolbox software can process data as it comes in.

2 Introduction

2-6

Preview Live Data from Image Acquisition Device
In this section...
“Introduction” on page 2-7
“Opening a Video Preview Window” on page 2-7
“Stopping the Preview Video Stream” on page 2-8
“Closing a Video Preview Window” on page 2-9
“Previewing Data in Custom GUIs” on page 2-9
“Performing Custom Processing of Previewed Data” on page 2-11

Introduction
After you connect MATLAB to the image acquisition device you can view the live video stream using
the Video Preview window. Previewing the video data can help you make sure that the image being
captured is satisfactory.

For example, by looking at a preview, you can verify that the lighting and focus are correct. If you
change characteristics of the image, by using video input object and video source object properties,
the image displayed in the Video Preview window changes to reflect the new property settings.

The following sections provide more information about using the Video Preview window.

• “Opening a Video Preview Window” on page 2-7
• “Stopping the Preview Video Stream” on page 2-8
• “Closing a Video Preview Window” on page 2-9

Instead of using the toolbox's Video Preview window, you can display the live video preview stream in
any Handle Graphics® image object you specify. In this way, you can include video previewing in a
GUI of your own creation. The following sections describe this capability.

• “Previewing Data in Custom GUIs” on page 2-9
• “Performing Custom Processing of Previewed Data” on page 2-11

Opening a Video Preview Window
To open a Video Preview window, use the preview function. The Video Preview window displays the
live video stream from the device. You can only open one preview window per device. If multiple
devices are used, you can open multiple preview windows at the same time.

The following example creates a video input object and then opens a Video Preview window for the
video input object.

vid = videoinput('winvideo');
preview(vid);

The following figure shows the Video Preview window created by this example. The Video Preview
window displays the live video stream. The size of the preview image is determined by the value of
the video input object's ROIPosition property. The Video Preview window displays the video data at
100% magnification.

 Preview Live Data from Image Acquisition Device

2-7

In addition to the preview image, the Video Preview window includes information about the image,
such as the timestamp of the video frame, the video resolution, the frame rate, and the current status
of the video input object.

Note Because video formats typically express resolution as width-by-height, the Video Preview
window expresses the size of the image frame as column-by-row, rather than the standard MATLAB
row-by-column format.

Note The Image Acquisition Toolbox Preview window supports the display of up to 16-bit image data.
The Preview window was designed to only show 8-bit data, but many cameras return 10-, 12-, 14-, or
16-bit data. The Preview window display supports these higher bit-depth cameras. However, larger
bit data is scaled to 8-bit for the purpose of displaying previewed data. To capture the image data in
the Preview window in its full bit depth for grayscale images, set the PreviewFullBitDepth
property to 'on'.

Stopping the Preview Video Stream
When you use the preview function to start previewing image data, the Video Preview window
displays a view of the live video stream coming from the device. To stop the updating of the live video
stream, call the stoppreview function.

2 Introduction

2-8

This example creates a video input object and opens a Video Preview window. The example then calls
the stoppreview function on this video input object. The Video Preview window stops updating the
image displayed and stops updating the timestamp. The status displayed in the Video Preview window
also changes to indicate that previewing has been stopped.

vid = videoinput('winvideo');
preview(vid)
stoppreview(vid)

To restart the video stream in the Video Preview window, call preview again on the same video input
object.

preview(vid)

Closing a Video Preview Window
To close a particular Video Preview window, use the closepreview function, specifying the video
input object as an argument. You do not need to stop the live video stream displayed in the Video
Preview window before closing it.

closepreview(vid)

To close all currently open Video Preview windows, use the closepreview function without any
arguments.

closepreview

Note When called without an argument, the closepreview function only closes Video Preview
windows. The closepreview function does not close any other figure windows in which you have
directed the live preview video stream. For more information, see “Previewing Data in Custom GUIs”
on page 2-9.

Previewing Data in Custom GUIs
Instead of using the toolbox's Video Preview window, you can use the preview function to direct the
live video stream to any Handle Graphics image object. In this way, you can incorporate the toolbox's
previewing capability in a GUI of your own creation. (You can also perform custom processing as the
live video is displayed. For information, see “Performing Custom Processing of Previewed Data” on
page 2-11.)

To use this capability, create an image object and then call the preview function, specifying a handle
to the image object as an argument. The preview function outputs the live video stream to the image
object you specify.

The following example creates a figure window and then creates an image object in the figure, the
same size as the video frames. The example then calls the preview function, specifying a handle to
the image object.

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar, menubar, and figure numbering.

 Preview Live Data from Image Acquisition Device

2-9

figure('Toolbar','none',...
 'Menubar', 'none',...
 'NumberTitle','Off',...
 'Name','My Preview Window');

% Create the image object in which you want to display
% the video preview data. Make the size of the image
% object match the dimensions of the video frames.

vidRes = vid.VideoResolution;
nBands = vid.NumberOfBands;
hImage = image(zeros(vidRes(2), vidRes(1), nBands));

% Display the video data in your GUI.

preview(vid, hImage);

When you run this example, it creates the GUI shown in the following figure.

Custom Preview

2 Introduction

2-10

Performing Custom Processing of Previewed Data
When you specify an image object to the preview function (see “Previewing Data in Custom GUIs”
on page 2-9), you can optionally also specify a function that preview executes every time it receives
an image frame.

To use this capability, follow these steps:

1 Create the function you want executed for each image frame, called the update preview window
function. For information about this function, see “Creating the Update Preview Window
Function” on page 2-11.

2 Create an image object.
3 Configure the value of the image object's 'UpdatePreviewWindowFcn' application-defined

data to be a function handle to your update preview window function. For more information, see
“Specifying the Update Preview Function” on page 2-12.

4 Call the preview function, specifying the handle of the image object as an argument.

Note If you specify an update preview window function, in addition to whatever processing your
function performs, it must display the video data in the image object. You can do this by updating the
CData of the image object with the incoming video frames. For some performance guidelines about
updating the data displayed in an image object, see Technical Solution 1-1B022.

Creating the Update Preview Window Function

When preview calls the update preview window function you specify, it passes your function the
following arguments.

Argument Description
obj Handle to the video input object being previewed
event A data structure containing the following fields:

Data Current image frame specified as an H-by-W-by-B array,
where H is the image height and W is the image width, as
specified in the ROIPosition property, and B is the
number of color bands, as specified in the
NumberOfBands property

Resolution Character vector specifying the current image width and
height, as defined by the ROIPosition property

Status Character vector describing the status of the video input
object

Timestamp Character vector specifying the time associated with the
current image frame, in the format hh:mm:ss:ms

FrameRate Character vector specifying the current frame rate of the
video input object in frames per second

himage Handle to the image object in which the data is to be displayed

The following example creates an update preview window function that displays the timestamp of
each incoming video frame as a text label in the custom GUI. The update preview window function

 Preview Live Data from Image Acquisition Device

2-11

https://www.mathworks.com/matlabcentral/answers/96882-how-can-i-make-image-objects-update-faster-in-matlab

uses getappdata to retrieve a handle to the text label uicontrol object from application-defined
data in the image object. The custom GUI stores this handle to the text label uicontrol object — see
“Specifying the Update Preview Function” on page 2-12.

Note that the update preview window function also displays the video data by updating the CData of
the image object.

function mypreview_fcn(obj,event,himage)
% Example update preview window function.

% Get timestamp for frame.
tstampstr = event.Timestamp;

% Get handle to text label uicontrol.
ht = getappdata(himage,'HandleToTimestampLabel');

% Set the value of the text label.
ht.String = tstampstr;

% Display image data.
himage.CData = event.Data

Specifying the Update Preview Function

To use an update preview window function, store a function handle to your function in the
'UpdatePreviewWindowFcn' application-defined data of the image object. The following example
uses the setappdata function to configure this application-defined data to a function handle to the
update preview window function described in “Creating the Update Preview Window Function” on
page 2-11.

This example extends the simple custom preview window created in “Previewing Data in Custom
GUIs” on page 2-9. This example adds three push button uicontrol objects to the GUI: Start
Preview, Stop Preview, and Close Preview.

In addition, to illustrate using an update preview window function, the example GUI includes a text
label uicontrol object to display the timestamp value. The update preview window function updates
this text label each time a framed is received. The example uses setappdata to store a handle to the
text label uicontrol object in application-defined data in the image object. The update preview
window function retrieves this handle to update the timestamp display.

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar and menubar in the figure.
hFig = figure('Toolbar','none',...
 'Menubar', 'none',...
 'NumberTitle','Off',...
 'Name','My Custom Preview GUI');

% Set up the push buttons
uicontrol('String', 'Start Preview',...
 'Callback', 'preview(vid)',...
 'Units','normalized',...
 'Position',[0 0 0.15 .07]);
uicontrol('String', 'Stop Preview',...
 'Callback', 'stoppreview(vid)',...

2 Introduction

2-12

 'Units','normalized',...
 'Position',[.17 0 .15 .07]);
uicontrol('String', 'Close',...
 'Callback', 'close(gcf)',...
 'Units','normalized',...
 'Position',[0.34 0 .15 .07]);

% Create the text label for the timestamp
hTextLabel = uicontrol('style','text','String','Timestamp', ...
 'Units','normalized',...
 'Position',[0.85 -.04 .15 .08]);

% Create the image object in which you want to
% display the video preview data.
vidRes = vid.VideoResolution;
imWidth = vidRes(1);
imHeight = vidRes(2);
nBands = vid.NumberOfBands;
hImage = image(zeros(imHeight, imWidth, nBands));

% Specify the size of the axes that contains the image object
% so that it displays the image at the right resolution and
% centers it in the figure window.
figSize = get(hFig,'Position');
figWidth = figSize(3);
figHeight = figSize(4);
gca.unit = 'pixels';
gca.position = [((figWidth - imWidth)/2)...
 ((figHeight - imHeight)/2)...
 imWidth imHeight];

% Set up the update preview window function.
setappdata(hImage,'UpdatePreviewWindowFcn',@mypreview_fcn);

% Make handle to text label available to update function.
setappdata(hImage,'HandleToTimestampLabel',hTextLabel);

preview(vid, hImage);

When you run this example, it creates the GUI shown in the following figure. Each time preview
receives a video frame, it calls the update preview window function that you specified, which updates
the timestamp text label in the GUI.

 Preview Live Data from Image Acquisition Device

2-13

Custom Preview GUI with Timestamp Text Label

2 Introduction

2-14

Using the Image Acquisition Explorer

• “Image Acquisition Explorer Overview” on page 3-2
• “Get Started with Image Acquisition Explorer” on page 3-5
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27
• “Visualize and Analyze Data from Image Acquisition Explorer” on page 3-31
• “Saving Image Acquisition Tool Configurations” on page 3-32
• “Exporting Image Acquisition Tool Hardware Configurations to MATLAB” on page 3-33
• “Getting Started with the Image Acquisition Tool” on page 3-35

3

Image Acquisition Explorer Overview

Open the App
You can use the Image Acquisition Toolbox functionalities in the Image Acquisition Explorer app.
Connect directly to your hardware from the app to preview and acquire image and video data. You
can log the data to MATLAB as a workspace variable or to your computer as an image or video file.

The Image Acquisition Explorer provides an interface that integrates a preview area with
acquisition parameters, so that you can change settings and see the changes dynamically applied to
your image data.

There are two ways to launch the app:

• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the
app icon.

• MATLAB command prompt: Enter imageAcquisitionExplorer.

Parts of the App
The Image Acquisition Explorer consists of the following components.

• Preview — See a live preview from your selected image acquisition device. You can toggle the
preview on and off by clicking the switch above the preview. The preview updates in real-time as
you change device properties. The area below the preview displays the current frame rate and
timestamp. It also displays status messages when you capture an image snapshot or record a
video. If you select grayscale as the Color Space, you can set the colormap and color limits
above the preview.

Panels

• Device List — View a list of the image acquisition devices on your computer and available to
connect to from the app. If you don't see your device, make sure you have the appropriate support
package installed, make sure your device is plugged in, and click the refresh button. You can click
on a different device to close your current device connection and switch to another device in the
app.

• ROI Position — Set your desired region of interest (ROI) for image acquisition. You can
interactively select an ROI in the preview by clicking Select ROI. You can also manually specify
ROI values for X-Offset, Y-Offset, Width, and Height in pixels. Click Apply after you set your
desired ROI.

• Device Properties — View and edit device properties. The specific list of properties that appear
depends on your selected device. Changing properties here updates the preview in real-time.

• Hardware Trigger — Set up hardware triggering options. This is only available if your device
supports hardware triggering and you selected Hardware Trigger in the toolstrip. Specify the
number of triggers and frames per trigger, as well as the trigger source and condition.

Toolstrip Sections

• Configure Format — Specify the format of the images to acquire from your selected device. The
options available for Video Format and Color Space depend on your device. These parameters
define different resolutions and color spaces that your device supports, or different video

3 Using the Image Acquisition Explorer

3-2

standards or camera configurations for your device. If your device supports Bayer sensor
alignment, you can set the Sensor Alignment. If your device supports camera files, the Select
Camera File button appears here.

• Logging — Choose whether you want to save your image data as a file or as a workspace variable.
Your selection here determines how image data is logged when you click Capture or Record.
After selecting the File or Workspace Variable option, you can edit the names and file locations
for data logging. If you select File, you can specify additional file configuration settings by
clicking the icon next to the file name.

• Snapshot — Click the Capture button to immediately acquire and save an image snapshot using
the current device properties and configuration.

• Record — Select finite, continuous, or hardware triggered recording and click the Record button
to start recording a video using the current device properties and configuration.

• Visualize and Analyze — Open one of the Image Processing Toolbox apps and send it the most
recently saved image or video data.

• Export — Click the Export button and select one of the options to generate a MATLAB live script
for capturing a snapshot or recording a video and open it in the Live Editor. The live script
contains code for the current device configuration and code for saving data as a file or workspace
variable.

See Also
Image Acquisition Explorer

 Image Acquisition Explorer Overview

3-3

Related Examples
• “Get Started with Image Acquisition Explorer” on page 3-5
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

3 Using the Image Acquisition Explorer

3-4

Get Started with Image Acquisition Explorer

The basic workflow of using the Image Acquisition Explorer is to preview, configure, acquire, and
save image data. For information on opening the app or the parts of the app, see “Image Acquisition
Explorer Overview” on page 3-2.

1 After opening the Image Acquisition Explorer app, decide which device you want to work with.
The image acquisition devices currently connected to your computer are shown. If you do not see
your device, make sure you have the appropriate Image Acquisition Toolbox support package
installed. For a list of supported hardware and their respective support packages, see “Image
Acquisition Toolbox Supported Hardware”. If your device is not connected yet, plug it in to your
computer and refresh the list of hardware in the app.

2 Choose the format to work with by selecting an option from Video Format in the Configure
Format section of the app toolstrip. The formats might correspond to the different resolutions
and color spaces that your device supports, or to different video standards or camera
configurations. This information comes from your device adaptor.

If your device supports camera files, the Select Camera File button is available instead of Video
Format.

3 Look at the preview in the app to check that the device is working and the image is what you
expect. If Preview is Off, you can toggle the switch to On.

 Get Started with Image Acquisition Explorer

3-5

4 If necessary, you can physically adjust the device to achieve the desired image area. Optionally,
you can define the acquisition region by using the settings in the ROI Position panel next to the
preview.

5 Set any general or device-specific parameters from the Device Properties panel or use the
default settings. The specific list of properties that appear depends on your selected device. You
can preview the property changes as you update them.

3 Using the Image Acquisition Explorer

3-6

6 Choose your logging mode, which determines whether you save the acquisition data as a file or
as a workspace variable. Select either the File or Workspace Variable option in the Logging
section of the app toolstrip. Specify the file name or workspace variable name.

If you select File, you can click the configuration icon next to the file name for additional
settings, including file location to save to and file format to save as.

 Get Started with Image Acquisition Explorer

3-7

7 Decide whether you want to capture a snapshot of a single frame or record a video of multiple
frames.

• If you want to immediately capture a single frame, click the Capture button in the Snapshot
section of the app toolstrip. The image data is saved as an image file or workspace variable,
depending on your prior selection.

• If you want to record a video or acquire a sequence of multiple frames, you can select a
recording mode of Finite or Continuous in the Record section of the app toolstrip. If your
device supports hardware triggered acquisition, you also have the Hardware Trigger option
available. For finite recording, specify the number of frames or seconds to record for and click
the Record button. For continuous recording, you can start by clicking the Record button. It
becomes a Stop button, which you can click to end recording. The recorded data is saved as a
video file or workspace variable, depending on your prior selection.

8 You can generate a MATLAB live script that includes the device and acquisition configurations
that you currently have in the app. Click the Export button in the app toolstrip to select

3 Using the Image Acquisition Explorer

3-8

Generate Snapshot Script or Generate Record Script. Both these options create and
open a live script that contains code for the current device configuration, as specified in the
Configure Format section, and code for saving data as a file or workspace variable, as specified
in the Logging section.

• The Generate Snapshot Script option creates and opens a live script that contains code
for connecting to your device, configuring its properties, capturing a single frame, and
viewing a snapshot of the captured image.

• The Generate Record Script option creates and opens a live script that contains code for
connecting to your device, configuring its properties, recording a specified number of frames,
and viewing the recorded video.

See Also
Image Acquisition Explorer

Related Examples
• “Image Acquisition Explorer Overview” on page 3-2
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

 Get Started with Image Acquisition Explorer

3-9

Select Your Device and Configure Format in Image Acquisition
Explorer

Select Device
When you open the Image Acquisition Explorer app, you can select an image acquisition device
that is currently connected to your computer. Each device card has the name of the device, name of
the adaptor it is using, and the device ID for the adaptor.

If you do not see your device listed here, make sure that you have the appropriate Image Acquisition
Toolbox support package installed for your device by clicking the Don't see your device? link. For a
list of supported hardware and their respective support packages, see “Image Acquisition Toolbox
Supported Hardware”. Check that it is physically plugged in to your computer. You can also try
clicking the refresh button next to All Hardware.

Add New Hardware

When you open the Image Acquisition Explorer, the app automatically shows the image acquisition
devices supported by the toolbox that are currently connected to your computer. If you plug a new
device in while the Image Acquisition Explorer is open, click the refresh button next to All
Hardware to display the new device.

View Device List

After you select a device, the main app space opens. The Device List panel shows your selected
device as well as the other devices you can connect to from the Image Acquisition Explorer app.
You can refresh the list of devices and switch to another device at any time. However, doing so will
discard your current device configuration.

3 Using the Image Acquisition Explorer

3-10

Configure Device Format
Use the parameters in the Configure Format section of the Image Acquisition Explorer app
toolstrip to define the Video Format and Color Space. The available values for both of these
parameters depend on the selected device. The video format defines different resolutions and color
spaces that your device supports, or different video standards or camera configurations for your
device.

Video Format

Use this parameter to set the video format used by the device to capture images and video. The list of
values for this parameter depends on the video formats supported by your device. The format
selected when you open the app is the device's default format.

Color Space

Use this parameter to set the color space for the selected video format. Possible values for Color
Space are grayscale, rgb, YCbCr, and bayer, but the list of values that you see depends on the
Video Format you selected. Your device format's default color space is shown as the default.

If you select grayscale for the Color Space, you can set the Colormap and Color Limits
parameters for the preview.

• Color Limit — Toggle this switch to Manual to set the minimum and maximum values on the
specified colormap. The default values are 0 and 255. All values in the preview that are less than
or equal to the minimum value map to the lowest value of the colormap. All values in the preview
that are greater than or equal to the maximum value map to the highest value of the colormap.

• Colormap — Colormap applied to the preview. For a full list of options, see map.

 Select Your Device and Configure Format in Image Acquisition Explorer

3-11

Sensor Alignment

If your device supports Bayer sensor alignment and you select bayer for the Color Space, you can
set the Sensor Alignment. Select the 2-by-2 pixel Bayer color filter array pattern of the Bayer color
filter array, as gbrg, grbg, bggr, or rggb. The specified pattern is used to convert the Bayer pattern
image to RGB.

Use Camera File
If your device supports the use of a camera file, also known as a device configuration file, you can
select it in the Image Acquisition Explorer. For example, some frame grabbers support these files.
The camera file is provided by the device manufacturer. See your device documentation for more
information.

After you select your device, there is a Select Camera File button in the Configure Format section
of the app toolstrip if the device supports the use of camera files.

To use a camera file:

1 In the Configure Format section of the app toolstrip, click Select Camera File to open a file
browser window.

2 In the file browser window, navigate to the file location and click on it. Then click Open.

The Camera File name appears in the toolstrip. You can hover your cursor over it to see the full
file path. You can then set the Color Space, specify device properties, preview, and acquire data.

Note The app ignores hardware trigger configurations included in a camera file. To configure
hardware triggering, select the Hardware Trigger option in the Record section of the app toolstrip.

See Also
Image Acquisition Explorer

Related Examples
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

3 Using the Image Acquisition Explorer

3-12

Set Acquisition Parameters in Image Acquisition Explorer
Before acquiring images or video in the Image Acquisition Explorer app, set acquisition
parameters such as region of interest (ROI) and device-specific properties. The preview updates in
real-time as you change these parameters.

If your device supports hardware triggering, you can also set hardware triggering options before
acquiring images or video. These options are only available when you select Hardware Trigger in
the toolstrip.

After specifying acquisition parameters, you can specify where to save your captured image or video
data. For more information, see “Log Data in Image Acquisition Explorer” on page 3-18. Then, you
can capture image snapshots and record video. For more information, see “Preview and Acquire Data
in Image Acquisition Explorer” on page 3-22.

Acquisition Parameters Panels
Set acquisition parameters in Image Acquisition Explorer from the following panels next to the
preview.

• ROI Position — Define the region of interest.
• Device Properties — Change device-specific properties.

If your device supports hardware triggering and you select Hardware Trigger in the toolstrip, the
following panel is also available.

• Hardware Trigger — Set up hardware triggering options.

Set Region of Interest
By default, your acquisition consists of the entire frame that the device acquires, which is equal to the
selected format's default resolution. If you want to acquire a portion of the frame, use the ROI
Position panel to set the desired region. The ROI window defines the actual size of the frame logged
by the app, measured with respect to the top-left corner of an image frame.

Click the Select ROI button to adjust the ROI selection window manually or interactively.

• Set the ROI manually by specifying one or more of the X-Offset, Y-Offset, Width, or Height
values until you reach the desired region. The ROI selection window in the preview resizes as you
make changes.

 Set Acquisition Parameters in Image Acquisition Explorer

3-13

• Set the ROI interactively by clicking and dragging the edges of the selection window that appears
in the preview. You can resize and move the selection window to outline the region you want to
capture. The values for X-Offset, Y-Offset, Width, and Height update as you adjust the selection
window. You can manually specify these values as well while you interactively change the selection
window.

3 Using the Image Acquisition Explorer

3-14

When you are satisfied with the selected ROI, click Apply to confirm your selection. After applying
your changes, you can reset the ROI to your device's default at any time by clicking Reset ROI.

Set Device-Specific Parameters
View or change device-specific properties using the Device Properties panel. The specific properties
that appear depend on your device.

For example, if FrameRate appears in the Device Properties, that means your device has a
FrameRate property. The information in the Device Properties panel comes from your device. The
value set there is the frame rate that your device uses, in frames per second. If FrameRate does not
appear in the panel, your device does not support that property.

The Selected Source specifies the name of the selected source for the current device. Many device
adaptors have only one input source. If your device supports multiple source names, they appear in
the drop-down list.

 Set Acquisition Parameters in Image Acquisition Explorer

3-15

Set Up Hardware Triggering
The Hardware Trigger panel is available only for devices that support hardware triggering. It
appears when you select the Hardware Trigger option in the Record section of the app toolstrip.
You can set the following parameters in this panel.

• Number of Triggers — Number of triggers before acquisition is completed.
• Frames per Trigger — Number of frames to acquire per trigger.
• Trigger Source — Hardware source that is monitored for trigger conditions. When the condition
specified in Trigger Condition is met, the trigger is executed and the acquisition starts. Trigger
Source is device-specific. The drop-down list shows the mechanisms your particular device can
use to receive triggers from the hardware source.

3 Using the Image Acquisition Explorer

3-16

• Trigger Condition — Condition that must be met from the Trigger Source before a trigger
event occurs. Trigger Condition is device-specific. The drop-down list shows the conditions that
your particular device can wait for from the hardware source.

The total number of frames that are acquired when you start an acquisition depends on Number of
Triggers and Frames Per Trigger. For example, if you set Number of Triggers to 2 and Frames
Per Trigger to 4, the total number of frames in the acquisition is 8.

For more information about hardware triggers and how to use them with a videoinput object, see
“Using a Hardware Trigger” on page 6-12.

See Also
Image Acquisition Explorer

Related Examples
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

 Set Acquisition Parameters in Image Acquisition Explorer

3-17

Log Data in Image Acquisition Explorer
You can use the Image Acquisition Explorer to save acquired image data to a file or as a workspace
variable. If you want to save your image data to a file, you can specify the file format and configure
other file settings.

After you specify your data logging preferences, you can capture image snapshots and record video.
For more information, see “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22.

Log Data to Workspace
To save image data as a workspace variable, select the Workspace Variable option in the Logging
section of the app toolstrip. You can specify the variable name as a valid MATLAB variable name that
does not already exist in the workspace.

The default values are snapshot1 and recording1 for Image and Video, respectively. After you
capture a snapshot or record a video using those variables, the default variable names update to
snapshot2 or recording2, then snapshot3 or recording3, and so on.

After you set your variable names, you can click the Capture button to save image data to the
workspace or the Record button to save video data to the workspace. For more information, see
“Preview and Acquire Data in Image Acquisition Explorer” on page 3-22.

Log Data to File
To save image data to file, select the File option in the Logging section of the app toolstrip. You can
then specify file names and additional configuration settings for Image and Video logging.

Image Data

In the Image field, specify the name you want to give the file. The default value is snapshot1.png.
Click the settings icon next to the file name to configure additional file settings. You can Select
Image File Location and select an Image File Format. Available settings depend on the specified
file format.

3 Using the Image Acquisition Explorer

3-18

If you select PNG, you can specify the following.

• Description — Add description to image.

If you select TIFF, you can specify the following.

• Compression — Select compression scheme as packbits, none, lzw, or deflate.
• Description — Add description to image.

If you select JPEG, you can specify the following.

• Quality — Specify quality of output file from 0 to 100, where 0 is lower quality and higher
compression and 100 is higher quality and lower compression. The default value is 75.

• Bit Depth — Select number of bits per pixel as 8 or 12.
• Comment — Add comment to image.

After you specify the file name, location, and other settings, you can click the Capture button to save
image data to file. For more information, see “Preview and Acquire Data in Image Acquisition
Explorer” on page 3-22.

Video Data

In the Video field, specify the name you want to give the file. The default value is recording1.avi.
Click the settings icon next to the file name to configure additional file settings. You can select a
Video File Location and a Video File Profile. Possible values for Video File Profile are Archival,
Motion JPEG AVI, MPEG-4, Motion JPEG 2000, and Uncompressed AVI. Available settings
depend on the specified file profile.

 Log Data in Image Acquisition Explorer

3-19

If you select Archival or Motion JPEG 2000, you can specify the following.

• Lossless Compression — Turn on to make decompressed data identical to input data. The
default is off for the Motion JPEG 2000 profile, and on for the Archival profile.

• Compression Ratio — Specify the target ratio between number of bytes in the input image and
number of bytes in the compressed image as a number greater than 1. The default value is 10. You
can modify this setting only if Lossless Compression is turned off.

• Frame Rate — Specify the rate of video playback in frames per second. The default value is 30.
• MJ2 Bit Depth — Select the number of least-significant bits in input image data as a number

from 1 to 16.

If you select Motion JPEG AVI or MPEG-4, you can specify the following.

• Frame Rate — Specify rate of video playback in frames per second. The default value is 30.
• Quality — Specify quality of output file from 0 to 100, where 0 is lower quality and higher

compression and 100 is higher quality and lower compression. The default value is 75.

If you select Uncompressed AVI, you can specify the following.

• Frame Rate — Specify rate of video playback in frames per second. The default value is 30.

After you specify the file name, location, and other settings, you can click the Record button to save
video data to file. For more information, see “Preview and Acquire Data in Image Acquisition
Explorer” on page 3-22.

Note If the value of the frame rate specified in the video file settings is different from the frame rate
of the preview, the length of the saved video will be different from the specified number of seconds
for finite recording. The number of frames saved in the recording is calculated from the frame rate of
the preview multiplied by the specified number of seconds to record. (The specified amount of time to

3 Using the Image Acquisition Explorer

3-20

record also includes the time required for the acquisition to start.) The length of the saved video is
the number of frames divided by the frame rate specified in the video file settings. For example, if the
frame rate of the preview is 15 frames per second, the number of seconds to record is 20 seconds,
and the frame rate of video playback is 30 frames per second, the length of the saved recording is
approximately 10 seconds.

See Also
Image Acquisition Explorer

Related Examples
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

 Log Data in Image Acquisition Explorer

3-21

Preview and Acquire Data in Image Acquisition Explorer
The Image Acquisition Explorer has a preview that displays the image data from your image
acquisition device when you preview or acquire data.

Turn off the preview by toggling the Preview switch to Off.

If you set the Color Space to grayscale in the toolstrip, you can set the colormap and color limits.

• Color Limit — Toggle this switch to Manual to set the minimum and maximum values on the
specified colormap. The default values are 0 and 255. All values in the preview that are less than
or equal to the minimum value map to the lowest value of the colormap. All values in the preview
that are greater than or equal to the maximum value map to the highest value of the colormap.

3 Using the Image Acquisition Explorer

3-22

• Colormap — Colormap applied to the preview. For a full list of options, see map.

The area below the preview displays the current frame rate and the timestamp of the last frame in
the preview. It also displays status messages when you capture an image snapshot or record a video.
The messages provide information about the current acquisition mode, the number of frames or
seconds captured, and the file name or workspace variable name that the data is saved as. The status
message also indicates when the app has completed capturing a snapshot or recording a video.

Note Previewing data using software OpenGL® instead of graphics hardware that supports a
hardware-accelerated implementation of OpenGL can cause performance issues for the app and is not
recommended. For more information, see “System Requirements for Graphics”.

Set Up Preview for Acquisition
Before acquiring data by taking a snapshot or recording a video, you can preview the image data in
the app. Modify acquisition parameters and device properties and see the changes update in real-
time in the preview.

1 Make sure that the correct device is selected in the Device List. The Device List shows the
image acquisition devices currently connected to your system. If the device you want to use is not
connected to your system, plug it in and refresh the list. Then, select the new hardware. For
more information, see “Select Device” on page 3-10.

2 Select the Video Format and Color Space from the Configure Format section of the app
toolstrip. The video formats might correspond to the different resolutions and color spaces that
your device supports, or to different video standards or camera configurations. This information
comes from your device adaptor. Select the format you want to use. For more information, see
“Configure Device Format” on page 3-11.

3 Look at the preview to test and set up your device. If necessary, physically adjust the device to
achieve the desired image area, or use the settings in the ROI Position panel to constrain the
image. For more information, see “Set Region of Interest” on page 3-13.

4 Set additional properties in the Device Properties panel to adjust the quality of the image or
other acquisition factors. For more information, see “Set Device-Specific Parameters” on page 3-
15.

For more information about logging, see “Log Data in Image Acquisition Explorer” on page 3-18.

Capture Image Snapshot
After you are satisfied with the image that you see in the preview, you can capture and save image
data. Click the Capture button in the Snapshot section of the app toolstrip. Clicking this button
immediately captures a single image frame and saves it as an image file or as a workspace variable,
depending on your selection of File or Workspace Variable in the Logging section.

 Preview and Acquire Data in Image Acquisition Explorer

3-23

Record Video
You can save image data from your image acquisition device as a video recording. There are four
workflows for recording video in the Image Acquisition Explorer app.

• “Record Finite Number of Frames” on page 3-24
• “Record for Finite Duration” on page 3-24
• “Record Continuously” on page 3-25
• “Record with Hardware Trigger” on page 3-25

Record Finite Number of Frames

Capture a finite number of frames of image data from your image acquisition device.

1 Select the Finite option in the Record section of the app toolstrip. Selecting this option allows
you to specify the number of frames you want to record.

2 Select the frame(s) option from the dropdown next to Finite.
3 Enter an integer value for the number of frames to capture in the field to the left of frame(s).
4 Click the Record button to acquire the specified number of frames and save them as a video file

or as a workspace variable, depending on your selection of File or Workspace Variable in the
Logging section. The Record button becomes a Stop button after you click it.

5 Wait for the specified number of frames to be recorded. You can also end recording at any time
before the specified number of frames is captured by clicking Stop. Clicking Stop saves the data
that has already been captured.

While you are recording, the app toolstrip and all property panels are disabled. You cannot change
the value of any parameters during recording.

Record for Finite Duration

Capture a specified number of seconds of image data from your image acquisition device.

1 Select the Finite option in the Record section of the app toolstrip. Selecting this option allows
you to specify the amount of time you want to record.

2 Select the second(s) option from the dropdown next to Finite.
3 Enter a numeric value for the number of seconds to capture in the field to the left of second(s).

Note The length of the saved recording might be less than the amount of time specified here
since this value includes the time required for the acquisition to start. After you click the Record
button, your device might require some time to start the acquisition. If your recording does not
capture all the frames you want it to, try increasing the recording duration and recording again.

3 Using the Image Acquisition Explorer

3-24

4 Click the Record button to acquire frames for the specified number of seconds and save them as
a video file or as a workspace variable, depending on your selection of File or Workspace
Variable in the Logging section. The Record button becomes a Stop button after you click it.

5 Wait for the specified number of seconds to be recorded. You can also end recording at any time
before the specified number of seconds is captured by clicking Stop. Clicking Stop saves the
data that has already been captured.

While you are recording, the app toolstrip and all property panels are disabled. You cannot change
the value of any parameters during recording.

Record Continuously

Capture image data for an infinite duration from your image acquisition device.

1 Select the Continuous option in the Record section of the app toolstrip.
2 Click the Record button to continuously acquire frames and save them as a video file or as a

workspace variable, depending on your selection of File or Workspace Variable in the Logging
section. The Record button becomes a Stop button after you click it.

3 You can end recording at any time by clicking Stop and saving the data that has already been
captured.

While you are recording, the app toolstrip and all property panels are disabled. You cannot change
the value of any parameters during recording.

Record with Hardware Trigger

Capture frames with a hardware trigger.

1 Make sure that the Trigger Mode property is set to On and other Trigger Selector properties
are configured correctly in the Device Properties panel.

2 Select the Hardware Trigger option in the Record section of the app toolstrip.
3 Configure the hardware trigger properties in the Hardware Trigger panel.

• Number of Triggers
• Frames per Trigger
• Trigger Source
• Trigger Condition

4 Click the Record button to start acquiring frames when the trigger condition is met. The image
data is saved as a video file or as a workspace variable, depending on your selection of File or
Workspace Variable in the Logging section. The Record button becomes a Stop button after
you click it.

5 Wait for the specified Number of Triggers to be reached for the recording to complete. You can
also end recording at any time by clicking Stop and saving the data that has already been
captured.

While you are recording, the app toolstrip and all property panels are disabled. You cannot change
the value of any parameters during recording.

See Also
Image Acquisition Explorer

 Preview and Acquire Data in Image Acquisition Explorer

3-25

Related Examples
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Export Code from Image Acquisition Explorer” on page 3-27

3 Using the Image Acquisition Explorer

3-26

Export Code from Image Acquisition Explorer
The Image Acquisition Explorer app allows you to generate a MATLAB live script that includes the
device and acquisition configurations that you currently have in the app. Click the Export button in
the app toolstrip to select Generate Snapshot Script or Generate Record Script. Both these
options create and open a live script that contains code for the current device configuration in the
app. You can edit and save the generated live script as necessary for your application.

• The Generate Snapshot Script option creates and opens a live script that contains code for
connecting to your device, configuring its properties, capturing a single frame, and viewing a
snapshot of the captured image.

• The Generate Record Script option creates and opens a live script that contains code for
connecting to your device, configuring its properties, recording frames, and viewing the recorded
video.

Connect and Configure
The generated live script contains the following sections for connection and configuration, with code
similar to the following examples.

• Connect to Device — Creates a connection to the selected device and specified Video Format
using the videoinput function.

v = videoinput("winvideo", 1, "YUY2_1280x720");

• Configure Device Properties — Defines device properties that you select in the app, including
Color Space, Sensor Alignment, and Region of Interest. If you do not edit any of these
parameters, this section is not in the live script.

v.ReturnedColorspace = "rgb";

• Configure Device-Specific Properties — Defines device-specific properties that you specified in
the Device Properties panel of the app. If you do not make any changes to these parameters, this
section is not in the live script.

src = getselectedsource(v);
src.Exposure = 1;

Generate Snapshot Script
If you select Generate Snapshot Script, the live script contains the following additional sections,
with examples of code.

 Export Code from Image Acquisition Explorer

3-27

• Capture Image — Captures a single frame and saves it to the workspace as the variable specified
in the Logging section. If you selected File in the Logging section, this section also does the
following:

• Defines the file name to save as and location to save to.
• Saves the captured frame to a file using the imwrite function.
• Specifies the image file configuration settings that you set in Logging, such as file format and

quality, as name-value arguments in imwrite.

image1 = getsnapshot(v);

% Set the desired file location and name.
filelocation = "C:\Users\user";
filename = "snapshot1.jpg";
fullFilename = fullfile(filelocation, filename);

% Write image data to file.
imwrite(image1, fullFilename, "jpg", "Quality", 25, "BitDepth", 12);

• View Snapshot — Displays the captured image using the imshow function.

imageData = imread(fullFilename);
f = figure;
ax = axes(f);
imshow(imageData, "Parent", ax);

Generate Record Script
If you select Generate Record Script the live script contains the following additional sections,
with examples of code.

• Configure File Logging — Specifies video file logging settings by doing the following:

• Defines the file name to save as and location to save to.
• Specifies the video file configuration settings that you set in Logging, such as file format and

quality, using VideoWriter.
• Configures the videoinput object to log to disk.

If you do not select File in Logging, this section is not in the live script.

filelocation = "C:\Users\user";
filename = "recording1.mp4";
fullFilename = fullfile(filelocation, filename);

% Create and configure the video writer
logfile = VideoWriter(fullFilename, "MPEG-4");
logfile.FrameRate = 15;
logfile.Quality = 25;

% Configure the device to log to disk using the video writer
v.LoggingMode = "disk";
v.DiskLogger = logfile;

• Configure Triggering — Specifies the hardware trigger settings Number of Triggers, Frames
per Trigger, Trigger Source, and Trigger Condition that you set in the Hardware Trigger
panel. If you do not select Hardware Trigger in Record, this section is not in the live script.

3 Using the Image Acquisition Explorer

3-28

framesPerTrigger = 4;
numTriggers = 2;
triggerCondition = "risingEdge";
triggerSource = "TTL";

triggerconfig(v, "hardware", triggerCondition, triggerSource);
v.FramesPerTrigger = framesPerTrigger;
v.TriggerRepeat = numTriggers - 1;

• Record — Records image data based on the recording mode selected in the Record section and
saves it using the settings specified in the Logging section.

• If you select Finite and frame(s), this section is called Record Video for Set Number of
Frames and records image data for the specified number of frames.

numFrames = 10;
v.FramesPerTrigger = numFrames;

start(v);
wait(v);
stop(v);
recording1 = getdata(v, numFrames);

• If you select Finite and second(s), this section is called Record Video for Set Number of
Seconds and records image data for the specified number of seconds.

numSeconds = 10;
v.FramesPerTrigger = Inf;

start(v);
pause(numSeconds);
stop(v);
recording1 = getdata(v, v.FramesAvailable);

• If you select Continuous, this section is called Record Continuous Video Data and records
image data continuously and requires you to press Enter to stop recording.

v.FramesPerTrigger = Inf;
start(v);

% Use INPUT to pause before ending acquisition.
input("Press ENTER to end acquisition.");
stop(v);
recording1 = getdata(v, v.FramesAvailable);

• If you select Hardware Trigger, this section is called Record with Hardware Trigger and
records image data using a hardware trigger.

start(v);
wait(v);
stop(v);
recording1 = getdata(v, framesPerTrigger * numTriggers);

• Show Recording — Displays the recorded video using the implay function.

reader = VideoReader(fullFilename);
videoData = read(reader);
implay(videoData);

 Export Code from Image Acquisition Explorer

3-29

Clean Up
The generated live script contains the following section related to cleaning up the workspace.

• Clean Up — Disconnects from the device and clears it from the workspace by using the delete
and clear functions.

delete(v)
clear src v

See Also
Image Acquisition Explorer

Related Examples
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22

3 Using the Image Acquisition Explorer

3-30

Visualize and Analyze Data from Image Acquisition Explorer
You can launch Image Processing Toolbox apps from Image Acquisition Explorer and send your
image or video data to them for visualization and analysis. Click the Image Viewer, Video Viewer,
or Color Thresholder button in the Visualize and Analyze section of the app toolstrip to launch the
respective app.

The selected app launches with the latest saved image or video data. If you have not yet saved any
data, the app still launches.

See Also
Image Acquisition Explorer | Image Viewer | Video Viewer | Color Thresholder

Related Examples
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

 Visualize and Analyze Data from Image Acquisition Explorer

3-31

Saving Image Acquisition Tool Configurations

You can save the configuration information about any of your device formats. This includes any
parameters you set on any of the tabs in the Acquisition Parameters pane. Then when you return to
the tool, you can load the configuration so that you do not have to reset those parameters.

To save a configuration:

1 Select File > Save Configuration.

The Save Configuration dialog box opens.
2 Decide what configuration(s) to save.

The Save Configuration dialog box lists the currently selected device format, as well as any
others you selected in the Hardware Browser during the tool session. All formats are selected
by default, meaning their configurations will be saved. If you do not want to save a configuration,
clear it from the list.

3 Click Save.

The Save File dialog box opens.
4 Enter a file name and click Save.

The configuration is saved to an Image Acquisition Tool (IAT) file in the location you specified.

You can then open the saved configuration file in a future tool session by selecting File > Open
Configuration. In the Open Configuration dialog box, browse to an IAT file and click Open.

Note You can also export hardware configuration information to other formats such as a MATLAB
code file or a MAT-file that can be accessed from MATLAB. See “Exporting Image Acquisition Tool
Hardware Configurations to MATLAB” on page 3-33.

3 Using the Image Acquisition Explorer

3-32

Exporting Image Acquisition Tool Hardware Configurations to
MATLAB

You can export the video input objects and their configured parameters from the tool to a choice of
multiple formats. You can then access the video object in MATLAB.

To export a hardware configuration:

1 Select File > Export Hardware Configuration.

The Export Hardware Configuration dialog box opens.

2 Select the file format from the Object destination list.

• MATLAB Workspace saves the video input object to the MATLAB Workspace for the duration
of the MATLAB session. (You can then save it before exiting MATLAB if you want to retain it.)

• MATLAB Code File is the same as the File > Generate MATLAB Code File command. It
generates a MATLAB code file containing the video input object and its configured
parameters. You could then incorporate the MATLAB code file into other MATLAB code or
projects.

• MAT-File saves the video input object and its parameters to a MAT-file.
3 Decide what object configuration(s) to export.

The Object Exporter dialog box lists the currently selected device format, as well as any others
you selected in the Hardware Browser during the tool session. All formats are selected by
default, meaning their configurations will be saved. If you do not want to save a configuration,
clear it from the list.

4 Click Save.

If you exported to the MATLAB Workspace, the dialog box closes and the data is saved to the
MATLAB Workspace.

5 If you export to a MAT-file or MATLAB code file, an Export dialog box opens. Select the save
location and type a file name, and then click Save.

 Exporting Image Acquisition Tool Hardware Configurations to MATLAB

3-33

Note You can also save configuration information to an Image Acquisition Tool (IAT) file that can
then be loaded in the tool in a future session. See “Saving Image Acquisition Tool Configurations” on
page 3-32.

3 Using the Image Acquisition Explorer

3-34

Getting Started with the Image Acquisition Tool

This section describes an example of the basic workflow of using the Image Acquisition Tool to
preview, configure, acquire, and save image data. You don't need to do every step shown here, and
you can change the order of some steps.

1 Decide which device you want to work with.

The Hardware Browser shows the image acquisition devices currently connected to your
system. If the device you want to use is not connected to your system, plug it in and then select
Tools > Refresh Image Acquisition Hardware to display the new device in the Hardware
Browser.

2 Choose the format to work with.

The nodes listed under the device name are the formats the device supports. They may
correspond to the different resolutions and color spaces that your device supports, or to different
video standards or camera configurations. This information comes from your device adaptor.
Select the format you want to use.

3 Preview to check that the device is working and the image is what you expect.

Click the Start Preview button.

If necessary, physically adjust the device to achieve the desired image area, or use the Region of
Interest tab to define the acquisition region.

4 Decide how many frames you want to acquire.

The number of frames that will be acquired when you start the acquisition is dependent on what
is set in the Frames Per Trigger field on the General tab and the Number of Triggers field on
the Triggering tab. For example, if you set Frames Per Trigger to 4 and Number of Triggers
to 2, the total number of frames acquired will be 8.

If you just want a snapshot of one frame, leave the default settings of 1 in both of those fields. If
you want a specific number of frames, use the fields to set it.

Alternatively, you can set the tool to acquire continuously and use the buttons in the Preview
Window to manually start and stop the acquisition. This is discussed in a later step.

5 Set any general or device-specific parameters you need to set, on those tabs of the Acquisition
Parameters pane, or use the default settings.

6 Choose your log mode, which determines where the acquisition data is stored.

On the Logging tab, use the Log To field to choose to log to memory, disk, or both. Disk logging
results in a saved VideoWriter file. If you choose memory logging, you can export your data after
the acquisition using the Export Data button on the Preview Window.

For more information on logging, see the Help for the Logging tab in the Desktop Help pane in
the tool.

7 Start the acquisition by clicking the Start Acquisition button.

– If you set Trigger Type (on the Triggering tab) to Immediate, the tool will immediately start
logging data.

 Getting Started with the Image Acquisition Tool

3-35

– If you set Trigger Type to Manual, click the Trigger button when you want to start logging
data.

8 Stop the acquisition.

– If you set Frames Per Trigger (on the General tab) to 1 or any other number, your acquisition
will stop when that number of frames is reached.

– If you set Frames Per Trigger to Infinite, click the Stop Acquisition button to stop the
acquisition.

Note that you can also click Stop Acquisition to abort an acquisition if number of frames was
specified.

9 Optionally you can export data that was saved to memory.

You can export the data that has been acquired in memory to a MAT-file, the MATLAB Workspace,
VideoWriter, or to the Image Tool, Image File, or Movie Player tools that are provided by the
Image Processing Toolbox software using the Export Data button. For more information, see the
“Exporting Data” section of the Desktop Help on the Preview Window in the Desktop Help
pane in the tool.

10 Optionally you can save your configuration(s), using the File > Save Configuration or File >
Export Hardware Configuration menus. For more information about these commands, see the
“Image Acquisition Tool Menus” section of the Help on the Hardware Browser in the Desktop
Help pane in the tool.

3 Using the Image Acquisition Explorer

3-36

Image Acquisition Support Packages

• “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2
• “Installing the Support Packages for Image Acquisition Toolbox Adaptors” on page 4-5
• “Install the MATLAB Support Package for USB Webcams” on page 4-7

4

Image Acquisition Support Packages for Hardware Adaptors
The existing support for all supported hardware, such as GigE Vision and Windows Video, is now
available via Hardware Support Packages. This is the same functionality for acquiring images using
all supported cameras and frame grabbers that has always been part of the Image Acquisition
Toolbox.

With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately in
support packages via MATLAB Add-Ons. All of the support packages contain the necessary MATLAB
files to use the toolbox with your adaptor. Some also contain third-party files, such as drivers or
camera set-up utilities. Offering the adaptor files via Add-Ons allows us to provide the most up to date
versions of files.

To install a support package, on the MATLAB Home tab, in the Environment section, click Add-Ons
> Get Hardware Support Packages. In the Add-On Explorer, scroll to the Hardware Support
Packages section, and click Load more to find your support package. You can refine the list by
selecting Imaging/Cameras in the Filter by Hardware Type section on the left side of the Add-On
Explorer. Select your adaptor, for example Image Acquisition Toolbox Support Package for GigE
Vision Hardware or Image Acquisition Toolbox Support Package for OS Generic Video Interface, from
the list.

Note For any cameras that use the Windows Video (winvideo), Macintosh Video (macvideo), or
Linux Video (linuxvideo) adaptors, use the support package called Image Acquisition Toolbox
Support Package for OS Generic Video Interface. The correct files will be installed, depending on
your operating system.

The following table shows the support package name for each adaptor. In Add-On Explorer, select
your adaptor using the name listed in the table.

Adaptor Name Support Package Name in
Add-Ons

Contents

Windows Video (winvideo
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for OS Generic
Video Interface

MATLAB files to use Windows
Video, Macintosh Video, or
Linux Video hardware with the
toolbox. The correct OS files will
be installed, depending on your
system.

Kinect for Windows (kinect
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for Kinect® For
Windows Sensor

MATLAB files to use Kinect for
Windows V1 and V2 hardware
with the toolbox

Third party files – Kinect for
Windows Runtime

DALSA Sapera (dalsasapera
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for DALSA®

Sapera Hardware

MATLAB files to use DALSA
Sapera hardware with the
toolbox

4 Image Acquisition Support Packages

4-2

Adaptor Name Support Package Name in
Add-Ons

Contents

GigE Vision (gige adaptor on
videoinput object and
gigecam object)

Image Acquisition Toolbox
Support Package for GigE Vision
Hardware

MATLAB files to use GigE Vision
hardware with the toolbox

Matrox (matrox adaptor on
videoinput object and
matroxcam object)

Image Acquisition Toolbox
Support Package for Matrox®

Hardware

MATLAB files to use Matrox
hardware with the toolbox

DCAM (dcam adaptor on
videoinput object)

Image Acquisition Toolbox
Support Package for DCAM
Hardware

MATLAB files to use DCAM
hardware with the toolbox

Third party files – CMU DCAM
on Windows driver file

GenICam GenTL (gentl
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for GenICam
Interface

MATLAB files to use GenTL
hardware with the toolbox

Point Grey (pointgrey adaptor
on videoinput object)

Image Acquisition Toolbox
Support Package for Point Grey
Hardware

MATLAB files to use Point Grey
hardware with the toolbox

Third party files – Point Grey
FlyCapture

Linux Video (linuxvideo
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for OS Generic
Video Interface

MATLAB files to use Windows
Video, Macintosh Video, or
Linux Video hardware with the
toolbox. The correct OS files will
be installed, depending on your
system.

Macintosh Video (macvideo
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for OS Generic
Video Interface

MATLAB files to use Windows
Video, Macintosh Video, or
Linux Video hardware with the
toolbox. The correct OS files will
be installed, depending on your
system.

National Instruments (ni
adaptor on videoinput object)

Image Acquisition Toolbox
Support Package for National
Instruments™ Frame Grabbers

MATLAB files to use NI
hardware with the toolbox

Third party files – NI-IMAQ files

To use the cameras or frame grabbers you have been using with the toolbox, you must install the
support package for the adaptor that your camera uses. If you use multiple adaptors, you need to
install the support package for each one you use. For example, if you have a webcam on a Windows
system and a Matrox camera, you would need to install the Image Acquisition Toolbox Support
Package for OS Generic Video Interface for the winvideo adaptor for the webcam and the Image
Acquisition Toolbox Support Package for Matrox Hardware for the matrox adaptor.

 Image Acquisition Support Packages for Hardware Adaptors

4-3

Go to MATLAB Add-Ons and use the adaptor name in the table to install the correct package(s) that
you need. To install more than one package, select the support packages in the Add-On Explorer one
at a time.

“Installing the Support Packages for Image Acquisition Toolbox Adaptors” on page 4-5 describes
how to install the Image Acquisition Toolbox support packages.

4 Image Acquisition Support Packages

4-4

Installing the Support Packages for Image Acquisition Toolbox
Adaptors

With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately in
support packages via MATLAB Add-Ons. All of the support packages contain the necessary MATLAB
files to use the toolbox with your adaptor. Some also contain third-party files, such as drivers or
camera set-up utilities.

To use the cameras or frame grabbers you have been using with the toolbox, you must install the
support package for the adaptor that your camera uses. If you use multiple adaptors, you need to
install the support package for each one you use. For example, if you have a Webcam on a Windows
system and a Matrox camera, you would need to install the Image Acquisition Toolbox Support
Package for OS Generic Video Interface for the winvideo adaptor for the Webcam and the Image
Acquisition Toolbox Support Package for Matrox Hardware for the matrox adaptor.

To use the Image Acquisition Toolbox for acquisition from any generic video interface, you need to
install the Image Acquisition Toolbox Support Package for OS Generic Video Interface. This includes
any cameras that use the Windows Video (winvideo), Macintosh Video (macvideo), or Linux Video
(linuxvideo) adaptors. The correct files will be installed, depending on your operating system.

All video interface adaptors are available through the Hardware Support Packages. Using this
installation process, you download and install the following file(s) on your host computer:

• Image Acquisition Toolbox adaptor files for your selected adaptor
• Third-party files if your support package includes them, depending on the adaptor (see the table in

“Image Acquisition Support Packages for Hardware Adaptors” on page 4-2)

Install a Support Package

To install a support package:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the Add-On Explorer, scroll to the Hardware Support Packages section, and click show all
to find your support package.

3 You can refine the list by selecting Imaging/Cameras in the Refine by Hardware Type section
on the left side of the Explorer.

4 Select the support package for your adaptor. The table in “Image Acquisition Support Packages
for Hardware Adaptors” on page 4-2 shows the names of the support packages for each adaptor
type.

Uninstall or Update a Support Package

You can also use Add-Ons to uninstall or update support packages.

To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-Ons.

To update existing support packages:

 Installing the Support Packages for Image Acquisition Toolbox Adaptors

4-5

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for Updates >
Hardware Support Packages.

For more information about using Add-On Explorer, see “Get and Manage Add-Ons”.

4 Image Acquisition Support Packages

4-6

Install the MATLAB Support Package for USB Webcams
You can use MATLAB Webcam support to bring live images from any USB Video Class (UVC) Webcam
into MATLAB. This includes Webcams that may be built into laptops or other devices, as well as
Webcams that plug into your computer via a USB port. To use the Webcam feature, you must install
the USB Webcams support package.

Webcam support is available through MATLAB Add-Ons. Using this installation process, you download
and install the following files on your host computer:

• MATLAB files for Webcam support
• An example that shows how to acquire images using a Webcam
• The USB Webcams support package documentation

To install the support package:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the Add-On Explorer, scroll to the Hardware Support Packages section, and click show all
to find your support package.

3 Refine the list by selecting Imaging/Cameras in the Refine by Hardware Type section on the
left side of the Explorer.

4 In the Imaging/Cameras list, select the MATLAB Support Package for USB Webcams.

 Install the MATLAB Support Package for USB Webcams

4-7

Connecting to Hardware

To connect to an image acquisition device from within MATLAB, you must create a video input object.
This object represents the connection between MATLAB and the device. You can use object properties
to control various aspects of the acquisition. Before you can create the object, you need several
pieces of information about the device that you want to connect to.

• “Getting Hardware Information” on page 5-2
• “Creating Image Acquisition Objects” on page 5-6
• “Configuring Image Acquisition Object Properties” on page 5-12
• “Using Tab Completion for Functions” on page 5-17
• “Use Advanced Property Support in the GigE Vision and GenICam GenTL Interfaces”

on page 5-18
• “Use Advanced Property Support with Point Grey Camera” on page 5-22
• “Starting and Stopping a Video Input Object” on page 5-25
• “Deleting Image Acquisition Objects” on page 5-28
• “Saving Image Acquisition Objects” on page 5-30
• “Image Acquisition Toolbox Properties” on page 5-31

5

Getting Hardware Information
In this section...
“Getting Hardware Information” on page 5-2
“Determining the Device Adaptor Name” on page 5-2
“Determining the Device ID” on page 5-3
“Determining Supported Video Formats” on page 5-4

Getting Hardware Information
To connect to an image acquisition device from within MATLAB, you must create a video input object.
This object represents the connection between MATLAB and the device. You can use object properties
to control various aspects of the acquisition. Before you can create the object, you need several
pieces of information about the device that you want to connect to.

To access an image acquisition device, the toolbox needs several pieces of information:

• The name of the adaptor the toolbox uses to connect to the image acquisition device
• The device ID of the device you want to access
• The video format of the video stream or, optionally, a device configuration file (camera file)

You use the imaqhwinfo function to retrieve this information, as described in the following
subsections.

Note When using imaqhwinfo to get information about a device, especially devices that use a Video
for Windows (VFW) driver, you might encounter dialog boxes reporting an assertion error. Make sure
that the software drivers are installed correctly and that the acquisition device is connected to the
computer.

Determining the Device Adaptor Name
An adaptor is the software the toolbox uses to communicate with an image acquisition device via its
device driver. The toolbox includes adaptors for some vendors of image acquisition equipment and for
particular classes of image acquisition devices. For the latest information about supported hardware,
visit the Image Acquisition Toolbox product page at the MathWorks Web site (www.mathworks.com/
products/image-acquisition).

To determine which adaptors are available on your system, call the imaqhwinfo function. The
imaqhwinfo function returns information about the toolbox software and lists the adaptors available
on the system in the InstalledAdaptors field. In this example, there are two adaptors available on
the system.

imaqhwinfo
ans =

 InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '7.4 (R2007a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '2.1 (R2007a)'

5 Connecting to Hardware

5-2

https://www.mathworks.com/products/image-acquisition.html
https://www.mathworks.com/products/image-acquisition.html

Note While every adaptor supported by the Image Acquisition Toolbox software is installed with the
toolbox, imaqhwinfo lists only adaptors in the InstalledAdaptors field that are loadable. That is,
the device drivers required by the vendor are installed on the system. Note, however, that inclusion in
the InstalledAdaptors field does not necessarily mean that an adaptor is connected to a device.

Determining the Device ID
The adaptor assigns a unique number to each device with which it can communicate. The adaptor
assigns the first device it detects the device ID 1, the second it detects the device ID 2, and so on.

To find the device ID of a particular image acquisition device, call the imaqhwinfo function,
specifying the name of the adaptor as the only argument. When called with this syntax, imaqhwinfo
returns a structure containing information about all the devices available through the specified
adaptor.

In this example, the imaqhwinfo function returns information about all the devices available through
the Matrox adaptor.

info = imaqhwinfo('matrox');
info =

 AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '2.1 (R2007a)'
 AdaptorName: 'matrox'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

The fields in the structure returned by imaqhwinfo provide the following information.

Field Description
AdaptorDllName Character vector that identifies the name of the adaptor dynamic link

library (DLL)
AdaptorDllVersion Information about the version of the adaptor DLL
AdaptorName Name of the adaptor
DeviceIDs Cell array containing the device IDs of all the devices accessible

through this adaptor
DeviceInfo Array of device information structures. See “Getting More

Information About a Particular Device” on page 5-3 for more
information.

Getting More Information About a Particular Device

If an adaptor provides access to multiple devices, you might need to find out more information about
the devices before you can select a device ID. The DeviceInfo field is an array of device information
structures. Each device information structure contains detailed information about a particular device
available through the adaptor.

To view the information for a particular device, you can use the device ID as a reference into the
DeviceInfo structure array. Call imaqhwinfo again, this time specifying a device ID as an
argument.

dev_info = imaqhwinfo('matrox',1)

 Getting Hardware Information

5-3

dev_info =

 DefaultFormat: 'M_RS170'
 DeviceFileSupported: 1
 DeviceName: 'Orion'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('matrox', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('matrox', 1)'
 SupportedFormats: {1x10 cell}

The fields in the device information structure provide the following information about a device.

Field Description
DefaultFormat Character vector that identifies the video format used by the

device if none is specified at object creation time
DeviceFileSupported If set to 1, the device supports device configuration files;

otherwise 0. See “Using Device Configuration Files (Camera
Files)” on page 5-9 for more information.

DeviceName Descriptive character vector, assigned by the adaptor, that
identifies the device

DeviceID ID assigned to the device by the adaptor
VideoInputConstructor Default syntax you can use to create a video input object to

represent this device. See “Creating Image Acquisition Objects”
on page 5-6 for more information.

VideoDeviceConstructor Default syntax you can use to create a VideoDevice System
object to represent this device.

SupportedFormats Cell array of character vectors that identify the video formats
supported by the device. See “Determining Supported Video
Formats” on page 5-4 for more information.

Determining Supported Video Formats
The video format specifies the characteristics of the images in the video stream, such as the image
resolution (width and height), the industry standard used, and the size of the data type used to store
pixel information.

Image acquisition devices typically support multiple video formats. You can specify the video format
when you create the video input object to represent the connection to the device. See “Creating
Image Acquisition Objects” on page 5-6 for more information.

Note Specifying the video format is optional; the toolbox uses one of the supported formats as the
default.

To determine which video formats an image acquisition device supports, look in the
SupportedFormats field of the DeviceInfo structure returned by the imaqhwinfo function. To
view the information for a particular device, call imaqhwinfo, specifying the device ID as an
argument.

dev_info = imaqhwinfo('matrox',1)

5 Connecting to Hardware

5-4

dev_info =

 DefaultFormat: 'M_RS170'
 DeviceFileSupported: 1
 DeviceName: 'Orion'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('matrox', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('matrox', 1)'
 SupportedFormats: {1x10 cell}

The DefaultFormat field lists the default format selected by the toolbox. The SupportedFormats
field is a cell array containing character vectors that identify all the supported video formats. The
toolbox assigns names to the formats based on vendor-specific terminology. If you want to specify a
video format when you create an image acquisition object, you must use one of the character vectors
in this cell array. See “Creating Image Acquisition Objects” on page 5-6 for more information.

celldisp(dev_info.SupportedFormats)

ans{1} =

M_RS170

ans{2} =

M_RS170_VIA_RGB

ans{3} =

M_CCIR

ans{4} =

M_CCIR_VIA_RGB

ans{5} =

M_NTSC

ans{6} =

M_NTSC_RGB

ans{7} =

M_NTSC_YC

ans{8} =

M_PAL

ans{9} =

M_PAL_RGB

ans{10} =

M_PAL_YC

 Getting Hardware Information

5-5

Creating Image Acquisition Objects
In this section...
“Types of Objects” on page 5-6
“Video Input Objects” on page 5-6
“Video Source Objects” on page 5-6
“Creating a Video Input Object” on page 5-7
“Specifying the Video Format” on page 5-8
“Specifying the Selected Video Source Object” on page 5-10
“Getting Information About a Video Input Object” on page 5-11

Types of Objects
After you get information about your image acquisition hardware, described in “Getting Hardware
Information” on page 5-2, you can establish a connection to the device by creating an image
acquisition object. The toolbox uses two types of image acquisition objects:

• Video input object
• Video source object

Video Input Objects
A video input object represents the connection between MATLAB and a video acquisition device at a
high level. You must create the video input object using the videoinput function. See “Creating a
Video Input Object” on page 5-7 for more information.

Video Source Objects
When you create a video input object, the toolbox automatically creates one or more video source
objects associated with the video input object. Each video source object represents a collection of one
or more physical data sources that are treated as a single entity. The number of video source objects
the toolbox creates depends on the device and the video format you specify.

At any one time, only one of the video source objects, called the selected source, can be active. This is
the source used for acquisition. The toolbox selects one of the video source objects by default, but you
can change this selection. See “Specifying the Selected Video Source Object” on page 5-10 for more
information.

The following figure illustrates how a video input object acts as a container for one or more video
source objects.

5 Connecting to Hardware

5-6

Relationship of Video Input Objects and Video Source Objects

For example, a Matrox frame grabber device can support eight physical connections, which Matrox
calls channels. These channels can be configured in various ways, depending upon the video format.
If you specify a monochrome video format, such as RS170, the toolbox creates eight video source
objects, one object for each of the eight channels on the device. If you specify a color video format,
such as NTSC RGB, the Matrox device uses three physical channels to represent one RGB connection,
where each physical connection provides the red data, green data, and blue data separately. With this
format, the toolbox only creates two video source objects for the same device.

Creating a Video Input Object
To create a video input object, call the videoinput function specifying the adaptor name, device ID,
and video format. You retrieved this information using the imaqhwinfo function (described in
“Getting Hardware Information” on page 5-2). The only required argument is the adaptor name. The
toolbox can use default values for the device ID and video format.

This example creates a video input object to represent the connection to a Matrox image acquisition
device. The imaqhwinfo function includes the default videoinput syntax in the
VideoInputConstructor field of the device information structure.

vid = videoinput('matrox');

This syntax uses the default video format listed in the DefaultFormat field of the data returned by
imaqhwinfo. You can optionally specify the video format. See “Specifying the Video Format” on page
5-8 for more information.

Viewing a Summary of a Video Input Object

To view a summary of the characteristics of the video input object you created, enter the variable
name you assigned to the object at the command prompt. For example, this is the summary for the
object vid.

vid

 Creating Image Acquisition Objects

5-7

The items in this list correspond to the numbered elements in the object summary:

1 The title of the summary includes the name of the image acquisition device this object
represents. In the example, this is a Matrox Orion frame grabber.

2 The Acquisition Source section lists the name of all the video source objects associated with this
video input object. For many objects, this list might only contain one video source object. In the
example, the Matrox device supports eight physical input channels and, with the default video
format, the toolbox creates a video source object for each connection. For an example showing
the video source objects created with another video format, see “Specifying the Video Format” on
page 5-8.

3 The Acquisition Parameters section lists the values of key video input object properties. These
properties control various aspects of the acquisition, such as the number of frames to acquire
and the location where acquired frames are stored. For information about these properties, see
“Acquiring Image Data” on page 6-2.

4 The Trigger Parameters section lists the trigger type configured for the object and the number of
times the trigger is to be executed. Trigger execution initiates data logging, and the toolbox
supports several types of triggers. The example object is configured by default with an immediate
trigger. For more information about configuring triggers, see “Specifying the Trigger Type” on
page 6-8.

5 The Status section lists the current state of the object. A video input object can be in one of
several states:

• Running or not running (stopped)
• Logging or not logging
• Previewing or not previewing

In the example, the object describes its state as Waiting for START. This indicates it is not
running. For more information about the running state, see “Starting and Stopping a Video Input
Object” on page 5-25. This section also reports how many frames of data have been acquired
and how many frames are available in the buffer where the toolbox stores acquired frames. For
more information about these parameters, see “Controlling Logging Parameters” on page 6-19.

Specifying the Video Format
You can optionally specify the format of the video stream when you create a video input object as a
third argument to the videoinput function. This argument can take two forms:

5 Connecting to Hardware

5-8

• A character vector specifying a video format
• A name of a device configuration file, also known as a camera file

The following sections describe these options. If you do not specify a video format, the videoinput
function uses one of the video formats supported by the device. For Matrox and Data Translation®

devices, it chooses the RS170 video format. For Windows devices, it uses the first RGB format in the
list of supported formats or, if no RGB formats are supported, the device's default format.

Using a Video Format Character Vector

To specify a video format as a character vector, use the imaqhwinfo function to determine the list of
supported formats. The imaqhwinfo function returns this information in the SupportedFormats
field of the device information structure. See “Determining Supported Video Formats” on page 5-4 for
more information.

In this example, each of the character vectors is a video format supported by a Matrox device.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
 Columns 1 through 4

 'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

 Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

 Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

For Matrox devices, the toolbox uses the RS170 format as the default. (To find out which is the
default video format, look in the DefaultFormat field of the device information structure returned
by the imaqhwinfo function.)

Note For Matrox devices, the M_NTSC_RGB format represents a component video format.

This example creates a video input object, specifying a color video format.

vid2 = videoinput('matrox', 1,'M_NTSC_RGB');

Using Device Configuration Files (Camera Files)

For some devices, you can use a device configuration file, also known as a camera file, to specify the
video format as well as other configuration settings. Image acquisition device vendors supply these
device configuration files.

Note The toolbox ignores hardware trigger configurations included in a device configuration file. To
configure a hardware trigger, you must use the toolbox triggerconfig function. See “Using a
Hardware Trigger” on page 6-12 for more information.

 Creating Image Acquisition Objects

5-9

For example, with Matrox frame grabbers, you can download digitizer configuration format (DCF)
files, in their terminology. These files configure their devices to support particular cameras.

Some image acquisition device vendors provide utility programs you can use to create a device
configuration file or edit an existing one. See your hardware vendor's documentation for more
information.

To determine if your image acquisition device supports device configuration files, check the value of
the DeviceFileSupported field of the device information structure returned by imaqhwinfo. See
“Getting More Information About a Particular Device” on page 5-3 for more information.

When you use a device configuration file, the value of the VideoFormat property of the video input
object is the name of the file, not a video format character vector.

This example creates a video input object specifying a Matrox device configuration file as an
argument.

Specifying the Selected Video Source Object
When you create a video input object, the toolbox creates one or more video source objects
associated with the video input object. The number of video source objects created depends on the
device and the video format. The Source property of the video input object lists these video source
objects.

To illustrate, this example lists the video source objects associated with the video input object vid.

vid.Source
 Display Summary for Video Source Object Array:

 Index: SourceName: Selected:
 1 'CH0' 'on'
 2 'CH1' 'off'
 3 'CH2' 'off'
 4 'CH3' 'off'
 5 'CH4' 'off'
 6 'CH5' 'off'
 7 'CH6' 'off'
 8 'CH7' 'off'

5 Connecting to Hardware

5-10

By default, the video input object makes the first video source object in the array the selected source.
To use another video source, change the value of the SelectedSourceName property.

This example changes the currently selected video source object from CH0 to CH1 by setting the value
of the SelectedSourceName property.

vid.SelectedSourceName = 'CH1';

Note The getselectedsource function returns the video source object that is currently selected at
the time the function is called. If you change the value of the SelectedSourceName property, you
must call the getselectedsource function again to retrieve the new selected video source object.

Getting Information About a Video Input Object
After creating a video input object, you can get information about the device it represents using the
imaqhwinfo function. When called with a video input object as an argument, imaqhwinfo returns a
structure containing information about the object such as the name of the adaptor, name of the
device, video resolution, and details of the vendor's device driver and version.

out = imaqhwinfo(vid)
out =

 AdaptorName: 'winvideo'
 DeviceName: 'IBM PC Camera'
 MaxHeight: 96
 MaxWidth: 128
 NativeDataType: 'uint8'
 TotalSources: 1
 VendorDriverDescription: 'Windows WDM Compatible Driver'
 VendorDriverVersion: 'DirectX 9.0'

 Creating Image Acquisition Objects

5-11

Configuring Image Acquisition Object Properties
In this section...
“About Image Acquisition Object Properties” on page 5-12
“Viewing the Values of Object Properties” on page 5-12
“Viewing the Value of a Particular Property” on page 5-14
“Getting Information About Object Properties” on page 5-14
“Setting the Value of an Object Property” on page 5-15

About Image Acquisition Object Properties
The video input object and the video source object both support properties that enable you to control
characteristics of the video image and how it is acquired.

The video input object properties control aspects of an acquisition that are common to all image
acquisition devices. For example, you can use the FramesPerTrigger property to specify the
amount of data you want to acquire.

The video source object properties control aspects of the acquisition associated with a particular
source. The set of properties supported by a video source object varies with each device. For
example, some image acquisition devices support properties that enable you to control the quality of
the image being produced, such as Brightness, Hue, and Saturation.

With either type of object, you can use the same toolbox functions to

• View a list of all the properties supported by the object, with their current values
• View the value of a particular property
• Get information about a property
• Set the value of a property

Note Three video input object trigger properties require the use of a special configuration function.
For more information, see “Setting Trigger Properties” on page 5-16.

Viewing the Values of Object Properties
To view all the properties of an image acquisition object, with their current values, use the get
function. You can also use the inspect function to view a list of object properties in the Property
Inspector window, where you can also edit their values.

This example uses the get function to display a list of all the properties of the video input object vid.
“Viewing the Properties of a Video Source Object” on page 5-13 describes how to do this for video
source objects.

If you do not specify a return value, the get function displays the object properties in four categories:
General Settings, Callback Function Settings, Trigger Settings, and Acquisition Sources.

get(vid)
 General Settings:

5 Connecting to Hardware

5-12

 DeviceID = 1
 DiskLogger = []
 DiskLoggerFrameCount = 0
 EventLog = [1x0 struct]
 FrameGrabInterval = 1
 FramesAcquired = 0
 FramesAvailable = 0
 FramesPerTrigger = 10
 Logging = off
 LoggingMode = memory
 Name = M_RS170-matrox-1
 NumberOfBands = 1
 Previewing = off
 ReturnedColorSpace = grayscale
 ROIPosition = [0 0 640 480]
 Running = off
 Tag =
 Timeout = 10
 Type = videoinput
 UserData = []
 VideoFormat = M_RS170
 VideoResolution = [640 480]

 Callback Function Settings:
 ErrorFcn = @imaqcallback
 FramesAcquiredFcn = []
 FramesAcquiredFcnCount = 0
 StartFcn = []
 StopFcn = []
 TimerFcn = []
 TimerPeriod = 1
 TriggerFcn = []

 Trigger Settings:
 InitialTriggerTime = [0 0 0 0 0 0]
 TriggerCondition = none
 TriggerFrameDelay = 0
 TriggerRepeat = 0
 TriggersExecuted = 0
 TriggerSource = none
 TriggerType = immediate

 Acquisition Sources:
 SelectedSourceName = CH0
 Source = [1x8 videosource]

Viewing the Properties of a Video Source Object

To view the properties supported by the video source object (or objects) associated with a video input
object, use the getselectedsource function to retrieve the currently selected video source object.
This example lists the properties supported by the video source object associated with the video input
object vid. Note the device-specific properties that are included.

Note The video source object for your device might not include device-specific properties. For
example, devices accessed with the 'winvideo' adaptor, such as webcams, that use a Video for

 Configuring Image Acquisition Object Properties

5-13

Windows (VFW) driver, may not provide a way for the toolbox to programmatically query for device
properties. Use the configuration tools provided by the manufacturer to configure these devices.

get(getselectedsource(vid))
 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = CH0
 Tag =
 Type = videosource

 Device Specific Properties:
 InputFilter = lowpass
 UserOutputBit3 = off
 UserOutputBit4 = off
 XScaleFactor = 1
 YScaleFactor = 1

Viewing the Value of a Particular Property
To view the value of a particular property of an image acquisition object, access the value of the
property as you would a field in a MATLAB structure.

This example illustrates how to access a property by referencing the object as if it were a MATLAB
structure using dot notation.

vid.Previewing

ans =

off

Getting Information About Object Properties
To get information about a particular property, see “Image Acquisition Toolbox Properties” on page 5-
31. You can also get information about a particular property at the command line by using the
propinfo or imaqhelp functions.

The propinfo function returns a structure that contains information about the property such as its
data type, default value, and a list of all possible values, if the property supports such a list. This
example uses propinfo to get information about the LoggingMode property.

propinfo(vid,'LoggingMode')

ans =

 Type: 'character vector'
 Constraint: 'enum'
 ConstraintValue: {'memory' 'disk' 'disk&memory'}
 DefaultValue: 'memory'
 ReadOnly: 'whileRunning'
 DeviceSpecific: 0

The imaqhelp function returns reference information about the property with a complete
description. This example uses imaqhelp to get information about the LoggingMode property.

5 Connecting to Hardware

5-14

imaqhelp(vid,'LoggingMode')

Setting the Value of an Object Property
To set the value of a particular property of an image acquisition object, you assign the value to the
property as you would a field in a MATLAB structure, using dot notation.

Note Because some properties are read-only, only a subset of all video input and video source
properties can be set.

This example sets the value of a property by assigning the value to the object as if it were a MATLAB
structure.

vid.LoggingMode = 'disk';

% Verify the property setting.
vid.LoggingMode

ans =

disk

Viewing a List of All Settable Object Properties

To view a list of all the properties of a video input object or video source object that can be set, use
the set function.

set(vid)

 Configuring Image Acquisition Object Properties

5-15

Setting Trigger Properties

The values of certain trigger properties, TriggerType, TriggerCondition, and TriggerSource,
are interrelated. For example, some TriggerCondition values are only valid with specific values of
the TriggerType property.

To ensure that you specify only valid combinations for the values of these properties, you must use
two functions:

• The triggerinfo function returns all the valid combinations of values for the specified video
input object.

• The triggerconfig function sets the values of these properties.

For more information, see “Specifying Trigger Type, Source, and Condition” on page 6-6.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

5 Connecting to Hardware

5-16

Using Tab Completion for Functions
To get a list of options you can use on the function, press the Tab button after entering a function on
the command line. The list expands and you can scroll to choose a property or value. For example,
when you create the videoinput object, you can get a list of supported formats:

v = videoinput('winvideo',1,

When you press Tab after the Device ID (1 in this example), the list of formats displays, as shown
here.

If you pressed Tab just after the first parentheses, a list of available adaptors would appear. The
format for the object constructor function is:

v = videoinput('adaptorName',deviceID,'VideoFormat')

When you press Tab where a field should appear, you get the list of options for that field.

You can also get the values for property-value pairs, which can be used on the videoinput function
after the first three required fields. For example,

v = videoinput('winvideo',1,'RGB1024x768','LoggingMode',

Press Tab after typing LoggingMode to get the possible values for that property, which are
'memory', 'disk', and 'disk&memory'.

Many of the other toolbox functions also have tab completion. For example, when using the getdata
function you can specify the data type using tab completion.

data = getdata(obj,10,

Press Tab after typing the number of frames (10 in this example) to get the possible values for the
data types, such as 'uint8' or 'double', since data type is the next input getdata takes after
number of frames.

 Using Tab Completion for Functions

5-17

Use Advanced Property Support in the GigE Vision and
GenICam GenTL Interfaces

In this section...
“Advanced Property Support” on page 5-18
“Change Properties While the Acquisition Is Running” on page 5-18
“Dynamic Accessibility and Readability” on page 5-19
“Dynamic Constraints” on page 5-19
“Grouped Selector Properties” on page 5-20

Advanced Property Support
The Image Acquisition Toolbox has added GenICam property enhancements for the GigE Vision
(gige) and GenICam GenTL (gentl) adaptors used with the videoinput object in R2016a. These
features were already included in the gigecam object.

• Ability to change properties while the acquisition is running
• Dynamic accessibility and readability
• Dynamic constraints
• Grouped selector properties

Change Properties While the Acquisition Is Running
This ability is useful for properties that you want to change dynamically, such as exposure time. For
example, you can now do this:

% Create the videoinput object using the GigE adaptor
vid = videoinput('gige')

% Get the video source
src = getselectedsource(vid);

% Set the frames per trigger on the source
vid.FramesPerTrigger = Inf;

% Start acquiring frames
start(vid)

% Change the exposure time during the acquisition
src.ExposureTime = 4;

Previously, changing the exposure time after starting the acquisition resulted in an error.

Note This workflow is not supported in the Image Acquisition Explorer. While the acquisition is
running, you can not change a property on the Device Properties tab.

5 Connecting to Hardware

5-18

Dynamic Accessibility and Readability
Device-specific properties, or camera GenICam properties, are now dynamically accessible. In
previous releases, camera GenICam properties that were not accessible were hidden. If you display
the device-specific properties using the disp, get or propinfo functions, properties that previously
did not show up now show up with labels.

The propinfo function includes a new field called Accessible, which is a read-only boolean
property. A disp on a property that has Accessible set to 0 results in “Currently not accessible.” To
enable accessibility, set Accessible to 1. For example, if you have the ReverseY property set to
Accessible, the following:

 propinfo(src,'ReverseY')

would result in a disp showing:

 Accessible: 1

The same is true for the ReadOnly property. Readability is now dynamic and the propinfo function
shows a ReadOnly property as either 'notCurrently', if it is writable, or 'currently', if it is
read-only. The example in the Dynamic Constraints section demonstrates the dynamic use of this
property.

You can view the source properties to see if any properties are currently not accessible. In this
example, for the part of the disp shown below, AcquisitionFrameCount and BalanceRatioRaw
are currently not accessible.

>> src = vid.Source

src =

 Display Summary for Video Source Object:

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag = [0x0 character vector]
 Type = videosource

 Device Specific Properties:
 AcquisitionFrameCount = (Currently not accessible)
 AcquisitionFrameRate = 4.5
 AcquisitionFrameRateAuto = Off
 AcquisitionFrameRateEnabled = True
 BalanceRatioRaw = (Currently not accessible)
 BinningHorizontal = 1
 BinningVertical = 1
 BlackLevel = 1.001
 ...

Dynamic Constraints
If you change a property that results in a change of possible values, or constraint change, for another
property, the other property’s constraint values are updated dynamically. Consider a camera that has

 Use Advanced Property Support in the GigE Vision and GenICam GenTL Interfaces

5-19

an automatic sharpness setting that you can set to Continuous to automatically adjust the sharpness
or set to Off. The automatic sharpness property then affects the related Sharpness property. In this
example, when SharpnessAuto is set to Continuous, a disp of the Sharpness property shows the
constrained values and that it is not able to be set.

>> propinfo(src, 'SharpnessAuto')

ans =

 Type: 'character vector'
 Constraint: 'enum'
 ConstraintValue: {'Continuous' 'Off'}
 DefaultValue: 'Continuous'
 ReadOnly: 'notCurrently'
 DeviceSpecific: 1
 Accessible: 1

>> propinfo(src, 'Sharpness')

ans =

 Type: 'integer'
 Constraint: 'bounded'
 ConstraintValue: [1532 1532]
 DefaultValue: 1532
 ReadOnly: 'currently'
 DeviceSpecific: 1
 Accessible: 1

If you then set the SharpnessAuto property to Off, a second disp of the Sharpness property shows
that the constrained values have dynamically updated, and that it is now able to be set (no longer
read-only).

>> src.SharpnessAuto = 'Off'
>> propinfo(src, 'Sharpness')

ans =

 Type: 'integer'
 Constraint: 'bounded'
 ConstraintValue: [0 4095]
 DefaultValue: 1532
 ReadOnly: 'notCurrently'
 DeviceSpecific: 1
 Accessible: 1

Grouped Selector Properties
In both the Image Acquisition Explorer and the command line, selector properties are now
grouped. In the tool, you can see the groupings in the Device Properties tab. In the property display
on the command line, the related properties are grouped – the selector property is listed, with its
possible values appearing below it.

For example, in previous versions of the toolbox, for a GainSelector with possible values of Red,
Blue, and Green and a Gain property, the gain properties displayed as follows:

5 Connecting to Hardware

5-20

>> vid = videoinput('gige')
>> src = getselectedsource(vid)
...
...
RedGain = 0.4
BlueGain = 0.2
GreenGain = 0.1
...

They now display as separate values on one selector property instead:

>> vid = videoinput('gige')
>> src = getselectedsource(vid)
...
...
GainSelector = 'Red'
Gain = 0.2
...

Compatibility Considerations

The grouping of selector properties results in a compatibility consideration starting in R2016a
because of the change in how selector properties are displayed, read, or written. There are now
fewer properties since some are shown as a single selector property with separate values, whereas
they used to be separate properties.

If you have any MATLAB code written prior to R2016a which references the previous, separate
properties, you need to change the code to reflect them as values on the selector property. Setting
and getting properties that belong to a selector using the previous composite-name style is no longer
supported. For example, RedGain no longer works. Instead use GainSelector set to Red, as shown
in the example.

To set a property value, first set the selector value, then set the property value:

src.GainSelector = 'Green';
src.Gain = 0.1;

 Use Advanced Property Support in the GigE Vision and GenICam GenTL Interfaces

5-21

Use Advanced Property Support with Point Grey Camera
Use advanced property support with Point Grey cameras to change properties while the acquisition is
running. Additionally, when changing the value of a property, you also dynamically update the
constraint values of other properties that depend on it.

Change Properties While the Acquisition Is Running
You can change the value of the video source property of a Point Grey camera while image acquisition
is running. This ability is useful for device-specific properties that you want to change dynamically,
such as brightness, exposure, or frame rate. In this example, start acquisition from the videoinput
object and then set the Exposure property.

Create the videoinput object using the Point Grey adaptor and get the video source.

vid = videoinput(“pointgrey”);
src = vid.Source;

Set the number of frames per trigger on the source.

vid.FramesPerTrigger = Inf;

Start acquiring frames.

start(vid)

View the Exposure property information to determine whether the property can be changed while
acquisition is running.

propinfo(src,"Exposure")

ans =

 struct with fields:

 Type: 'double'
 Constraint: 'bounded'
 ConstraintValue: [-7.5850 2.4136]
 DefaultValue: -0.0614
 ReadOnly: 'never'
 DeviceSpecific: 1
 Accessible: 1

Since ReadOnly is 'never', you can change this property during acquisition. The current value is
-0.0614 and the maximum and minimum constraints are [-7.5850 2.4136].

Change the value of the Exposure property during the acquisition.

src.Exposure = 2;

Previously, changing the exposure after starting the acquisition resulted in an error.

Stop the image acquisition when you are done.

stop(vid)

5 Connecting to Hardware

5-22

Note This workflow is not supported in the Image Acquisition Explorer. While the acquisition is
running, you can not change a property on the Device Properties tab.

Update Property Constraints Dynamically
If you change a property that results in a change of possible values, or constraint change, for another
property, the constraint values of the other property are updated dynamically. Consider a Point Grey
camera that has a region of interest that is already set to [0 0 612 512]. The values limit the
FrameRate property to a specific minimum and maximum value, depending on the ROIPosition
value. Changing the region of interest to a lower value increases the FrameRate property
constraints. In this example, you set ROIPosition to [0 0 320 240], and you call propinfo on
the FrameRate property to show the updated property constraint values.

Create the videoinput object using the Point Grey adaptor and get the video source.

vid = videoinput(“pointgrey”);
src = vid.Source;

View the region of interest.

vid.ROIPosition

ans =

 0 0 612 512

View the FrameRate property information.

propinfo(src,"FrameRate")

ans =

 struct with fields:

 Type: 'double'
 Constraint: 'bounded'
 ConstraintValue: [1 29]
 DefaultValue: 2.5000
 ReadOnly: 'never'
 DeviceSpecific: 1
 Accessible: 1

The minimum and maximum values for this property are [1 29].

Set the ROIPosition property to [0 0 320 240] and view the FrameRate property again to see
the updated values.

vid.ROIPosition = [0 0 320 240];
propinfo(src,"FrameRate")

ans =

 struct with fields:

 Use Advanced Property Support with Point Grey Camera

5-23

 Type: 'double'
 Constraint: 'bounded'
 ConstraintValue: [1 34]
 DefaultValue: 2.5000
 ReadOnly: 'never'
 DeviceSpecific: 1
 Accessible: 1

The minimum and maximum values are now [1 34] because the region of interest is lowered.

See Also
videoinput

More About
• “Use Advanced Property Support in the GigE Vision and GenICam GenTL Interfaces” on page 5-

18

5 Connecting to Hardware

5-24

Starting and Stopping a Video Input Object
When you create a video input object, you establish a connection between MATLAB and an image
acquisition device. However, before you can acquire data from the device, you must start the object,
using the start function.

start(vid);

When you start an object, you reserve the device for your exclusive use and lock the configuration.
Thus, certain properties become read only while running.

An image acquisition object stops running when any of the following conditions is met:

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are properties of the video
input object. For information about these properties, see “Acquiring Image Data” on page 6-2.

• A run-time error occurs.
• The object's Timeout value is reached.
• You issue the stop function.

When an object is started, the toolbox sets the object's Running property to 'on'. When an object is
not running, the toolbox sets the object's Running property to 'off'; this state is called stopped.

The following figure illustrates how an object moves from a running to a stopped state.

Transitions from Running to Stopped States

The following example illustrates starting and stopping an object:

1 Create an image acquisition object — This example creates a video input object for a webcam
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);
2 Verify that the image is in a stopped state — Use the isrunning function to determine the

current state of the video input object.

isrunning(vid)

 Starting and Stopping a Video Input Object

5-25

ans =

 0
3 Configure properties To illustrate object states, set the video input object's TriggerType

property to 'Manual'. To set the value of certain trigger properties, including the TriggerType
property, you must use the triggerconfig function. See “Setting the Values of Trigger
Properties” on page 6-6 for more information.

triggerconfig(vid, 'Manual')

Configure an acquisition that takes several seconds so that you can see the video input in logging
state.

vid.FramesPerTrigger = 100;
4 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)
5 Verify that the image is running but not logging — Use the isrunning and islogging

functions to determine the current state of the video input object. With manual triggers, the
video input object is in running state after being started but does not start logging data until a
trigger executes.

isrunning(vid)

ans =

 1

islogging(vid)

ans =

 0
6 Execute the manual trigger — Call the trigger function to execute the manual trigger.

trigger(vid)

While the acquisition is underway, check the logging state of the video input object.

islogging(vid)

ans =

 1

After it acquires the specified number of frames, the video input object stops running.

isrunning(vid)

ans =

 0
7 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

5 Connecting to Hardware

5-26

delete(vid)
clear vid

 Starting and Stopping a Video Input Object

5-27

Deleting Image Acquisition Objects
When you finish using your image acquisition objects, use the delete function to remove them from
memory. After deleting them, clear the variables that reference the objects from the MATLAB
workspace by using the clear function.

Note When you delete a video input object, all the video source objects associated with the video
input object are also deleted.

To illustrate, this example creates several video input objects and then deletes them.

1 Create several image acquisition objects — This example creates several video input objects
for a single webcam image acquisition device, specifying several different video formats. To run
this example on your system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);
vid2 = videoinput('winvideo',1,'RGB24_176x144');
vid3 = videoinput('winvideo',1,'YV12_352x288');

2 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

You can delete image acquisition objects one at a time, using the delete function.

delete(vid)

You can also delete all the video input objects that currently exist in memory in one call to
delete by using the imaqfind function. The imaqfind function returns an array of all the
video input objects in memory.

imaqfind

 Video Input Object Array:

 Index: Type: Name:
 1 videoinput RGB555_128x96-winvideo-1
 2 videoinput RGB24_176x144-winvideo-1
 3 videoinput YV12_352x288-winvideo-1

Nest a call to the imaqfind function within the delete function to delete all these objects from
memory.

delete(imaqfind)

Note that the variables associated with the objects remain in the workspace.

whos
 Name Size Bytes Class

 vid 1x1 1120 videoinput object
 vid2 1x1 1120 videoinput object
 vid3 1x1 1120 videoinput object
 vids 1x3 1280 videoinput object

These variables are not valid image acquisition objects.

5 Connecting to Hardware

5-28

isvalid(vid)

ans =
 0

To remove these variables from the workspace, use the clear command.

 Deleting Image Acquisition Objects

5-29

Saving Image Acquisition Objects
In this section...
“Using the save Command” on page 5-30
“Using the obj2mfile Command” on page 5-30

Using the save Command
You can save a video input object to a MAT-file just as you would any workspace variable by using the
save command. This example saves the video input object vid to the MAT-file myvid.mat.

save myvid vid

When you save a video input object, all the video source objects associated with the video input
object are also saved.

To load an image acquisition object that was saved to a MAT-file into the MATLAB workspace, use the
load command. For example, to load vid from MAT-file myvid.mat, use

load myvid

Note The values of read-only properties are not saved. When you load an image acquisition object
into the MATLAB workspace, read-only properties revert to their default values. To determine if a
property is read only, use the propinfo function or read the property reference page.

Using the obj2mfile Command
Another way to save a video input object is to create an M-file that contains the set of commands used
to create the video input object and configure its properties. You can use the obj2mfile function to
create such an M-file. When you execute the M-file, it can create a new video input object or reuses
an existing video input object, if one exists that has the same video format and adaptor.

5 Connecting to Hardware

5-30

Image Acquisition Toolbox Properties

The following properties are available in the toolbox.

• BayerSensorAlignment
• DeviceID
• DiskLogger
• DiskLoggerFrameCount
• ErrorFcn
• EventLog
• FrameGrabInterval
• FramesAcquired
• FramesAcquiredFcn
• FramesAcquiredFcnCount
• FramesAvailable
• FramesPerTrigger
• IgnoreDroppedFrames
• InitialTriggerTime
• Logging
• LoggingMode
• Name
• NumberOfBands
• NumDroppedFrames
• Parent
• PreviewFullBitDepth
• Previewing
• ReturnedColorSpace
• ROIPosition
• Running
• Selected
• SelectedSourceName
• Source
• SourceName
• StartFcn
• StopFcn
• Tag
• Timeout
• TimerFcn
• TimerPeriod

 Image Acquisition Toolbox Properties

5-31

• TriggerCondition
• TriggerFcn
• TriggerFrameDelay
• TriggerRepeat
• TriggersExecuted
• TriggerSource
• TriggerType
• Type
• UserData
• VideoFormat
• VideoResolution

5 Connecting to Hardware

5-32

Acquiring Image Data

6

Acquiring Image Data
The core of any image acquisition application is the data acquired from the input device. A trigger is
the event that initiates the acquisition of image frames, a process called logging. A trigger event
occurs when a certain condition is met. For some types of triggers, the condition can be the execution
of a toolbox function. For other types of triggers, the condition can be a signal from an external
source that is monitored by the image acquisition hardware.

The following topics describe how to configure and use the various triggering options supported by
the Image Acquisition Toolbox software and control other acquisition parameters.

• “Data Logging” on page 6-3
• “Setting the Values of Trigger Properties” on page 6-6
• “Specifying the Trigger Type” on page 6-8
• “Controlling Logging Parameters” on page 6-19
• “Waiting for an Acquisition to Finish” on page 6-27
• “Managing Memory Usage” on page 6-30
• “Logging Image Data to Disk” on page 6-32

6 Acquiring Image Data

6-2

Data Logging
In this section...
“Overview” on page 6-3
“Trigger Properties” on page 6-4

Overview
When a trigger occurs, the toolbox sets the object's Logging property to 'on' and starts storing the
acquired frames in a buffer in memory, a disk file, or both. When the acquisition stops, the toolbox
sets the object's Logging property to 'off'.

The following figure illustrates when an object moves into a logging state and the relation between
running and logging states.

Logging State Transitions

Note After Logging is set to 'off', it is possible that the object might still be logging data to disk.
To determine when disk logging is complete, check the value of the DiskLoggerFrameCount
property. For more information, see “Logging Image Data to Disk” on page 6-32.

The following figure illustrates a group of frames being acquired from the video stream and being
logged to memory and disk.

 Data Logging

6-3

Overview of Data Logging

Trigger Properties
The video input object supports several properties that you can use to configure aspects of trigger
execution. Some of these properties return information about triggers. For example, to find out when
the first trigger occurred, look at the value of the InitialTriggerTime property. Other properties
enable you to control trigger behavior. For example, you use the TriggerRepeat property to specify
how many additional times an object should execute a trigger.

The following table provides a brief description of all the trigger-related properties supported by the
video input object. For information about how to set these properties, see “Setting the Values of
Trigger Properties” on page 6-6.

Property Description
InitialTriggerTime Reports the absolute time when the first trigger executed.
TriggerCondition Specifies the condition that must be met for a trigger to be

executed. This property is always set to 'none' for immediate
and manual triggers.

TriggerFcn Specifies the callback function to execute when a trigger occurs.
For more information about callbacks, see “Using Events and
Callbacks” on page 8-2.

TriggerFrameDelay Specifies the number of frames to skip before logging data to
memory, disk, or both. For more information, see “Delaying Data
Logging After a Trigger” on page 6-24.

TriggerRepeat Specifies the number of additional times to execute a trigger. If
the value of TriggerRepeat is 0 (zero), the trigger executes but
is not repeated any additional times. For more information, see
“Specifying Multiple Triggers” on page 6-25.

TriggersExecuted Reports the number of triggers that have been executed.
TriggerSource Specifies the source to monitor for a trigger condition to be met.

This property is always set to 'none' for immediate and manual
triggers.

6 Acquiring Image Data

6-4

Property Description
TriggerType Specifies the type of trigger: 'immediate', 'manual', or

'hardware'. Use the triggerinfo function to determine
whether your image acquisition device supports hardware
triggers.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

 Data Logging

6-5

Setting the Values of Trigger Properties

In this section...
“About Trigger Properties” on page 6-6
“Specifying Trigger Type, Source, and Condition” on page 6-6

About Trigger Properties
Most trigger properties can be set in the same way you set any other image acquisition object
property: referencing the property as you would a field in a structure using dot notation. For
example, you can specify the value of the TriggerRepeat property, where vid is a video input
object created using the videoinput function.

vid.TriggerRepeat = Inf

For more information, see “Configuring Image Acquisition Object Properties” on page 5-12.

Some trigger properties, however, are interrelated and require the use of the triggerconfig
function to set their values. These properties are the TriggerType, TriggerCondition, and
TriggerSource properties. For example, some TriggerCondition values are only valid when the
value of the TriggerType property is 'hardware'.

Specifying Trigger Type, Source, and Condition
Setting the values of the TriggerType, TriggerSource, and TriggerCondition properties can
be a two-step process:

1 Determine valid configurations on page 6-6 of these properties by calling the triggerinfo
function.

2 Set the values of these properties by calling the triggerconfig function.

For an example of using these functions, see “Using a Hardware Trigger” on page 6-12.

Determining Valid Configurations

To find all the valid configurations of the TriggerType, TriggerSource, and TriggerCondition
properties, use the triggerinfo function, specifying a video input object as an argument.

config = triggerinfo(vid);

This function returns an array of structures, one structure for each valid combination of property
values. Each structure in the array is made up of three fields that contain the values of each of these
trigger properties. For example, the structure returned for an immediate trigger always has these
values:

 TriggerType: 'immediate'
 TriggerCondition: 'none'
 TriggerSource: 'none'

A device that supports hardware configurations might return the following structure.

6 Acquiring Image Data

6-6

 TriggerType: 'hardware'
 TriggerCondition: 'risingEdge'
 TriggerSource: 'TTL'

Note The character vectors used as the values of the TriggerCondition and TriggerSource
properties are device specific. Your device, if it supports hardware triggers, might support different
condition and source values.

Configuring Trigger Type, Source, and Condition Properties

To set the values of the TriggerType, TriggerSource, and TriggerCondition properties, you
must use the triggerconfig function. You specify the value of the property as an argument to the
function.

For example, this code sets the values of these properties for a hardware trigger.

triggerconfig(vid,'hardware','risingEdge','TTL')

If you are specifying a manual trigger, you only need to specify the trigger type value as an argument.

triggerconfig(vid,'manual')

You can also pass one of the structures returned by the triggerinfo function to the
triggerconfig function and set all three properties at once.

triggerconfig(vid, config(1))

See the triggerconfig function documentation for more information.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

 Setting the Values of Trigger Properties

6-7

Specifying the Trigger Type
In this section...
“Comparison of Trigger Types” on page 6-8
“Using an Immediate Trigger” on page 6-9
“Using a Manual Trigger” on page 6-10
“Using a Hardware Trigger” on page 6-12
“Setting DCAM-Specific Trigger Modes” on page 6-14

Comparison of Trigger Types
To specify the type of trigger you want to execute, set the value of the TriggerType property of the
video input object. You must use the triggerconfig function to set the value of this property. The
following table lists all the trigger types supported by the toolbox, with information about when to
use each type of trigger.

Comparison of Trigger Types
TriggerType Value TriggerSource and

TriggerCondition Values
Description

'immediate' Always 'none' The trigger occurs automatically, immediately
after the start function is issued. This is the
default trigger type. For more information, see
“Using an Immediate Trigger” on page 6-9.

'manual' Always 'none' The trigger occurs when you issue the trigger
function. A manual trigger can provide more
control over image acquisition. For example, you
can monitor the video stream being acquired,
using the preview function, and manually execute
the trigger when you observe a particular
condition in the scene. For more information, see
“Using a Manual Trigger” on page 6-10.

'hardware' Device-specific Hardware triggers are external signals that are
processed directly by the hardware. This type of
trigger is used when synchronization with another
device is part of the image acquisition setup or
when speed is required. A hardware device can
process an input signal much faster than software.
For more information, see “Using a Hardware
Trigger” on page 6-12.

Note Only a subset of image acquisition devices
supports hardware triggers. To determine the
trigger types supported by your device, see
“Determining Valid Configurations” on page 6-6.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For

6 Acquiring Image Data

6-8

information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Using an Immediate Trigger
To use an immediate trigger, simply create a video input object. Immediate triggering is the default
trigger type for all video input objects. With an immediate trigger, the object executes the trigger
immediately after you start the object running with the start command. The following figure
illustrates an immediate trigger.

Immediate Trigger

The following example illustrates how to use an immediate trigger:

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('matrox',1);

Verify that the object has not acquired any frames.

vid.FramesAcquired
ans =

 0
2 Configure properties — To use an immediate trigger, you do not have to configure the

TriggerType property because 'immediate' is the default trigger type. You can verify this by
using the triggerconfig function to view the current trigger configuration or by viewing the
video input object's properties.

triggerconfig(vid)
ans =

 TriggerType: 'immediate'

 Specifying the Trigger Type

6-9

 TriggerCondition: 'none'
 TriggerSource: 'none'

This example sets the value of the FramesPerTrigger property to 5. (The default is 10 frames
per trigger.)

vid.FramesPerTrigger = 5
3 Start the image acquisition object — Call the start function to start the image acquisition

object. By default, the object executes an immediate trigger and acquires five frames of data,
logging the data to a memory buffer. After logging the specified number of frames, the object
stops running.

start(vid)

To verify that the object acquired data, view the value of the FramesAcquired property. The
object updates the value of this property as it acquires data.

vid.FramesAcquired
ans =

 5

To execute another immediate trigger, you must restart the object. Note, however, that this
deletes the data acquired by the first trigger. To execute multiple immediate triggers, specify a
value for the TriggerRepeat property. See “Specifying Multiple Triggers” on page 6-25 for
more information.

4 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

Using a Manual Trigger
To use a manual trigger, create a video input object and set the value of the TriggerType property
to 'manual'. A video input object executes a manual trigger after you issue the trigger function.
The following figure illustrates a manual trigger.

Manual Trigger

6 Acquiring Image Data

6-10

The following example illustrates how to use a manual trigger:

1 Create an image acquisition object — This example creates a video input object for a webcam
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

Verify that the object has not acquired any frames.

vid.FramesAcquired
ans =
 0

2 Configure properties — Set the video input object's TriggerType property to 'Manual'. To
set the values of certain trigger properties, including the TriggerType property, you must use
the triggerconfig function. See “Setting the Values of Trigger Properties” on page 6-6 for
more information.

triggerconfig(vid, 'Manual')

This example also sets the value of the FramesPerTrigger property to 5. (The default is 10
frames per trigger.)

vid.FramesPerTrigger = 5
3 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid);

The video object is now running but not logging. With manual triggers, the video stream begins
when the object starts but no frames are acquired until the trigger executes.

isrunning(vid)

ans =

 1

islogging(vid)

ans =

 0

Verify that the object has still not acquired any frames.

vid.FramesAcquired
ans =
 0

4 Execute the manual trigger — Call the trigger function to execute the manual trigger.

trigger(vid)

The object initiates the acquisition of five frames. Check the FramesAcquired property again to
verify that five frames have been acquired.

 Specifying the Trigger Type

6-11

vid.FramesAcquired
ans =
 5

After it acquires the specified number of frames, the video input object stops running.

isrunning(vid)

ans =

 0

To execute another manual trigger, you must first restart the video input object. Note that this
deletes the frames acquired by the first trigger. To execute multiple manual triggers, specify a
value for the TriggerRepeat property. See “Specifying Multiple Triggers” on page 6-25 for
more information.

5 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

Using a Hardware Trigger
To use a hardware trigger, create a video input object and set the value of the TriggerType property
to 'hardware'. You must also specify the source of the hardware trigger and the condition type. The
hardware monitors the source you specify for the condition you specify. The following figure
illustrates a hardware trigger. For hardware triggers, the video stream does not start until the trigger
occurs.

Note Trigger sources and the conditions that control hardware triggers are device specific. Use the
triggerinfo function to determine whether your image acquisition device supports hardware
triggers and, if it does, which conditions you can configure. Refer to the documentation that came
with your device for more detailed information about its hardware triggering capabilities.

Hardware Trigger

6 Acquiring Image Data

6-12

The following example illustrates how to use a hardware trigger:

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code. The device must support hardware triggers.

vid = videoinput('matrox',1);
2 Determine valid trigger property configurations — Use the triggerinfo function to

determine if your image acquisition device supports hardware triggers, and if it does, to find out
valid configurations of the TriggerSource and TriggerCondition properties. See
“Determining Valid Configurations” on page 6-6 for more information.

In this example, triggerinfo returns the following valid trigger configurations.

triggerinfo(vid)
Valid Trigger Configurations:

 TriggerType: TriggerCondition: TriggerSource:
 'immediate' 'none' 'none'
 'manual' 'none' 'none'
 'hardware' 'risingEdge' 'TTL'
 'hardware' 'fallingEdge' 'TTL'

3 Configure properties — Configure the video input object trigger properties to one of the valid
combinations returned by triggerinfo. You can specify each property value as an argument to
the triggerconfig function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures returned by the
triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

This example also sets the value of the FramesPerTrigger property to 5. (The default is 10
frames per trigger.)

vid.FramesPerTrigger = 5
4 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)

The object is running but not logging any data.

isrunning(vid)

ans =

 1

islogging(vid)

ans =

 0

 Specifying the Trigger Type

6-13

The hardware begins monitoring the trigger source for the specified condition. When the
condition is met, the hardware executes a trigger and begins providing image frames to the
object. The object acquires the number of frames specified by the FramesPerTrigger property.
View the value of the FramesAcquired property to see how much data was acquired. The object
updates the value of this property as it acquires data.

vid.FramesAcquired
ans =

 5

After it executes the trigger and acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

 0

To execute another hardware trigger, you must first restart the video input object. Note that this
deletes the frames acquired by the first trigger. To execute multiple triggers, specify a value for
the TriggerRepeat property. See “Specifying Multiple Triggers” on page 6-25 for more
information.

5 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

Setting DCAM-Specific Trigger Modes
You can now use all trigger modes and all trigger inputs that DCAM cameras support. Previous
toolbox releases supported only trigger mode 0. Support for additional trigger modes and inputs do
not affect any existing code you use.

Control trigger functionality using the triggerinfo and triggerconfig functions and the
triggersource property. Before R2010a, one triggersource was available, externalTrigger.
Selecting externalTrigger configures the camera to use trigger mode 0 with trigger source 0.

The triggersource property is now composed of the trigger type (internal or external), the trigger
source (0, 1, 2, etc.), and the mode number (0 through 5, 14 and 15). The following table summarizes
the options.

Trigger Mode Parameter External Source Multiple Frames Per
Trigger

0 none yes yes
1 none yes no
2 (N >= 2) yes no
3 (N >= 1) no yes
4 (N >= 1) yes no

6 Acquiring Image Data

6-14

Trigger Mode Parameter External Source Multiple Frames Per
Trigger

5 (N >= 1) yes no
14 unknown unknown unknown
15 unknown unknown unknown

For example, the second triggersource for trigger mode 1 is called externalTrigger1-mode1.
To use mode 3, the triggersource is internalTrigger-mode3.

Note Toolbox versions before R2010a supported DCAM trigger mode 0 with the first available
triggersource as externalTrigger. The existing externalTrigger property will be
maintained so to prevent backward compatibility issues. In addition, in order to preserve symmetry
with the new functionality, triggersource externalTrigger0-mode0, which is synonymous, will
also be supported. The new trigger modes do not work before R2010a.

Usage Notes

If a trigger mode has multiple trigger sources (modes 0, 1, 2, 4, and 5), then triggersource has a
digit indicating the corresponding camera source, even if only one camera source is available. For
example, if the camera has only a single triggersource available, the toolbox reports the
triggersource name as externalTrigger0-modeX. If the trigger mode does not have multiple
sources (mode 3), then no source digit appears in the name (i.e, internalTriggerMode3 instead of
internalTriggerMode3-Source0).

The DCAM adaptor includes a TriggerParameter property that is passed to the camera when you
set trigger configurations. The TriggerParameter property is validated when you call START after
selecting a hardware trigger mode.

If the selected trigger mode prohibits multiple frames per trigger, then an error appears when you
call START without setting FramesPerTrigger to 1.

If the camera supports only trigger mode 0 with source 0, then the original functionality of having
only the externalTrigger triggersource is supported.

Trigger modes 14 and 15 are vendor-specific and are assumed to be external triggers and have no
restrictions on any settings. You must validate any settings you use.

The following sections detail the trigger modes.

Trigger Mode 0

This is the only trigger mode supported before R2010a. When a trigger is received, a frame is
acquired. You can acquire multiple frames per trigger by switching the camera for hardware
triggered mode to free running mode when a triggered frame is acquired.

No parameter is required.

 Specifying the Trigger Type

6-15

The camera starts the integration of the incoming light from the external trigger input falling edge.

Trigger Mode 1

In this mode, the duration of the trigger signal is used to control the integration time of the incoming
light. This mode is used to synchronize the exposure time of the camera to an external event.

No parameter is required.

The camera starts the integration of the incoming light from the external trigger input falling edge.
Integration time is equal to the low state time of the external trigger input if triggersource is
fallingEdge, otherwise it is equal to the high state time.

Trigger Mode 2

This mode is similar to mode 1, except the duration of the trigger signal does govern integration time.
Instead the number of trigger signals received does. Integration commences upon the start of the
first trigger signal and continues until the start of the Nth trigger signal.

Parameter N is required and describes the number of trigger signals in an integration.

6 Acquiring Image Data

6-16

The camera starts the integration of the incoming light from the first external trigger input falling
edge. At the Nth external trigger input falling edge, integration stops. Parameter N is required and
must be 2 or greater. (N >= 2).

Trigger Mode 3

Use this internal trigger mode to achieve a lower frame rate. When the trigger generates internally, a
frame is acquired and returned. A new frame is not acquired for N x Tf when N is the parameter and
Tf is the cycle time of the fastest frame rate supported by the camera.

A parameter is required, as described above.

This is an internal trigger mode. The camera issues the trigger internally and cycle time is N times of
the cycle time of the fastest frame rate. Integration time of incoming light is described in the shutter
register. Parameter N is required and must be 1 or greater (N >= 1).

Trigger Mode 4

This mode is the “multiple shutter preset mode.” It is similar to mode 1, but the exposure time is
governed by the shutter property. On each trigger, shutter property defines the exposure duration.
When N triggers are received, a frame is acquired.

Parameter N is required and describes the number of triggers.

The camera starts integration of incoming light from the first external trigger input falling edge and
exposes incoming light at shutter time. Repeat this sequence until the Nth external trigger input
falling edge, then finish integration. Parameter N is required and must be 1 or greater (N >= 1).

 Specifying the Trigger Type

6-17

Trigger Mode 5

This mode is the “multiple shutter pulse width mode.” It is a combination of modes 1 and 2. The
exposure time is governed by the duration of the trigger signal and a number of trigger signals can
be integrated into a single readout. If the trigger parameter is 1, this mode is degenerate with mode
1.

A parameter is required. The parameter describes the number of triggers.

The camera starts integration of incoming light from first the external trigger input falling edge and
exposes incoming light until the trigger is inactive. Repeat this sequence until the Nth external
trigger input falling edge, then finish integration. Parameter N is required and must be 1 or greater
(N >= 1).

Trigger Mode 14

This is a vendor-specific mode and no information is available. Consult the documentation for your
camera.

Trigger Mode 15

This is a vendor-specific mode and no information is available. Consult the documentation for your
camera.

6 Acquiring Image Data

6-18

Controlling Logging Parameters
In this section...
“Data Logging” on page 6-19
“Specifying Logging Mode” on page 6-19
“Specifying the Number of Frames to Log” on page 6-20
“Determining How Much Data Has Been Logged” on page 6-21
“Determining How Many Frames Are Available” on page 6-22
“Delaying Data Logging After a Trigger” on page 6-24
“Specifying Multiple Triggers” on page 6-25

Data Logging
The following subsections describe how to control various aspects of data logging.

• Specifying the logging mode on page 6-19
• Specifying the number of frames to log on page 6-20
• Determining how many frames have been logged on page 6-21 since the object was started
• Determining how many frames are currently available on page 6-22 in the memory buffer
• Delaying data logging on page 6-24 after a trigger executes
• Specifying multiple trigger executions on page 6-25

Specifying Logging Mode
Using the video input object LoggingMode property, you can control where the toolbox logs acquired
frames of data.

The default value for the LoggingMode property is 'memory'. In this mode, the toolbox logs data to
a buffer in memory. If you want to bring image data into the MATLAB workspace, you must log frames
to memory. The functions provided by the toolbox to move data into the workspace all work with the
memory buffer. For more information, see “Bringing Image Data into the MATLAB Workspace” on
page 7-3.

You can also log data to a disk file by setting the LoggingMode property to 'disk' or to
'disk&memory'. By logging frames to a disk file, you create a permanent record of the frames you
acquire. For example, this code sets the value of the LoggingMode property of the video input object
vid to 'disk&memory'.

vid.LoggingMode = 'disk&memory';

Because the toolbox stores the image frames in Audio Video Interleaved (AVI) format, you can view
the logged frames in any standard media player. For more information, see “Logging Image Data to
Disk” on page 6-32.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For

 Controlling Logging Parameters

6-19

information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Specifying the Number of Frames to Log
In the Image Acquisition Toolbox software, you specify the amount of data you want to acquire as the
number of frames per trigger.

You specify the desired size of your acquisition as the value of the video input object
FramesPerTrigger property. By default, the value of this property is 10 frames per trigger, but you
can specify any value. The following figure illustrates an acquisition using the default value for the
FramesPerTrigger property. To see an example of an acquisition, see “Acquiring 100 Frames” on
page 6-21.

Specifying the Amount of Data to Log

Note While you can specify any size acquisition, the number of frames you can acquire is limited by
the amount of memory you have available on your system for image storage. A large acquisition can
potentially fill all available system memory. For large acquisitions, you might want to remove frames
from the buffer as they are logged. For more information, see “Moving Multiple Frames into the
Workspace” on page 7-3. To learn how to empty the memory buffer, see “Freeing Memory” on page
6-30.

Specifying a Noncontiguous Acquisition

Although FramesPerTrigger specifies the number of frames to acquire, these frames do not have to
be captured contiguously from the video stream. You can specify that the toolbox skip a certain
number of frames between frames it acquires. To do this, set the value of the FrameGrabInterval
property.

Note The FrameGrabInterval property controls the interval at which the toolbox acquires frames
from the video stream (measured in frames). This property does not control the rate at which frames
are provided by the device, otherwise known as the frame rate.

The following figure illustrates how the FrameGrabInterval property affects an acquisition.

6 Acquiring Image Data

6-20

Impact of FrameGrabInterval on Data Logging

Determining How Much Data Has Been Logged
To determine how many frames have been acquired by a video input object, check the value of the
FramesAcquired property. This property tells how many frames the object has acquired since it was
started. To determine how many frames are currently available in the memory buffer, see
“Determining How Many Frames Are Available” on page 6-22.

Acquiring 100 Frames

This example illustrates how you can specify the amount of data to be acquired and determine how
much data has been acquired. (For an example of configuring a time-based acquisition, see “Acquiring
10 Seconds of Image Data” on page 7-4.)

1 Create an image acquisition object — This example creates a video input object for a
Windows image acquisition device. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and substitute that
syntax for the following code.

vid = videoinput('winvideo',1);
2 Configure properties — Specify the amount of data you want to acquire as the number of

frames per trigger. By default, a video input object acquires 10 frames per trigger. For this
example, set the value of this property to 100.

vid.FramesPerTrigger = 100
3 Start the image acquisition object -— Call the start function to start the image acquisition

object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of data. To verify if the
video input object is logging data, use the islogging function.

islogging(vid)
ans =

 1

 Controlling Logging Parameters

6-21

The start function returns control to the command line immediately but the object continues
logging the data to the memory buffer. After acquiring the specified number of frames, the object
stops running and logging.

4 Check how many frames have been acquired — To verify that the specified number of frames
has been acquired, check the value of the FramesAcquired property. Note that the object
continuously updates the value of the FramesAcquired property as the acquisition progresses.
If you view the value of this property several times during an acquisition, you can see the number
of frames acquired increase until logging stops.

vid.FramesAcquired
ans =

 100
5 Clean up Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

Determining How Many Frames Are Available
The FramesAcquired property tells how many frames the object has logged since it was started,
described in “Determining How Much Data Has Been Logged” on page 6-21. Once you move frames
from the memory buffer into the MATLAB workspace, the number of frames stored in the memory
buffer will differ from the FramesAcquired value. To determine how many frames are currently
available in the memory buffer, check the value of the FramesAvailable property.

Note The FramesAvailable property tells the number of frames in the memory buffer, not in the
disk log, if LoggingMode is configured to 'disk' or 'disk&memory'. Because it takes longer to
write frames to a disk file than to memory, the number of frames stored in the disk log might lag
behind those stored in the memory buffer. To see how many frames are available in the disk log, look
at the value of the DiskLoggerFrameCount property. See “Logging Image Data to Disk” on page 6-
32 for more information.

This example illustrates the distinction between the FramesAcquired and the FramesAvailable
properties:

1 Create an image acquisition object — This example creates a video input object for a
Windows image acquisition device. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and substitute that
syntax for the following code.

vid = videoinput('winvideo',1);
2 Configure properties — For this example, configure an acquisition of 15 frames.

vid.FramesPerTrigger = 15
3 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of data. The start
function returns control to the command line immediately but the object continues logging the

6 Acquiring Image Data

6-22

data to the memory buffer. After logging the specified number of frames, the object stops
running.

4 Check how many frames have been acquired — To determine how many frames the object
has acquired and how many frames are available in the memory buffer, check the value of the
FramesAcquired and FramesAvailable properties.

vid.FramesAcquired
ans =

 15

vid.FramesAvailable

ans =

 15

The object updates the value of these properties continuously as it acquires frames of data. The
following figure illustrates how the object puts acquired frames in the memory buffer as the
acquisition progresses.

Frames Available After Initial Trigger Execution
5 Remove frames from the memory buffer — When you remove frames from the memory buffer,

the object decrements the value of the FramesAvailable property by the number of frames
removed.

To remove frames from the memory buffer, call the getdata function, specifying the number of
frames to retrieve. For more information about using getdata, see “Bringing Image Data into
the MATLAB Workspace” on page 7-3.

data = getdata(vid,5);

After you execute the getdata function, check the values of the FramesAcquired and
FramesAvailable properties again. Notice that the FramesAcquired property remains
unchanged but the object has decremented the value of the FramesAvailable property by the
number of frames removed from the memory buffer.

vid.FramesAcquired

ans =

 Controlling Logging Parameters

6-23

 15

vid.FramesAvailable

ans =

 10

The following figure illustrates the contents of the memory buffer after frames are removed.

Contents of Memory Buffer Before and After Removing Frames
6 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

Delaying Data Logging After a Trigger
In some image acquisition setups, you might not want to log the first few frames returned from your
camera or other imaging device. For example, some cameras require a short warmup time when
activated. The quality of the first few images returned by these cameras might be too dark to be
useful for your application.

To account for this characteristic of your setup, you can specify that the toolbox skip a specified
number of frames after a trigger executes. You use the TriggerFrameDelay property to specify the
number of frames you want to skip before logging begins.

For example, to specify a delay of five frames before data logging begins after a trigger executes, you
would set the value of the TriggerFrameDelay property to 5. The number of frames captured is
defined by the FramesPerTrigger property and is unaffected by the delay.

vid.TriggerFrameDelay = 5;

This figure illustrates this scenario.

6 Acquiring Image Data

6-24

Specifying a Delay Before Data Logging Begins

Specifying Multiple Triggers
When a trigger occurs, a video input object acquires the number of frames specified by the
FramesPerTrigger property and logs the data to a memory buffer, a disk file, or both.

When it acquires the specified number of frames, the video input object stops running. To execute
another trigger, you must restart the video input object. Restarting an object causes it to delete all
the data it has stored in the memory buffer from the previous trigger. To execute multiple triggers,
retaining the data from each trigger, you must specify a value for the TriggerRepeat property.

Note that the TriggerRepeat property specifies the number of additional times a trigger executes.
For example, to execute a trigger three times, you would set the value of the TriggerRepeat
property to 2. In the following, vid is a video input object created with the videoinput function.

vid.TriggerRepeat = 2;

This figure illustrates an acquisition with three executions of a manual trigger. In the figure, the
FramesPerTrigger property is set to 3.

 Controlling Logging Parameters

6-25

Executing Multiple Triggers

6 Acquiring Image Data

6-26

Waiting for an Acquisition to Finish
In this section...
“Using the wait Function” on page 6-27
“Blocking the Command Line Until an Acquisition Completes” on page 6-28

Using the wait Function
The start function and the trigger function are asynchronous functions. That is, they start the
acquisition of frames and return control to the MATLAB command line immediately.

In some scenarios, you might want your application to wait until the acquisition completes before
proceeding with other processing. To do this, call the wait function immediately after the start or
trigger function returns. The wait function blocks the MATLAB command line until an acquisition
completes or a timeout value expires, whichever comes first.

By default, wait blocks the command line until a video input object stops running. You can optionally
specify that wait block the command line until the object stops logging. For acquisitions using an
immediate trigger, video input objects always stop running and stop logging at the same time.
However, with a manual trigger configured for multiple executions (TriggerRepeat > 0), you can
use wait immediately after each call to the trigger function to block the command line while
logging is in progress, even though the object remains in running state throughout the entire
acquisition.

The following figure illustrates the flow of control at the MATLAB command line for a single
execution of an immediate trigger and a manual trigger, with and without the wait function. A
hardware trigger is similar to the manual trigger diagram, except that the acquisition is triggered by
an external signal to the camera or frame grabber board, not by the trigger function. For an
example, see “Blocking the Command Line Until an Acquisition Completes” on page 6-28.

 Waiting for an Acquisition to Finish

6-27

Using wait to Block the MATLAB Command Line

Blocking the Command Line Until an Acquisition Completes
The following example illustrates how to use the wait function to put a 60 second time limit on the
execution of a hardware trigger. If the hardware trigger does not execute within the time limit, wait
returns control to the MATLAB command line.

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('matrox',1);
2 Configure a hardware trigger — Use the triggerinfo function to determine valid

configurations of the TriggerSource and TriggerCondition properties. See “Determining
Valid Configurations” on page 6-6 for more information. In this example, triggerinfo returns
the following valid trigger configurations.

triggerinfo(vid)
Valid Trigger Configurations:

 TriggerType: TriggerCondition: TriggerSource:

6 Acquiring Image Data

6-28

 'immediate' 'none' 'none'
 'manual' 'none' 'none'
 'hardware' 'risingEdge' 'TTL'
 'hardware' 'fallingEdge' 'TTL'

Configure the video input object trigger properties to one of the valid combinations returned by
triggerinfo. You can specify each property value as an argument to the triggerconfig
function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures returned by the
triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

3 Configure other object properties — This example also sets the value of the
FramesPerTrigger property to configure an acquisition large enough to produce a noticeable
duration. (The default is 10 frames per trigger.)

vid.FramesPerTrigger = 100
4 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)

The start function sets the object running and returns control to the command line.
5 Block the command line until the acquisition finishes — After the start function returns,

call the wait function.

wait(vid,60)

The wait function blocks the command line until the hardware trigger fires and acquisition
completes or until the amount of time specified by the timeout value expires.

6 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

 Waiting for an Acquisition to Finish

6-29

Managing Memory Usage

Freeing Memory
At times, while acquiring image data, you might want to delete some or all of the frames that are
stored in memory. Using the flushdata function, you can delete all the frames currently stored in
memory or only those frames associated with the execution of a trigger.

The following example illustrates how to use flushdata to delete all the frames in memory or one
trigger's worth of frames.

1 Create an image acquisition object — This example creates a video input object for a
Windows image acquisition device. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and substitute that
syntax for the following code.

vid = videoinput('winvideo',1);
2 Configure properties — For this example, configure an acquisition of five frames per trigger

and, to show the effect of flushdata, configure multiple triggers using the TriggerRepeat
property.

vid.FramesPerTrigger = 5
vid.TriggerRepeat = 2;

3 Start the image acquisition object — Call the start function to start the image acquisition
object.

start(vid)

The object executes an immediate trigger, acquires five frames of data, and repeats this trigger
two more times. After logging the specified number of frames, the object stops running.

To verify that the object acquired data, view the value of the FramesAvailable property. This
property reports how many frames are currently stored in the memory buffer.

vid.FramesAvailable
ans =

 15
4 Delete a trigger's worth of image data — Call the flushdata function, specifying the mode

'triggers'. This deletes the frames associated with the oldest trigger.

flushdata(vid,'triggers');

The following figure shows the frames acquired before and after the call to flushdata. Note
how flushdata deletes the frames associated with the oldest trigger.

6 Acquiring Image Data

6-30

To verify that the object deleted the frames, view the value of the FramesAvailable property.

vid.FramesAvailable
ans =

 10
5 Empty the entire memory buffer — Calling flushdata without specifying the mode deletes

all the frames stored in memory.

flushdata(vid);

To verify that the object deleted the frames, view the value of the FramesAvailable property.

vid.FramesAvailable
ans =

 0
6 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

 Managing Memory Usage

6-31

Logging Image Data to Disk
In this section...
“Formats for Logging Data to Disk” on page 6-32
“Logging Data to Disk Using VideoWriter” on page 6-32

Formats for Logging Data to Disk
While a video input object is running, you can log image data being acquired to a disk file. Logging
image data to disk provides a record of your data.

For the best performance, logging to disk requires a MATLAB VideoWriter object, which is a
MATLAB function, not an Image Acquisition Toolbox function. After you create and configure a
VideoWriter object, provide it to the videoinput object's DiskLogger property.

VideoWriter provides a number of different profiles that log the data in different formats. The
following example uses the Motion JPEG 2000 profile, which can log single-banded (grayscale) data
as well as multi-byte data. Supported profiles are:

• 'Motion JPEG 2000' — Compressed Motion JPEG 2000 file.
• 'Archival' — Motion JPEG 2000 file with lossless compression.
• 'Motion JPEG AVI' — Compressed AVI file using Motion JPEG codec.
• 'Uncompressed AVI' — Uncompressed AVI file with RGB24 video.
• 'MPEG-4' — Compressed MPEG-4 file with H.264 encoding (systems with Windows 7 or macOS

10.7 and later).
• 'Grayscale AVI' — Uncompressed AVI file with grayscale video. Only used for monochrome

devices.
• 'Indexed AVI' — Uncompressed AVI file with indexed video. Only used for monochrome

devices.

Logging Data to Disk Using VideoWriter
This example uses a GigE Vision device in a grayscale format (Mono10).

1 Create a video input object that accesses a GigE Vision image acquisition device and uses
grayscale format at 10 bits per pixel.

vidobj = videoinput('gige', 1, 'Mono10');
2 You can log acquired data to memory, to disk, or both. By default, data is logged to memory. To

change the logging mode to disk, configure the video input object's LoggingMode property.

vidobj.LoggingMode = 'disk'
3 Create a VideoWriter object with the profile set to Motion JPEG 2000.

logfile = VideoWriter('logfile.mj2, 'Motion JPEG 2000')
4 Configure the video input object to use the VideoWriter object.

vidobj.DiskLogger = logfile;

6 Acquiring Image Data

6-32

5 Now that the video input object is configured for logging data to a Motion JPEG 2000 file, initiate
the acquisition.

start(vidobj)
6 Wait for the acquisition to finish.

wait(vidobj, 5)
7 When logging large amounts of data to disk, disk writing occasionally lags behind the acquisition.

To determine whether all frames are written to disk, you can optionally use the
DiskLoggerFrameCount property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
 pause(.1)
end

8 You can verify that the FramesAcquired and DiskLoggerFrameCount properties have
identical values by using these commands and comparing the output.

vidobj.FramesAcquired
vidobj.DiskLoggerFrameCount

9 When the video input object is no longer needed, delete it and clear it from the workspace.

delete(vidobj)
clear vidobj

Guidelines for Using a VideoWriter Object to Log Image Data

Note the following when using VideoWriter.

• You should not delete the video input object until logging has been completed as indicated by the
DiskLoggerFrameCount property equaling the FramesAcquired property. Doing so will cause
disk logging to stop without all of the data being logged.

• If START is called multiple times without supplying a new VideoWriter object, the contents of the
previous file will be erased when START is called.

• Once the VideoWriter object has been passed to the DiskLogger property, you should not modify
it.

 Logging Image Data to Disk

6-33

Working with Acquired Image Data

When you trigger an acquisition, the toolbox stores the image data in a memory buffer, a disk file, or
both. To work with this data, you must bring it into the MATLAB workspace.

This chapter describes how you use video input object properties and toolbox functions to bring the
logged data into the MATLAB workspace.

• “Image Acquisition Overview” on page 7-2
• “Bringing Image Data into the MATLAB Workspace” on page 7-3
• “Working with Image Data in MATLAB Workspace” on page 7-9
• “Specifying the Color Space” on page 7-14
• “Retrieving Timing Information” on page 7-18

7

Image Acquisition Overview
When a trigger occurs, the toolbox acquires frames from the video stream and logs the frames to a
buffer in memory, a disk file, or both, depending on the value of the LoggingMode property. To work
with this logged image data, you must bring it into the MATLAB workspace.

The following figure illustrates a group of frames being acquired from the video stream, logged to
memory and disk, and brought into the MATLAB workspace as a multidimensional numeric array.
Note that when frames are brought into the MATLAB workspace, they are removed from the memory
buffer.

Overview of Image Acquisition

7 Working with Acquired Image Data

7-2

Bringing Image Data into the MATLAB Workspace
In this section...
“Overview” on page 7-3
“Moving Multiple Frames into the Workspace” on page 7-3
“Viewing Frames in the Memory Buffer” on page 7-5
“Bringing a Single Frame into the Workspace” on page 7-7

Overview
The toolbox provides three ways to move frames from the memory buffer into the MATLAB
workspace:

• Removing multiple frames from the buffer — To move a specified number of frames from the
memory buffer into the workspace, use the getdata function. The getdata function removes the
frames from the memory buffer as it moves them into the workspace. The function blocks the
MATLAB command line until all the requested frames are available, or until a timeout value
expires. For more information, see “Moving Multiple Frames into the Workspace” on page 7-3.

• Viewing the most recently acquired frames in the buffer — To bring the most recently
acquired frames in the memory buffer into the workspace without removing them from the buffer,
use the peekdata function. When returning frames, peekdata starts with the most recently
acquired frame and works backward in the memory buffer. In contrast, getdata starts at the
beginning of the buffer, returning the oldest acquired frame first. peekdata does not block the
command line and is not guaranteed to return all the frames you request. For more information,
see “Viewing Frames in the Memory Buffer” on page 7-5.

• Bringing a single frame of data into the workspace — As a convenience, the toolbox provides
the getsnapshot function, which returns a single frame of data into the MATLAB workspace.
Because the getsnapshot function does not require starting the object or triggering an
acquisition, it is the easiest way to bring image data into the workspace. getsnapshot is
independent of the memory buffer; it can return a frame even if the memory buffer is empty, and
the frame returned does not affect the value of the FramesAvailable property. For more
information, see “Bringing a Single Frame into the Workspace” on page 7-7. For an example of
using getsnapshot, see the Image Acquisition Toolbox example Acquiring a Single Image in a
Loop in the Examples list at the top of the Image Acquisition Toolbox main Documentation
Center page, or open the file demoimaq_GetSnapshot.m in the MATLAB Editor.

Moving Multiple Frames into the Workspace
To move multiple frames of data from the memory buffer into the MATLAB workspace, use the
getdata function. By default, getdata retrieves the number of frames specified in the
FramesPerTrigger property but you can specify any number. See the getdata reference page for
complete information about this function.

Note When the getdata function moves frames from the memory buffer into the workspace, it
removes the frames from the memory buffer.

In this figure, getdata is called at T1 with a request for 15 frames but only six frames are available in
the memory buffer. getdata blocks until the specified number of frames becomes available, at T2, at

 Bringing Image Data into the MATLAB Workspace

7-3

which point getdata moves the frames into the MATLAB workspace and returns control to the
command prompt.

getdata Blocks Until Frames Become Available

Acquiring 10 Seconds of Image Data

This example shows how you can configure an approximate time-based acquisition using the
FramesPerTrigger property:

1 Create an image acquisition object — This example creates a video input object for a
Windows image acquisition device. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and substitute that
syntax for the following code.

vid = videoinput('winvideo',1);
2 Configure properties — To acquire 10 seconds of data, determine the frame rate of your image

acquisition device and then multiply the frame rate by the number of seconds of data you want to
acquire. The product of this multiplication is the value of the FramesPerTrigger property.

For this example, assume a frame rate of 30 frames per second (fps). Multiplying 30 by 10, you
need to set the FramesPerTrigger property to the value 300.

vid.FramesPerTrigger = 300;
3 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of data. The start
function returns control to the command line immediately but the object continues logging the
data to the memory buffer. After logging the specified number of frames, the object stops
running.

4 Bring the acquired data into the workspace — To verify that you acquired the amount of data
you wanted, use the optional getdata syntax that returns the timestamp of every frame

7 Working with Acquired Image Data

7-4

acquired. The difference between the first timestamp and the last timestamp should approximate
the amount of data you expected.

[data time] = getdata(vid,300);

elapsed_time = time(300) - time(1)

 10.0467
5 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Frames in the Memory Buffer
To view sample frames from the memory buffer without removing them, use the peekdata function.

The peekdata function always returns the most recently acquired frames in the memory buffer. For
example, if you request three frames, peekdata returns the most recently acquired frame in the
buffer at the time of the request and the two frames that immediately precede it.

The following figure illustrates this process. The command peekdata(vid,3) is called at three
different times (T1, T2, and T3). The shaded frames indicate the frames returned by peekdata at each
call. (peekdata returns frames without removing them from the memory buffer.)

Note in the figure that, at T3, only two frames have become available since the last call to peekdata.
In this case, peekdata returns only the two frames, with a warning that it returned less data than
was requested.

Frames Returned by peekdata

Note The peekdata function does not return any data while running if in disk logging mode.

 Bringing Image Data into the MATLAB Workspace

7-5

The following example illustrates how to use peekdata:

1 Create an image acquisition object — This example creates a video input object for a Data
Translation image acquisition device. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and substitute that
syntax for the following code.

vid = videoinput('dt',1);
2 Configure properties — For this example, configure a manual trigger. You must use the

triggerconfig function to specify the trigger type.

triggerconfig(vid,'manual')

In addition, configure a large enough acquisition to allow several calls to peekdata before it
finishes.

vid.FramesPerTrigger = 300;
3 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)

The video object is now running but not logging.

isrunning(vid)

ans =

 1

islogging(vid)

ans =

 0
4 Use peekdata to view frames before a trigger — If you call peekdata before you trigger the

acquisition, peekdata can only return a single frame of data because data logging has not been
initiated and the memory buffer is empty. If more than one frame is requested, peekdata issues
a warning that it is returning fewer than the requested number of frames.

pdata = peekdata(vid,50);
Warning: PEEKDATA could not return all the frames requested.

Verify that peekdata returned a single frame. A single frame of data should have the same width
and height as specified by the ROIPosition property and the same number of bands, as
specified by the NumberOfBands property. In this example, the video format of the data is RGB
so the value of the NumberOfBands property is 3.

whos
 Name Size Bytes Class

 pdata 96x128x3 36864 uint8 array
 vid 1x1 1060 videoinput object

Verify that the object has not acquired any frames.

7 Working with Acquired Image Data

7-6

vid.FramesAcquired
ans =
 0

5 Trigger the acquisition — Call the trigger function to trigger an acquisition.

trigger(vid)

The object begins logging frames to the memory buffer.
6 View the most recently acquired frames — While the acquisition is in progress, call

peekdata several times to view the latest frames in the memory buffer. Depending on the
number of frames you request, and the timing of these requests, peekdata might return fewer
than the number of frames you specify.

pdata = peekdata(vid,50);

To verify that peekdata returned the frames you requested, check the dimensions of pdata.
peekdata returns a four-dimensional array of frames, where the last dimension indicates the
number of frames returned.

whos
 Name Size Bytes Class

 pdata 4-D 1843200 uint8 array
 vid 1x1 1060 videoinput object

size(pdata)

ans =

 96 128 3 50
7 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

Bringing a Single Frame into the Workspace
To bring a single frame of image data into the MATLAB workspace, use the getsnapshot function.
You can call the getsnapshot function at any time after object creation.

This example illustrates how simple it is to use the getsnapshot function.

1 Create an image acquisition object — This example creates a video input object for a Matrox
device. To run this example on your system, use the imaqhwinfo function to get the object
constructor for your image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);
2 Bring a frame into the workspace — Call the getsnapshot function to bring a frame into the

workspace. Note that you do not need to start the video input object before calling the
getsnapshot function.

frame = getsnapshot(vid);

The getsnapshot function returns an image of the same width and height as specified by the
ROIPosition property and the same number of bands as specified by the NumberOfBands

 Bringing Image Data into the MATLAB Workspace

7-7

property. In this example, the video format of the data is RGB so the value of the
NumberOfBands property is 3.

whos
 Name Size Bytes Class

 frame 96x128x3 36864 uint8 array
 vid 1x1 1060 videoinput object

Note that the frame returned by getsnapshot is not removed from the memory buffer, if frames
are stored there, and does not affect the value of the FramesAvailable property.

3 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

For an example of using getsnapshot, see the Image Acquisition Toolbox example Acquiring a
Single Image in a Loop in the Examples list at the top of the Image Acquisition Toolbox main
Documentation Center page, or open the file demoimaq_GetSnapshot.m in the MATLAB Editor.

7 Working with Acquired Image Data

7-8

Working with Image Data in MATLAB Workspace
In this section...
“Understanding Image Data” on page 7-9
“Determining the Dimensions of Image Data” on page 7-9
“Determining the Data Type of Image Frames” on page 7-12
“Viewing Acquired Data” on page 7-12

Understanding Image Data
The illustrations in this documentation show the video stream and the contents of the memory buffer
as a sequence of individual frames. In reality, each frame is a multidimensional array. For more
information about using multidimensional arrays, see “Multidimensional Arrays”. The following figure
illustrates the format of an individual frame.

Format of an Individual Frame

The following sections describes how the toolbox

• Determines the dimensions of the data returned on page 7-9
• Determines the data type used for the data on page 7-12
• Determines the color space of the data on page 7-14

This section also describes several ways to view acquired image data on page 7-12.

Determining the Dimensions of Image Data
The video format used by the image acquisition device is the primary determinant of the width,
height, and the number of bands in each image frame. Image acquisition devices typically support
multiple video formats. You select the video format when you create the video input object (described
in “Specifying the Video Format” on page 5-8). The video input object stores the video format in the
VideoFormat property.

The video input object stores the video resolution in the VideoResolution property.

 Working with Image Data in MATLAB Workspace

7-9

Each image frame is three dimensional; however, the video format determines the number of bands in
the third dimension. For color video formats, such as RGB, each image frame has three bands: one
each for the red, green, and blue data. Other video formats, such as the grayscale RS170 standard,
have only a single band. The video input object stores the size of the third dimension in the
NumberOfBands property.

Note Because devices typically express video resolution as width-by-height, the toolbox uses this
convention for the VideoResolution property. However, when data is brought into the MATLAB
workspace, the image frame dimensions are listed in reverse order, height-by-width, because
MATLAB expresses matrix dimensions as row-by-column.

ROIs and Image Dimensions

When you specify a region-of-interest (ROI) in the image being captured, the dimensions of the ROI
determine the dimensions of the image frames returned. The VideoResolution property specifies
the dimensions of the image data being provided by the device; the ROIPosition property specifies
the dimensions of the image frames being logged. See the ROIPosition property reference page for
more information.

Video Format and Image Dimensions

The following example illustrates how video format affects the size of the image frames returned.

1 Select a video format — Use the imaqhwinfo function to view the list of video formats
supported by your image acquisition device. This example shows the video formats supported by
a Matrox Orion frame grabber. The formats are industry standard, such as RS170, NTSC, and
PAL. These standards define the image resolution.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
 Columns 1 through 4

 'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

 Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

 Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

2 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device using the default video format, RS170. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

3 View the video format and video resolution properties — The toolbox creates the object with
the default video format. This format defines the video resolution.

7 Working with Acquired Image Data

7-10

vid.VideoFormat

ans =

 M_RS170

vid.VideoResolution

ans =

 [640 480]

4 Bring a single frame into the workspace — Call the getsnapshot function to bring a frame
into the workspace.

frame = getsnapshot(vid);

The dimensions of the returned data reflect the image resolution and the value of the
NumberOfBands property.

vid.NumberOfBands
ans =

 1

size(frame)

ans =

 480 640

5 Start the image acquisition object — Call the start function to start the image acquisition
object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of data.
6 Bring multiple frames into the workspace — Call the getdata function to bring multiple

image frames into the MATLAB workspace.

data = getdata(vid,10);

The getdata function brings 10 frames of data into the workspace. Note that the returned data
is a four-dimensional array: each frame is three-dimensional and the nth frame is indicated by the
fourth dimension.

size(data)

ans =

 480 640 1 10

7 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

 Working with Image Data in MATLAB Workspace

7-11

Determining the Data Type of Image Frames
By default, the toolbox returns image frames in the data type used by the image acquisition device. If
there is no MATLAB data type that matches the object's native data type, getdata chooses a
MATLAB data type that preserves numerical accuracy. For example, in RGB 555 format, each color
component is expressed in 5-bits. getdata returns each color as a uint8 value.

You can specify the data type you want getdata to use for the returned data. For example, you can
specify that getdata return image frames as an array of class double. To see a list of all the data
types supported, see the getdata reference page.

The following example illustrates the data type of returned image data.

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('matrox',1);

2 Bring a single frame into the workspace — Call the getsnapshot function to bring a frame
into the workspace.

frame = getsnapshot(vid);

3 View the class of the returned data — Use the class function to determine the data type
used for the returned image data.

class(frame)

ans =

 uint8

4 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Acquired Data
Once you bring the data into the MATLAB workspace, you can view it as you would any other image
in MATLAB.

The Image Acquisition Toolbox software includes a function, imaqmontage, that you can use to view
all the frames of a multiframe image array in a single MATLAB image object. imaqmontage arranges
the frames so that they roughly form a square. imaqmontage can be useful for visually comparing
multiple frames.

MATLAB includes two functions, image and imagesc, that display images in a figure window. Both
functions create a MATLAB image object to display the frame. You can use image object properties to
control aspects of the display. The imagesc function automatically scales the input data.

7 Working with Acquired Image Data

7-12

The Image Processing Toolbox software includes an additional display routine called imshow. Like
image and imagesc, this function creates a MATLAB image object. However, imshow also
automatically sets various image object properties to optimize the display.

 Working with Image Data in MATLAB Workspace

7-13

Specifying the Color Space
In this section...
“Specifying the Color Space” on page 7-14
“Converting Bayer Images” on page 7-15

Specifying the Color Space
For most image acquisition devices, the video format of the video stream determines the color space
of the acquired image data, that is, the way color information is represented numerically.

For example, many devices represent colors as RGB values. In this color space, colors are
represented as a combination of various intensities of red, green, and blue. Another color space,
widely used for digital video, is the YCbCr color space. In this color space, luminance (brightness or
intensity) information is stored as a single component (Y). Chrominance (color) information is stored
as two color-difference components (Cb and Cr). Cb represents the difference between the blue
component and a reference value. Cr represents the difference between the red component and a
reference value.

The toolbox can return image data in grayscale, RGB, and YCbCr. To specify the color representation
of the image data, set the value of the ReturnedColorSpace property. To display image frames
using the image, imagesc, or imshow functions, the data must use the RGB color space. Another
MathWorks product, the Image Processing Toolbox software, includes functions that convert YCbCr
data to RGB data, and vice versa.

Note Some devices that claim to support the YUV color space actually support the YCbCr color
space. YUV is similar to YCbCr but not identical. The difference between YUV and YCbCr is the
scaling factor applied to the result. YUV refers to a particular scaling factor used in composite NTSC
and PAL formats. In most cases, you can specify the YCbCr color space for devices that support YUV.

You can determine your device’s default color space using this code: vid.ReturnedColorSpace,
where vid is the name of the video object. An example of this is shown in step 2 in the example
below. There may be situations when you wish to change the color space. The example below shows a
case where the default color space is rgb, and you change it to grayscale (step 3).

The following example illustrates how to specify the color space of the returned image data.

1 Create an image acquisition object — This example creates a video input object for a generic
Windows image acquisition device. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and substitute that
syntax for the following code.

vid = videoinput('winvideo',1);
2 View the default color space used for the data — The value of the ReturnedColorSpace

property indicates the color space of the image data.

vid.ReturnedColorSpace

ans =

rgb

7 Working with Acquired Image Data

7-14

3 Modify the color space used for the data — To change the color space of the returned image
data, set the value of the ReturnedColorSpace property.

vid.ReturnedColorSpace = 'grayscale'

ans =

grayscale
4 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

Converting Bayer Images
You can use the ReturnedColorSpace and BayerSensorAlignment properties to control Bayer
demosaicing.

If your camera uses Bayer filtering, the toolbox supports the Bayer pattern and can return color if
desired. By setting the ReturnedColorSpace property to 'bayer', the Image Acquisition Toolbox
software will demosaic Bayer patterns returned by the hardware. This color space setting will
interpolate Bayer pattern encoded images into standard RGB images.

In order to perform the demosaicing, the toolbox needs to know the pixel alignment of the sensor.
This is the order of the red, green, and blue sensors and is normally specified by describing the four
pixels in the upper-left corner of the sensor. It is the band sensitivity alignment of the pixels as
interpreted by the camera's internal hardware. You must get this information from the camera's
documentation and then specify the value for the alignment.

If your camera can return Bayer data, the toolbox can automatically convert it to RGB data for you, or
you can specify it to do so. The following two examples illustrate both use cases.

Manual Conversion

The camera in this example has a Bayer sensor. The GigE Vision standard allows cameras to inform
applications that the data is Bayer encoded and provides enough information for the application to
convert the Bayer pattern into a color image. In this case the toolbox automatically converts the
Bayer pattern into an RGB image.

1 Create a video object vid using the GigE Vision adaptor and the designated video format.

vid = videoinput('gige', 1, 'BayerGB8_640x480');
2 View the default color space used for the data.

vid.ReturnedColorSpace

ans =

rgb
3 Create a one-frame image img using the getsnapshot function.

img = getsnapshot(vid);
4 View the size of the acquired image.

 Specifying the Color Space

7-15

size(img)

ans =

480 640 3
5 Sometimes you might not want the toolbox to automatically convert the Bayer pattern into a

color image. For example, there are a number of different algorithms to convert from a Bayer
pattern into an RGB image and you might wish to specify a different one than the toolbox uses or
you might want to further process the raw data before converting it into a color image.

% Set the color space to grayscale.
vid.ReturnedColorSpace = 'grayscale';

% Acquire another image frame.
img = getsnapshot(vid);

% Now check the size of the new frame acquired using grayscale.
size(img)

ans =

480 640

Notice how the size changed from the rgb image to the grayscale image by comparing the
size output in steps 4 and 5.

6 You can optionally use the demosaic function in the Image Processing Toolbox to convert Bayer
patterns into color images.

% Create an image colorImage by using the demosaic function on the
% image img and convert it to color.
colorImage = demosaic(img, 'gbrg');

% Now check the size of the new color image.
size(colorImage)

ans =

480 640 3
7 Always remove image acquisition objects from memory, and the variables that reference them,

when you no longer need them.

delete(vid)
clear vid

Automatic Conversion

The camera in this example returns data that is a Bayer mosaic, but the toolbox doesn't know it since
the DCAM standard doesn't have any way for the camera to communicate that to software
applications. You need to know that by reading the camera specifications or manual. The toolbox can
automatically convert the Bayer encoded data to RGB data, but it must be programmed to do so.

1 Create a video object vid using the DCAM adaptor and the designated video format for raw data.

vid = videoinput('dcam', 1, 'F7_RAW8_640x480');
2 View the default color space used for the data.

7 Working with Acquired Image Data

7-16

vid.ReturnedColorSpace

ans =

grayscale
3 Create a one-frame image img using the getsnapshot function.

img = getsnapshot(vid);
4 View the size of the acquired image.

size(img)

ans =

480 640
5 The value of the ReturnedColorSpace property is grayscale because Bayer data is single-

banded and the toolbox doesn't yet know that it needs to decode the data. Setting the
ReturnedColorSpace property to 'bayer' indicates that the toolbox should decode the data.

% Set the color space to Bayer.
vid.ReturnedColorSpace = 'bayer';

6 In order to properly decode the data, the toolbox also needs to know the alignment of the Bayer
filter array. This should be in the camera documentation. You can then use the
BayerSensorAlignment property to set the alignment.

% Set the alignment.
vid.BayerSensorAlignment = 'grbg';

The getdata and getsnapshot functions will now return color data.

% Acquire another image frame.
img = getsnapshot(vid);

% Now check the size of the new frame acquired returning color data.
size(img)

ans =

480 640 3

Remove the image acquisition object from memory.

delete(vid)
clear vid

 Specifying the Color Space

7-17

Retrieving Timing Information
In this section...
“Introduction” on page 7-18
“Determining When a Trigger Executed” on page 7-18
“Determining When a Frame Was Acquired” on page 7-19
“Determining the Frame Delay Duration” on page 7-19

Introduction
The following sections describe how the toolbox provides acquisition timing information, particularly,

• Determining when a trigger executed on page 7-18
• Determining when a particular frame was acquired on page 7-19

To see an example of retrieving timing information, see “Determining the Frame Delay Duration” on
page 7-19.

Determining When a Trigger Executed
To determine when a trigger executed, check the information returned by a trigger event in the
object's event log. You can also get access to this information in a callback function associated with a
trigger event. For more information, see “Retrieving Event Information” on page 8-7.

As a convenience, the toolbox returns the time of the first trigger execution in the video input object's
InitialTriggerTime property. This figure indicates which trigger is returned in this property
when multiple triggers are configured.

InitialTriggerTime Records First Trigger Execution

The trigger timing information is stored in MATLAB clock vector format. The following example
displays the time of the first trigger for the video input object vid. The example uses the MATLAB
datestr function to convert the information into a form that is more convenient to view.

datestr(datetime(vid.InitialTriggerTime))

ans =

02-Mar-2007 13:00:24

7 Working with Acquired Image Data

7-18

Determining When a Frame Was Acquired
The toolbox provides two ways to determine when a particular frame was acquired:

• By the absolute time of the acquisition
• By the elapsed time relative to the execution of the trigger

You can use the getdata function to retrieve both types of timing information.

Getting the Relative Acquisition Time

When you use the getdata function, you can optionally specify two return values. One return value
contains the image data; the other return value contains a vector of timestamps that measure, in
seconds, the time when the frame was acquired relative to the first trigger.

[data time] = getdata(vid);

To see an example, see “Determining the Frame Delay Duration” on page 7-19.

Getting the Absolute Acquisition Time

When you use the getdata function, you can optionally specify three return values. The first contains
the image data, the second contains a vector of relative acquisition times, and the third is an array of
structures where each structure contains metadata associated with a particular frame.

[data time meta] = getdata(vid);

Each structure in the array contains the following four fields. The AbsTime field contains the
absolute time the frame was acquired. You can also retrieve this metadata by using event callbacks.
See “Retrieving Event Information” on page 8-7 for more information.

Frame Metadata

Field Name Description
AbsTime Absolute time the frame was acquired, returned in MATLAB clock format

[year month day hour minute seconds]
FrameNumber Frame number relative to when the object was started
RelativeFrame Frame number relative to trigger execution
TriggerIndex Trigger the event is associated with. For example, when the object starts, the

associated trigger is 0. Upon stop, it is equivalent to the
TriggersExecuted property.

Determining the Frame Delay Duration
To illustrate, this example calculates the duration of the delay specified by the TriggerFrameDelay
property.

1 Create an image acquisition object — This example creates a video input object for a Data
Translation image acquisition device using the default video format. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

 Retrieving Timing Information

7-19

vid = videoinput('dt',1);
2 Configure properties — For this example, configure a trigger frame delay large enough to

produce a noticeable duration.

vid.TriggerFrameDelay = 50
3 Start the image acquisition object — Call the start function to start the image acquisition

object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of data. The start
function returns control to the command line immediately but data logging does not begin until
the trigger frame delay expires. After logging the specified number of frames, the object stops
running.

4 Bring the acquired data into the workspace — Call the getdata function to bring frames
into the workspace. Specify a return value to accept the timing information returned by
getdata.

[data time] = getdata(vid);

The variable time is a vector that contains the time each frame was logged, measured in
seconds, relative to the execution of the first trigger. Check the first value in the time vector. It
should reflect the duration of the delay before data logging started.

time

time =

 4.9987
 5.1587
 5.3188
 5.4465
 5.6065
 5.7665
 5.8945
 6.0544
 6.2143
 6.3424

5 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

7 Working with Acquired Image Data

7-20

Using Events and Callbacks

8

Using Events and Callbacks
You can enhance the power and flexibility of your image acquisition application by using event
callbacks. An event is a specific occurrence that can happen while an image acquisition object is
running. The toolbox defines a set of events that include starting, stopping, or acquiring frames of
data.

When a particular event occurs, the toolbox can execute a function that you specify. This is called a
callback. Certain events can result in one or more callbacks. You can use callbacks to perform
processing tasks while your image acquisition object continues running. For example, you can display
a message, analyze data, or perform other tasks. The start and stop callbacks, however, execute
synchronously; the object does not perform any further processing until the callback function
finishes.

Callbacks are controlled through video input object properties. Each event type has an associated
property. You specify the function that you want executed as the value of the property.

The following topics describe using events and callbacks.

• “Using the Default Callback Function” on page 8-3
• “Event Types” on page 8-4
• “Retrieving Event Information” on page 8-7
• “Creating and Executing Callback Functions” on page 8-10

8 Using Events and Callbacks

8-2

Using the Default Callback Function
To illustrate how to use callbacks, this section presents a simple example that creates an image
acquisition object and associates a callback function with the start event, trigger event, and stop
event. For information about all the event callbacks supported by the toolbox, see “Event Types” on
page 8-4.

The example uses the default callback function provided with the toolbox, imaqcallback. The
default callback function displays the name of the object along with information about the type of
event that occurred and when it occurred. To learn how to create your own callback functions, see
“Creating and Executing Callback Functions” on page 8-10.

This example illustrates how to use the default callback function.

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('matrox',1);
2 Configure properties — Set the values of three callback properties. The example uses the

default callback function imaqcallback.

vid.StartFcn = @imaqcallback
vid.TriggerFcn = @imaqcallback
vid.StopFcn = @imaqcallback

For this example, specify the amount of data to log.

vid.FramesPerTrigger = 100;
3 Start the image acquisition object — Start the image acquisition object. The object executes

an immediate trigger, acquires 100 frames of data, and then stops. With the three callback
functions enabled, the object outputs information about each event as it occurs.
start(vid)
Start event occurred at 14:38:46 for video input object: M_RS170-matrox-1.
Trigger event occurred at 14:38:46 for video input object: M_RS170-matrox-1.
Stop event occurred at 14:38:49 for video input object: M_RS170-matrox-1.

4 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

 Using the Default Callback Function

8-3

Event Types
The Image Acquisition Toolbox software supports several different types of events. Each event type
has an associated video input object property that you can use to specify the function that executes
when the event occurs.

This table lists the supported event types, the name of the video input object property associated with
the event, and a brief description of the event. For detailed information about these callback
properties, see the property reference list in “Image Acquisition Toolbox Properties” on page 5-31.

The toolbox generates a specific set of information for each event and stores it in an event structure.
To learn more about the contents of these event structures and how to retrieve this information, see
“Retrieving Event Information” on page 8-7.

Note Callbacks, including ErrorFcn, are executed only when the video object is in a running state.
If you need to use the ErrorFcn callback for error handling during previewing, you must start the
video object before previewing. To do that without logging data, use a manual trigger.

8 Using Events and Callbacks

8-4

Events and Callback Function Properties

Event Callback Property Description
Error ErrorFcn The toolbox generates an error event when a run-time error

occurs, such as a hardware error or timeout. Run-time
errors do not include configuration errors such as setting an
invalid property value.

When an error event occurs, the toolbox executes the
function specified by the ErrorFcn property. By default, the
toolbox executes the default callback function for this event,
imaqcallback, which displays the error message at the
MATLAB command line.

Frames Acquired FramesAcquiredFcn The toolbox generates a frames acquired event when a
specified number of frames have been acquired. You use the
FramesAcquiredFcnCount property to specify this
number.

When a frames acquired event occurs, the toolbox executes
the function specified by the FramesAcquiredFcn property.

Start StartFcn The toolbox generates a start event when an object is
started. You use the start function to start an object.

When a start event occurs, the toolbox executes the function
specified by the StartFcn property.

Note The StartFcn callback executes synchronously. If
you specify a StartFcn callback function, the toolbox waits
for the function to finish executing before performing any
other processing. If an error occurs in the start callback
function, the object never starts.

Stop StopFcn The toolbox generates a stop event when the object stops
running. An object stops running when the stop function is
called, the specified number of frames is acquired, or a run-
time error occurs.

When a stop event occurs, the toolbox executes the function
specified by the StopFcn property.

Note The StopFcn callback executes synchronously. If you
specify a StopFcn callback function, the toolbox waits for
the function to finish executing before performing any other
processing.

 Event Types

8-5

Event Callback Property Description
Timer TimerFcn The toolbox generates a timer event when a specified

amount of time expires. Time is measured relative to when
the object starts running. You use the TimerPeriod
property to specify the amount of time.

Note Some timer events might not execute if your system
is significantly slowed or if the TimerPeriod is set too
small.

When a timer event occurs, the toolbox executes the
function specified by the TimerFcn property.

Trigger TriggerFcn The toolbox generates a trigger event when a trigger
executes. The video input object executes immediate
triggers. You execute manual triggers by calling the
trigger function. The image acquisition device executes
hardware triggers when a specified condition is met.

When a trigger event occurs, the toolbox executes the
function specified by the TriggerFcn property.

8 Using Events and Callbacks

8-6

Retrieving Event Information
In this section...
“Introduction” on page 8-7
“Event Structures” on page 8-7
“Accessing Data in the Event Log” on page 8-8

Introduction
Each event has associated with it a set of information, generated by the toolbox and stored in an
event structure. This information includes the event type, the time the event occurred, and other
event-specific information. While a video input object is running, the toolbox records event
information in the object's EventLog property. You can also access the event structure associated
with an event in a callback function.

This section

• Defines the information in an event structure on page 8-7 for all event types
• Describes how to retrieve information on page 8-8 from the EventLog property

For information about accessing event information in a callback function, see “Creating and
Executing Callback Functions” on page 8-10.

Event Structures
An event structure contains two fields: Type and Data. For example, this is an event structure for a
trigger event:

Type: 'Trigger'
Data: [1x1 struct]

The Type field is a character vector that specifies the event type. For a trigger event, this field
contains the character vector 'Trigger'.

The Data field is a structure that contains information about the event. The composition of this
structure varies depending on which type of event occurred. For details about the information
associated with specific events, see the following sections:

• “Data Fields for Start, Stop, Frames Acquired, and Trigger Events” on page 8-7
• “Data Fields for Error Events” on page 8-8
• “Data Fields for Timer Events” on page 8-8

Data Fields for Start, Stop, Frames Acquired, and Trigger Events

For start, stop, frames acquired, and trigger events, the Data structure contains these fields.

Field Name Description
AbsTime Absolute time the event occurred, returned in MATLAB clock format

[year month day hour minute seconds]

 Retrieving Event Information

8-7

Field Name Description
FrameNumber Frame number relative to when the object was started
RelativeFrame Frame number relative to the execution of a trigger
TriggerIndex Trigger the event is associated with. For example, upon start, the

associated trigger is 0. Upon stop, it is equivalent to the
TriggersExecuted property.

Data Fields for Error Events

For error events, the Data structure contains these fields.

Field Name Description
AbsTime Absolute time the event occurred, returned in MATLAB clock format

[year month day hour minute seconds]
Message Text message associated with the error
MessageID MATLAB message identifier associated with the error

Data Fields for Timer Events

For timer events, the Data structure contains these fields.

Field Name Description
AbsTime Absolute time the event occurred, returned in MATLAB clock format

[year month day hour minute seconds]

Accessing Data in the Event Log
While a video input object is running, the toolbox stores event information in the object's EventLog
property. The value of this property is an array of event structures. Each structure represents one
event. For detailed information about the composition of an event structure for each type of event,
see “Event Structures” on page 8-7.

The toolbox adds event structures to the EventLog array in the order in which the events occur. The
first event structure reflects the first event recorded, the second event structure reflects the second
event recorded, and so on.

Note Only start, stop, error, and trigger events are recorded in the EventLog property. Frames-
acquired events and timer events are not included in the EventLog. Event structures for these
events (and all the other events) are available to callback functions. For more information, see
“Creating and Executing Callback Functions” on page 8-10.

To illustrate the event log, this example creates a video input object, runs it, and then examines the
object's EventLog property:

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to

8 Using Events and Callbacks

8-8

get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('matrox',1);
2 Start the image acquisition object — Start the image acquisition object. By default, the object

executes an immediate trigger, acquires 10 frames of data, and then stops.

start(vid)
3 View the event log — Access the EventLog property of the video input object. The execution of

the video input object generated three events: start, trigger, and stop. Thus the value of the
EventLog property is a 1x3 array of event structures.

events = vid.EventLog
events =

1x3 struct array with fields:
 Type
 Data

To list the events that are recorded in the EventLog property, examine the contents of the Type
field.

{events.Type}
ans =
 'Start' 'Trigger' 'Stop'

To get information about a particular event, access the Data field in that event structure. The
example retrieves information about the trigger event.

trigdata = events(2).Data

trigdata =

 AbsTime: [2004 12 29 16 40 52.5990]
 FrameNumber: 0
 RelativeFrame: 0
 TriggerIndex: 1

4 Clean up — Always remove image acquisition objects from memory, and the variables that
reference them, when you no longer need them.

delete(vid)
clear vid

 Retrieving Event Information

8-9

Creating and Executing Callback Functions
In this section...
“Introduction” on page 8-10
“Creating Callback Functions” on page 8-10
“Specifying Callback Functions” on page 8-11
“Viewing a Sample Frame” on page 8-13

Introduction
The power of using event callbacks is the processing that you can perform in response to events. You
decide which events you want to associate callbacks with and the functions these callbacks execute.

This section

• Describes how to create a callback function on page 8-10
• Describes how to specify the function on page 8-11 as the value of a callback property
• Provides two examples of using event callbacks:

• Shows how to use callbacks to view a sample frame on page 8-13 from the frames being
acquired

Note Callback function execution might be delayed if the callback involves a CPU-intensive task such
as updating a figure.

Creating Callback Functions
This section explains how to create callback functions for the TimerFcn, FramesAcquiredFcn,
StartFcn, StopFcn, TriggerFcn, and ErrorFcn callbacks.

Callback functions require at least two input arguments:

• The image acquisition object
• The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the image acquisition object itself. Because the object is available, you can
use in your callback function any of the toolbox functions, such as getdata, that require the object
as an argument. You can also access all object properties.

The second argument, event, is the event structure associated with the event. This event information
pertains only to the event that caused the callback function to execute. For a complete list of
supported event types and their associated event structures, see “Event Structures” on page 8-7.

In addition to these two required input arguments, you can also specify additional, application-
specific arguments for your callback function.

8 Using Events and Callbacks

8-10

Note To receive the object and event arguments, and any additional arguments, you must use a cell
array when specifying the name of the function as the value of a callback property. For more
information, see “Specifying Callback Functions” on page 8-11.

Writing a Callback Function

To illustrate, this example implements a callback function for a frames-acquired event. This callback
function enables you to monitor the frames being acquired by viewing a sample frame periodically.

To implement this function, the callback function acquires a single frame of data and displays the
acquired frame in a MATLAB figure window. The function also accesses the event structure passed as
an argument to display the timestamp of the frame being displayed. The drawnow command in the
callback function forces MATLAB to update the display.

function display_frame(obj,event)

sample_frame = peekdata(obj,1);

imagesc(sample_frame);

drawnow; % force an update of the figure window

abstime = event.Data.AbsTime;

t = fix(abstime);

sprintf('%s %d:%d:%d','timestamp', t(4),t(5),t(6))

To see how this function can be used as a callback, see “Viewing a Sample Frame” on page 8-13.

Specifying Callback Functions
You associate a callback function with a specific event by setting the value of the event's callback
property. The video input object supports callback properties for all types of events.

You can specify the callback function as the value of the property in any of three ways:

• Character vector on page 8-11
• Cell array on page 8-12
• Function handle on page 8-12

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function, you must specify the
function as a cell array or as a function handle.

Using a Character Vector to Specify Callback Functions

You can specify the callback function as a character vector . For example, this code specifies the
callback function mycallback as the value of the start event callback property StartFcn for the
video input object vid.

 Creating and Executing Callback Functions

8-11

vid.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

Using a Cell Array to Specify Callback Functions

You can specify the callback function as a character vector inside a cell array.

For example, this code specifies the callback function mycallback as the value of the start event
callback property StartFcn for the video input object vid.

vid.StartFcn = {'mycallback'};

To specify additional parameters, include them as additional elements in the cell array.

time = datestr(datetime('now'),0);
vid.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the video input object (obj) and the
event structure (event). Additional arguments follow these two arguments.

Using Function Handles to Specify Callback Functions

You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value of the start event
callback property StartFcn for the video input object vid.

vid.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the parameters as elements in the
cell array.

time = datestr(datetime('now'),0);
vid.StartFcn = {@mycallback,time};

If you are executing a local callback function from within a MATLAB file, you must specify the
callback as a function handle.

Specifying a Toolbox Function as a Callback

In addition to specifying callback functions of your own creation, you can also specify the start,
stop, or trigger toolbox functions as callbacks. For example, this code sets the value of the stop
event callback to Image Acquisition Toolbox start function.

vid.StopFcn = @start;

Disabling Callbacks

If an error occurs in the execution of the callback function, the toolbox disables the callback and
displays a message similar to the following.

start(vid)
??? Error using ==> frames_cb
Too many input arguments.

Warning: The FramesAcquiredFcn callback is being disabled.

8 Using Events and Callbacks

8-12

To enable a callback that has been disabled, set the value of the property associated with the callback
or restart the object.

Viewing a Sample Frame
This example creates a video input object and sets the frames acquired event callback function
property to the display_frame function, created in “Writing a Callback Function” on page 8-11.

The example sets the TriggerRepeat property of the object to 4 so that 50 frames are acquired.
When run, the example displays a sample frame from the acquired data every time five frames have
been acquired.

1 Create an image acquisition object — This example creates a video input object for a Matrox
image acquisition device. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('matrox', 1);
2 Configure property values — This example sets the FramesPerTrigger value to 30 and the

TriggerRepeat property to 4. The example also specifies as the value of the
FramesAcquiredFcn callback the event callback function display_frame, created in “Writing
a Callback Function” on page 8-11. The object will execute the FramesAcquiredFcn every five
frames, as specified by the value of the FramesAcquiredFcnCount property.

vid.FramesPerTrigger = 30;
vid.TriggerRepeat = 4;
vid.FramesAcquiredFcnCount = 5;
vid.FramesAcquiredFcn = {'display_frame'};

3 Acquire data — Start the video input object. Every time five frames are acquired, the object
executes the display_frame callback function. This callback function displays the most
recently acquired frame logged to the memory buffer.

start(vid)
4 Clean up — Always remove image acquisition objects from memory, and the variables that

reference them, when you no longer need them.

delete(vid)
clear vid

 Creating and Executing Callback Functions

8-13

Using the From Video Device Block in
Simulink

The Image Acquisition Toolbox software includes a block that can be used in Simulink to bring live
video data into models.

• “Open Image Acquisition Toolbox Block Library” on page 9-2
• “Code Generation with From Video Device Block” on page 9-4
• “Save Video Data to a File” on page 9-6

9

Open Image Acquisition Toolbox Block Library

In this section...
“From the Command Line” on page 9-2
“From the Simulink Library Browser” on page 9-2

From the Command Line
To open the Image Acquisition Toolbox block library, enter the following in the MATLAB Command
Window.

imaqlib

MATLAB displays the contents of the library in a separate window.

From the Simulink Library Browser
To open the Image Acquisition Toolbox block library, start the Simulink Library Browser by entering
the following in the MATLAB Command Window.

simulink

On the Simulink start page, click Blank Model and then Create Model. An empty Editor window
opens.

On the toolstrip, click Library Browser on the Simulation tab.

9 Using the From Video Device Block in Simulink

9-2

The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in
alphabetical order. Click the Image Acquisition Toolbox node.

To use a block, add it to an existing model or create a new model.

See Also

More About
• “Save Video Data to a File” on page 9-6

 Open Image Acquisition Toolbox Block Library

9-3

Code Generation with From Video Device Block

Code Generation Workflow
The From Video Device block supports code generation with Simulink Coder. Generating code from
the From Video Device block enables you to run models containing the block in Accelerator, Rapid
Accelerator, and Deployed modes.

A typical workflow for code generation follows.

1 Develop a model using the From Video Device block and sink blocks from other toolboxes, such
as the Computer Vision Toolbox™.

2 Run the simulation to verify that your device is working.
3 Build the model to generate code and create the executable.

The deployed application can then be used on a machine that does not have MATLAB and Simulink.

Code Generation with Simulink Coder
You can use Image Acquisition Toolbox, Simulink Coder, and Embedded Coder® together to generate
code (on the host end) that you can use to implement your model for a practical application. For more
information on code generation, see the Simulink Coder documentation.

Note If you use a GigE Vision camera with the From Video Device block, you must install GenICam to
use the generated application outside of MATLAB. After you install the GenICam driver, load the DLL
files by manually adding the path to the DLL files to the system path (in Control Panel > System >
Advanced system settings > Environment Variables...) .

Shared Library Dependencies
The From Video Device block generates code with limited portability. The block uses precompiled
shared libraries, such as DLLs, to support I/O for specific types of devices. Simulink Coder provides
functions to help you set up and manage the build information for your models. One of the build
information functions that Simulink Coder provides is packNGo. This function allows you to package
model code and dependent shared libraries into a zip file for deployment. The target system does not
need to have MATLAB installed but it does need to be supported by MATLAB.

The block supports use of the packNGo function. Source-specific properties for your device are
honored when code is generated. The generated code compiles with both C and C++ compilers.

To set up packNGo, run the following code in the MATLAB Command Window.

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as the model name. You can move this zip file to another machine and build the
source code in the zip file to create an executable that can run independent of MATLAB and Simulink.
For more information, see packNGo.

9 Using the From Video Device Block in Simulink

9-4

Note The From Video Device block supports the use of Simulink Rapid Accelerator mode and code
generation on Windows platforms. Code generation is also supported on Linux®, but Rapid
Accelerator mode is not.

Note If you get a “Device in use” error message when using the block with certain hardware, such as
Matrox, close any programs that are using the hardware, and try using the block again.

Note On Linux platforms, you need to add the directory where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

See Also
From Video Device

 Code Generation with From Video Device Block

9-5

Save Video Data to a File
In this section...
“Step 1: Create a New Model” on page 9-6
“Step 2: Open the Image Acquisition Toolbox Library” on page 9-6
“Step 3: Drag the From Video Device Block into the Model” on page 9-7
“Step 4: Drag Other Blocks to Complete the Model” on page 9-8
“Step 5: Connect the Blocks” on page 9-9
“Step 6: Specify From Video Device Block Parameter Values” on page 9-10
“Step 7: Run the Simulation” on page 9-11

This example shows how to build a simple model using the From Video Device block in conjunction
with blocks from other blockset libraries.

Note Block names are not shown by default in the model. To display the hidden block names while
working in the model, select Display and clear the Hide Automatic Names check box.

Step 1: Create a New Model
To start Simulink and create a new model, enter the following in the MATLAB Command Window.

simulink

On the Simulink start page, click Blank Model and then Create Model. An empty Editor window
opens.

In the Editor, click Save on the Simulation tab to assign a name to your new model.

Step 2: Open the Image Acquisition Toolbox Library
In the model Editor window, click the Library Browser button on the Simulation tab.

The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in
alphabetical order. Click the Image Acquisition Toolbox node.

9 Using the From Video Device Block in Simulink

9-6

To use a block, add it to an existing model or create a new model.

Step 3: Drag the From Video Device Block into the Model
To use the From Video Device block in a model, drag the block into the Simulink Editor. Note how the
name on the block changes to reflect the device connected to your system that is associated with the
block. If you have multiple devices connected, you can choose the device to use in the parameters
dialog box by double-clicking the block.

 Save Video Data to a File

9-7

Step 4: Drag Other Blocks to Complete the Model
To illustrate how to use the block, this example creates a simple model that acquires data and then
returns the data to a file in AVI format. To create this model, this example uses a block from
Computer Vision Toolbox.

Open the Computer Vision Toolbox library. In the library window, open the Sinks subsystem. From
this subsystem, click the To Multimedia File block in the library and drag the block into the Simulink
Editor.

9 Using the From Video Device Block in Simulink

9-8

Step 5: Connect the Blocks
Connect the three outputs from the From Video Device block to the three corresponding inputs on the
To Multimedia File block. If the ports are not displayed, you can display them in the parameters
dialog box by double-clicking the block. One quick way to make all three connections at once is to
select the From Video Device block, press and hold the Ctrl key, and then click the To Multimedia File
block.

The input ports of the To Multimedia File block are RGB, but you can use a camera that has either
YCbCr or RGB output ports.

 Save Video Data to a File

9-9

Step 6: Specify From Video Device Block Parameter Values
To check From Video Device block parameter settings, double-click the block icon in the Simulink
Editor. The parameters dialog box for the From Video Device block opens. Use the various fields in
the dialog box to set or change the values of the From Video Device block parameters.

For example, using this dialog box, you can specify the device you want to use, select the video
format you want to use with the device, or specify the block sample time. For details, see From Video
Device.

9 Using the From Video Device Block in Simulink

9-10

You can set parameters for any of the blocks you include in your model. For example, to specify the
name of the AVI file, double-click the To Multimedia File block. Make sure that you have write
permission to the directory into which the block writes the AVI file.

Step 7: Run the Simulation
To run the simulation, click the green Run button on the Simulink Editor toolstrip. You can use
toolstrip options to specify how long to run the simulation and to stop it.

While the simulation is running, the status bar at the bottom of the Simulink Editor indicates the
progress of the simulation. When the simulation finishes, the software saves an AVI file to the current
working directory.

 Save Video Data to a File

9-11

See Also
From Video Device

9 Using the From Video Device Block in Simulink

9-12

Configuring GigE Vision Devices

• “Types of Setups” on page 10-2
• “Network Hardware Configuration Notes” on page 10-3
• “Network Adaptor Configuration Notes” on page 10-4
• “Software Configuration” on page 10-10
• “Setting Preferences” on page 10-11
• “Troubleshooting” on page 10-13

10

Types of Setups
The Image Acquisition Toolbox software supports GigE Vision devices. The following sections
describe information on installing and configuring the devices to work with the Image Acquisition
Toolbox software. Separate troubleshooting information is found in “Troubleshooting GigE Vision
Devices on Windows” on page 16-19.

Note Not all cameras that use Ethernet are GigE Vision. A camera must have the GigE Vision logo
appearing on it or its data sheet to be a GigE Vision device.

There are five different setups you can use for GigE Vision cameras.

• Direct to a PC not on a network — PC is connected to camera with a Cat 5e or 6 Ethernet cable.
PC is not on a network. This is one of the setups that offers the best acquisition speed.

• Direct to a PC on a network, using two Ethernet cards — PC is connected to camera with a Cat 5e
or 6 Ethernet cable. PC is connected to a network. This is one of the setups that offers the best
acquisition speed.

• Indirect to a PC on a network, with PC and camera on same subnet — PC is connected to a
network with a Cat 5e or 6 Ethernet cable. Camera is connected to the same network with a Cat
5e or 6 Ethernet cable. You may connect multiple cameras to the network using separate cables.

• Multiple cameras to a PC directly, using multiple Ethernet cards — PC is connected to camera 1
with a Cat 5e or 6 Ethernet cable. PC is connected to camera 2 with a separate Cat 5e or 6
Ethernet cable. PC is optionally connected to a network. This is one of the setups that offers the
best acquisition speed.

• Multiple cameras to a PC directly, using switch or hub — PC is connected to a switch or hub
directly with a Cat 5e or 6 Ethernet cable. Camera 1 is connected to switch/hub with a Cat 5e or 6
Ethernet cable. Camera 2 is connected to the switch/hub with a separate Cat 5e or 6 Ethernet
cable. PC is optionally connected to a network. Alternatively, switch/hub is optionally connected to
a network.

10 Configuring GigE Vision Devices

10-2

Network Hardware Configuration Notes
The following notes apply to network connections and hardware.

Using the same network as the PC on a shared network connection — Plug the camera into the
network that the PC is plugged into. They must be on the same subnet. A system administrator can
configure a VLAN if necessary.

Using a private network connection — You can connect the camera through the main/only Ethernet
card, or through a second Ethernet card. In either scenario, a switch can be used to connect multiple
cameras.

Ethernet cards — Ethernet cards must be 1000 Mbps. If direct connection or PC network allows, use
a card that supports jumbo frames for larger packet sizes. Also, on Windows, increase the number of
receive buffers if reception is poor.

Switches for connecting multiple cameras — Use a switch that has full duplex 1000 Gbps per port
capacity. It can be a managed switch, but does not have to be.

 Network Hardware Configuration Notes

10-3

Network Adaptor Configuration Notes
In this section...
“Windows Configuration” on page 10-4
“Linux Configuration” on page 10-5
“Mac Configuration” on page 10-5

Windows Configuration
Important Note: When you install your vendor software that came with your device, do not install
your vendor's filtering or performance networking driver.

Let Windows automatically determine the IP if you are using a single direct connection to the PC,
instead of attempting to use static IP. Otherwise, leave organizational IP configuration settings in
place.

Use your vendor software to configure the camera for DHCP/LLA.

If you have multiple cameras connected to multiple Ethernet cards, you cannot have them all set to
automatic IP configuration. You must specify the IP address for each card and each card must be on a
different subnet.

Enable large frame support if your Ethernet card, and switch if present, supports it and you are using
a direct connection. If you are not using a direct connection, you can enable large frame support if all
switches and routers in your organization's network support it.

Set the Receive Buffers high, 2048 for example.

Installation of GigE Vision Cameras and Drivers on Windows

Follow these steps to install a GigE Vision camera on a Windows machine.

1 It is not necessary to install your vendor software that came with your device, but you may want
to in order to verify that the device is running outside of MATLAB.

Important Note: Do not install your vendor's filtering or performance networking driver.
2 In the Windows Network Connections dialog box (part of Control Panel), if using a second

network adaptor, you can optionally rename your second network adaptor to “GigE Vision” to
help distinguish it from your primary adaptor.

If the Status column says “Limited or no connectivity,” it will not impact your camera, as that
status applies to the Internet.

3 Open the Properties dialog box of the Ethernet card by double-clicking it in Network
Connections. If you are using a separate Ethernet card for the GigE camera, make sure that in
the This connection uses the following items section on the General tab you have nothing
selected except for Internet Protocol (TCP/IP). Be sure to use TCP/IP version 4, and not
version 6.

Make sure that any vendor drivers are unchecked and that anti-virus program drivers are
unchecked. If you cannot uncheck the anti-virus software from the adaptor due to organization
restrictions, you may need to purchase a second gigabit Ethernet card. In this case, leave all of

10 Configuring GigE Vision Devices

10-4

the options as is for the network card for your PC, and configure the second card as described
here, which will only connect to your camera.

4 In Windows Device Manager, make sure your network cards show up as using the correct
network card vendor driver.

For example, in the Device Manager window, under Network adapters, you should see Intel
PRO/1000 PT Desktop Adapter if you use that particular Ethernet card.

Check your adaptor properties. If your situation allows, as described in the next section, make
sure that Jumbo Frames is enabled in the Settings on the Advanced tab. Make sure that
Receive Descriptors is enabled in the Settings > Performance Options on the Advanced tab.
Make sure that the correct adaptor is listed in the Driver tab and that it has not been replaced
with a vendor-specific driver instead of the driver of the Ethernet card.

Note You do not need to install GenICam to use the GigE adaptor, because it is now included in the
installation of the toolbox. However, if you are using the From Video Device block and doing code
generation, you would need to install GenICam to run the generated application outside of MATLAB.

Linux Configuration
You will not need any drivers from your vendor and we recommend that you do not install any that
may have come with your device.

We recommend that you have your system administrator help with the following setup tasks:

• Getting the Ethernet card recognized by the kernel.
• Getting the IP and MTU configuration set up for direct connection.

For dynamic IP configuration of a camera and Ethernet card not connected to an organizational
network, avahi-autoipd can be used. However, we recommend that each direct connection to a
camera have an interface with a static IP such as 10.10.x.y or 192.168.x.y.

If you want to use jumbo frames and your Ethernet card and switches (if present) allow, configure
the MTU accordingly.

Mac Configuration
You will not need any drivers from your vendor and we recommend that you do not install any that
may have come with your device.

You should configure your Ethernet connection as shown:

 Network Adaptor Configuration Notes

10-5

In the configuration shown here, the Mac Pro has two Ethernet connections, one to an internal
network, and one for GigE Vision. The GigE Vision connection is set to use DHCP.

Advanced settings are set as shown in the following diagrams.

The TCP/IP tab.

10 Configuring GigE Vision Devices

10-6

The DNS tab.

 Network Adaptor Configuration Notes

10-7

The Ethernet tab.

10 Configuring GigE Vision Devices

10-8

If you are using a MacBook, you may not have the option of Jumbo frames in the MTU.

 Network Adaptor Configuration Notes

10-9

Software Configuration
You need to have GenICam installed, but that is done for you by the Image Acquisition Toolbox. The
necessary environment variables should automatically be set as part of the installation. You can
optionally check to verify the following environment variables. See the examples below.

Note If you have a camera that requires a GenICam XML file on a local drive (most cameras do not),
you should set MWIMAQ_GENICAM_XML_FILES environment variable to the directory of your choice,
and then install the camera's XML file in that directory. However, most cameras do not require or use
local XML files.

Windows Example

MWIMAQ_GENICAM_XML_FILES=C:\cameraXML

You can test the installation by using the following command:

imaqhwinfo('gige')

and by looking at the relevant sections of the output when you run the imaqsupport function.

Linux Example

MWIMAQ_GENICAM_XML_FILES=/local/cameraXML

You can test the installation by using the following command:

imaqhwinfo('gige')

Mac Example

MWIMAQ_GENICAM_XML_FILES=/local/cameraXML

You can test the installation by using the following command:

imaqhwinfo('gige')

and by looking at the relevant sections of the output when you run the imaqsupport function.

Note You do not need to install GenICam to use the GigE adaptor, because it is now included in the
installation of the toolbox. However, if you are using the From Video Device block and doing code
generation, you would need to install GenICam to run the generated application outside of MATLAB.

10 Configuring GigE Vision Devices

10-10

Setting Preferences

There are three GigE Vision related preferences in the Image Acquisition Preferences. In MATLAB, on
the Home tab, in the Environment section, click Preferences > Image Acquisition.

Timeout for packet acknowledgement – this is a timeout value for the time between the sending
of a command (for camera discovery or control) and the time that the acknowledgement is received
from the camera.

Timeout for heartbeat – the camera requires that the application send a packet every so often (like
a heartbeat) to keep the control connection alive. This is the setting for that packet period. Setting it
too low can add unnecessary load to the computer and to the camera. Setting it too high can cause
the camera to remain in use too long beyond when the toolbox attempts to relinquish control, leading
to a failure to obtain control to start another acquisition.

Retries for commands – this is the number of attempts that the toolbox will make to send a
command to the camera before deciding that the send has failed. The time between retries is set by
the Timeout for packet acknowledgement setting.

 Setting Preferences

10-11

Disable camera IP correction – check if you want to disable automatic IP correction for your
camera. Clear the check mark to re-enable IP correction.

10 Configuring GigE Vision Devices

10-12

Troubleshooting
For troubleshooting information for GigE Vision devices on Windows, see “Troubleshooting GigE
Vision Devices on Windows” on page 16-19.

For troubleshooting information for GigE Vision devices on Linux, see “Troubleshooting GigE Vision
Devices on Linux” on page 16-20.

For troubleshooting information for GigE Vision devices on macOS, see “Troubleshooting GigE Vision
Devices on macOS” on page 16-21.

 Troubleshooting

10-13

Using the GigE Vision Interface

• “GigE Vision Acquisition: gigecam Object vs. videoinput Object” on page 11-2
• “Connect to GigE Vision Cameras” on page 11-3
• “Set Properties for GigE Acquisition” on page 11-4
• “Acquire Images from GigE Vision Cameras” on page 11-8

11

GigE Vision Acquisition: gigecam Object vs. videoinput Object
The Image Acquisition Toolbox includes a separate interface for use with GigE Vision Compliant
cameras. This interface is designed for GigE Vision cameras and supports more GigE-specific
functionality.

You can continue to use the GigE Vision adaptor (gige) with the videoinput object, or you can use
the gigecam object, which takes advantage of GigE properties and features and is more consistent
with GigE Vision conventions for displaying properties and managing selector properties.

Note The GigE Vision support, using either object, requires that you download and install the
necessary files via MATLAB Add-Ons. The GigE Vision Hardware support package installs the files for
both the gige adaptor for the videoinput object and the gigecam object. For more information,
see “Installing the Support Packages for Image Acquisition Toolbox Adaptors” on page 4-5.

Advantages of gigecam Object

• Designed for GigE Vision cameras
• Allows use of GigE camera commands
• Better handling of GigE Vision camera properties
• Uses GigE Vision advanced property features

Advantages of videoinput Object

• Uses advanced toolbox features such as buffering and callbacks
• Supports code generation
• Supported in Image Acquisition Explorer, the VideoDevice System Object, and Simulink

If you do not need to use any advanced toolbox features and you do not need to use Image
Acquisition Explorer, the VideoDevice System Object, or Simulink, use the gigecam object to take
advantage of the advanced GigE Vision Standard feature support it offers.

11 Using the GigE Vision Interface

11-2

Connect to GigE Vision Cameras
Use the gigecamlist function to return the list of available GigE Vision Compliant cameras
connected to your system. The function returns a table with the following information for each
camera detected: model, manufacturer, IP address, and serial number. If you plug in different
cameras during the MATLAB session, the gigecamlist function returns an updated list of cameras.

In this example, two cameras have been detected.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
 'mvBlueCOUGER-X120aG' 'MATRIX VISION GmbH' '169.254.242.122' 'GX000818'

Note The GigE Vision support requires that you download and install the necessary files via MATLAB
Add-Ons. The GigE Vision Hardware support package installs the files for both the gige adaptor for
the videoinput object and the gigecam object. For more information, see “Installing the Support
Packages for Image Acquisition Toolbox Adaptors” on page 4-5.

If you have the support package installed and gigecamlist does not recognize your camera, see the
troubleshooting information in “GigE Vision Hardware” on page 16-19.

 Connect to GigE Vision Cameras

11-3

Set Properties for GigE Acquisition
In this section...
“Property Display” on page 11-4
“Set GigE Properties” on page 11-6
“Use GigE Commands” on page 11-7

Property Display
One of the main advantages of using the gigecam object for image acquisition, instead of the gige
adaptor with the videoinput object, is the advanced property features of GigE Vision Compliant
hardware.

When you create the gigecam object, the basic properties are displayed, as shown here.

g = gigecam

g =

Display Summary for gigecam:

 DeviceModelName: 'MV1-D1312-80-G2-12'
 SerialNumber: '022600017445'
 IPAddress: '169.254.192.165'
 PixelFormat: 'Mono8'
 AvailablePixelFormats: {'Mono8' 'Mono10Packed' 'Mono12Packed' 'Mono10' 'Mono12'}
 Height: 1082
 Width: 1312
 Timeout: 10

Show Beginner, Expert, Guru properties.
Show Commands.

When you click Beginner, the Beginner level camera properties are displayed.

11 Using the GigE Vision Interface

11-4

The list of available properties is specific to your camera. The display of properties is broken into
categories based on GenICam categories as specified by camera manufacturers. For example, in the
display shown here, you can see a set of device control properties, and a set of acquisition control
properties. There are other categories not shown in this graphic, such as analog control, convolver,
and image format control.

The GigE Vision category standard also provides levels of expertise for the available categories. When
you create the gigecam object, you see a small set of commonly used properties with links to the

 Set Properties for GigE Acquisition

11-5

expanded property list based on expertise. To see the additional properties, click Beginner, Expert,
or Guru.

Set GigE Properties
You can set properties two different ways — as additional arguments when you create the object
using the gigecam function, or anytime after you create the object using the syntax shown in this
section.

Set a Property When Creating the Object

When you use the gigecam function with no arguments, it creates the object and connects to the
single GigE Vision Compliant camera on your system, or to the first camera it finds listed in the
output of the gigecamlist function if you have multiple cameras. If you use an argument to create
the object — either an IP address, index number, or serial number — as described in “Create the
gigecam Object” on page 11-8, that argument must be the first argument.

g = gigecam('169.254.242.122')

To set a property when creating the object, it must be specified as a name-value pair after the IP
address, index number, or serial number. The following command creates the object using the camera
on the IP address used as the first argument, then sets the PixelFormat property to Mono10.

g = gigecam('169.254.242.122', 'PixelFormat', 'Mono10')

If you are creating the object with just one camera connected, you can use the index number 1 as the
first input argument, then a property-value pair.

g = gigecam(1, 'PixelFormat', 'Mono10')

You can set multiple properties in this way, and you can use pairs of either character vectors or
numerics.

g = gigecam(1, 'ExposureTime', 20000, 'PixelFormat', 'Mono10')

Set a Property After Creating the Object

You can set or change properties any time after you create the object, using this syntax, where g is
the object name.

g.ExposureTime = 20000

If you want to change the Timeout from its default value of 10 seconds, to increase it to 20 seconds
for example, use this syntax.

g.Timeout = 20

This way of setting properties also supports both character vectors and numerics.

g.LinLog_Mode = 'On';

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

11 Using the GigE Vision Interface

11-6

Use GigE Commands
You can use any of the GigE camera commands that your camera supports.

The commands function tells you what commands are available for your camera to use. The output
depends on the commands that are supported by your specific hardware. To get the list, use the
commands function with the object name, which is g in this example.

commands(g)

Then use executeCommand to execute any of the commands found by the commands function. The
command name is passed as a character vector. For example, set a calibration correction.

executeCommand(g, 'Correction_CalibrateGrey');

The camera is set to correct the grey calibration when you acquire images.

You may have a camera that has a command to perform auto focus. With a gigecam object named
gcam and a GigE command named AutoFocus.

executeCommand(gcam, 'AutoFocus');

You can also see the list of commands for your camera by clicking the Show Commands link at the
bottom of the properties list when you create the gigecam object.

 Set Properties for GigE Acquisition

11-7

Acquire Images from GigE Vision Cameras
In this section...
“Create the gigecam Object” on page 11-8
“Acquire One Image Frame from a GigE Camera” on page 11-10

Create the gigecam Object
To acquire images from a GigE Vision Compliant camera, you first use the gigecam function to create
a GigE object. You can use it in one of three ways:

• Connect to the first or only camera, using no input arguments
• Specify a camera by IP address, using the address (specified as a character vector) as an input

argument
• Specify a camera by the list order, using an index number as the input argument
• Specify a camera by serial number, using the number (as a character vector) as an input argument

You can also optionally set a property when you create the object. For more information, see “Set
Properties for GigE Acquisition” on page 11-4.

Note that you cannot create more than one object connected to the same device, and trying to do that
generates an error.

After you create the object, you can preview and acquire images.

Note The GigE Vision support requires that you download and install the necessary files via MATLAB
Add-Ons. The GigE Vision Hardware support package installs the files for both the gige adaptor for
the videoinput object and the gigecam object. For more information, see “Installing the Support
Packages for Image Acquisition Toolbox Adaptors” on page 4-5.

Create a gigecam Object Using No Arguments

Use the gigecamlist function to ensure that MATLAB is discovering your camera.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'

Using the gigecam function with no arguments creates the object, and connects to the single GigE
Vision camera on your system. If you have multiple cameras and you use the gigecam function with
no input argument, it creates the object and connects it to the first camera it finds listed in the output
of the gigecamlist function.

Create an object, g.

g = gigecam

11 Using the GigE Vision Interface

11-8

g =

Display Summary for gigecam:

 DeviceModelName: 'MV1-D1312-80-G2-12'
 SerialNumber: '022600017445'
 IPAddress: '169.254.192.165'
 PixelFormat: 'Mono8'
 AvailablePixelFormats: {'Mono8' 'Mono10Packed' 'Mono12Packed' 'Mono10' 'Mono12'}
 Height: 1082
 Width: 1312
 Timeout: 10

Show Beginner, Expert, Guru properties.
Show Commands.

Create a gigecam Object Using IP Address

Use the gigecam function with the IP address of the camera (specified as a character vector) as the
input argument to create the object and connect it to the camera with that address. You can see the
IP address for your camera in the list returned by the gigecamlist function.

Use the gigecamlist function to ensure that MATLAB is discovering your cameras.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
 'mvBlueCOUGER-X120aG' 'MATRIX VISION GmbH' '169.254.242.122' 'GX000818'

Create an object, g, using the IP address of the camera.

g = gigecam('169.254.242.122')

g =

Display Summary for gigecam:

 DeviceModelName: 'mvBlueCOUGER-X120aG'
 SerialNumber: 'GX000818'
 IPAddress: '169.254.242.122'
 PixelFormat: 'Mono8'
 AvailablePixelFormats: {'Mono8' 'Mono12' 'Mono14' 'Mono16' 'Mono12Packed'
 'BayerGR8' 'BayerGR10' 'BayerGR12' 'BayerGR16' 'BayerGR12Packed'
 'YUV422Packed' 'YUV422_YUYVPacked' 'YUV444Packed'}
 Height: 1082
 Width: 1312
 Timeout: 10

Show Beginner, Expert, Guru properties.
Show Commands.

Create a gigecam Object Using Serial Number

 Acquire Images from GigE Vision Cameras

11-9

You can also create the object in this same way using the serial number. You use the same syntax, but
use a serial number instead of the IP address, also as a character vector.

g = gigecam('022600017445')

Create a gigecam Object Using Device Number as an Index

Use the gigecam function with an index as the input argument to create the object corresponding to
that index and connect it to that camera. The index corresponds to the order of cameras in the table
returned by gigecamlist when you have multiple cameras connected.

Use the gigecamlist function to ensure that MATLAB is discovering your cameras.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
 'mvBlueCOUGER-X120aG' 'MATRIX VISION GmbH' '169.254.242.122' 'GX000818'

Create an object, g, using the index number.

g = gigecam(2)

g =

Display Summary for gigecam:

 DeviceModelName: 'mvBlueCOUGER-X120aG'
 SerialNumber: 'GX000818'
 IPAddress: '169.254.242.122'
 PixelFormat: 'Mono8'
 AvailablePixelFormats: {'Mono8' 'Mono12' 'Mono14' 'Mono16' 'Mono12Packed'
 'BayerGR8' 'BayerGR10' 'BayerGR12' 'BayerGR16' 'BayerGR12Packed'
 'YUV422Packed' 'YUV422_YUYVPacked' 'YUV444Packed'}
 Height: 1082
 Width: 1312
 Timeout: 10

Show Beginner, Expert, Guru properties.
Show Commands.

It creates the object and connects it to the Matrix Vision camera with that index number, in this case,
the second one displayed by gigecamlist. If you only have one camera, you do not need to use the
index.

Acquire One Image Frame from a GigE Camera
Use the snapshot function to acquire one image frame from a GigE Vision Compliant camera.

1 Use the gigecamlist function to ensure that MATLAB is discovering your camera.

gigecamlist

11 Using the GigE Vision Interface

11-10

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
2 Use the gigecam function to create the object and connect it to the camera.

g = gigecam

g =

Display Summary for gigecam:

 DeviceModelName: 'MV1-D1312-80-G2-12'
 SerialNumber: '022600017445'
 IPAddress: '169.254.192.165'
 PixelFormat: 'Mono8'
 AvailablePixelFormats: {'Mono8' 'Mono10Packed' 'Mono12Packed' 'Mono10' 'Mono12'}
 Height: 1082
 Width: 1312
 Timeout: 10

Show Beginner, Expert, Guru properties.
Show Commands.

It creates the object and connects it to the Photonofocus AG camera.
3 Preview the image from the camera.

preview(g)

The preview window displays live video stream from your camera. The preview dynamically
updates, so if you change a property while previewing, the image changes to reflect the property
change.

4 Optionally, set any properties. Properties are displayed when you create the object, as shown in
step 2. For example, you could change the ExposureTime setting.

g.ExposureTime = 20000

For more information, see “Set Properties for GigE Acquisition” on page 11-4.
5 Optionally, use any of the GigE camera commands that your camera supports.

For more information, see “Set Properties for GigE Acquisition” on page 11-4.
6 Close the preview.

closePreview(g)
7 Acquire a single image from the camera using the snapshot function, and assign it to the

variable img

img = snapshot(g);
8 Display the acquired image.

imshow(img)
9 Clean up by clearing the object.

 Acquire Images from GigE Vision Cameras

11-11

clear g

11 Using the GigE Vision Interface

11-12

Using the Kinect for Windows Adaptor

• “Important Information About the Kinect Adaptor” on page 12-2
• “Data Streams Returned by the Kinect” on page 12-3
• “Detecting the Kinect Devices” on page 12-5
• “Acquiring Image and Skeletal Data Using Kinect” on page 12-7
• “Acquiring from Color and Depth Devices Simultaneously” on page 12-17
• “Using Skeleton Viewer for Kinect Skeletal Data” on page 12-18
• “Installing the Kinect for Windows Sensor Support Package” on page 12-20

12

Important Information About the Kinect Adaptor
The Kinect Adaptor lets you acquire images using a Kinect for Windows device. Kinects are often
used in automotive IVS, robotics, human-computer interaction (HCI), security systems, entertainment
systems, game design, and civil engineering. They can be used for analyzing skeletons, 3D mapping,
gesture recognition, human travel patterns, sports and games, etc.

The Kinect adaptor is supported on 64-bit Windows.

Doing image acquisition with a Kinect for Windows camera is similar to using other cameras and
adaptors, but with several key differences:

• The Kinect for Windows device has two separate physical sensors, and each one uses a different
DeviceID in the videoinput object. The Kinect color sensor returns color image data. The
Kinect depth sensor returns depth and skeletal data. For information about Kinect device
discovery and the use of two device IDs, see “Detecting the Kinect Devices” on page 12-5.

• The Kinect for Windows device returns four data streams. The image stream is returned by the
color sensor and contains color data in various color formats. The depth stream is returned by the
depth sensor and returns depth information in pixels. The skeletal stream is returned by the depth
sensor and returns metadata about the skeletons. There is also an audio stream, but this is unused
by Image Acquisition Toolbox. For details on the streams, see “Data Streams Returned by the
Kinect” on page 12-3.

• The Kinect for Windows can track up to six people. It can provide full tracking on two people, and
position tracking on up to four more.

• In Image Acquisition Toolbox, skeletal metadata is accessed through the depth sensor object. For
an example showing how to access the skeletal metadata, see “Acquiring Image and Skeletal Data
Using Kinect” on page 12-7.

Note The Kinect adaptor is intended for use only with the Kinect for Windows sensor.

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons. See “Installing the
Kinect for Windows Sensor Support Package” on page 12-20 for information specific to installing the
Kinect support package. Also, in order to use the Kinect for Windows support, you must have version
1.6 of the Kinect for Windows Runtime installed on your system. If you do not already have it
installed, it will be installed when you install the Kinect support package.

12 Using the Kinect for Windows Adaptor

12-2

Data Streams Returned by the Kinect
The Kinect for Windows device returns these data streams.

• Image stream (returned by the color sensor)
• Depth stream (returned by the depth sensor)
• Skeletal stream (returned by the depth sensor)
• Audio stream (not used by the Image Acquisition Toolbox, but could be used with MATLAB

audiorecorder)

Image Stream

The image stream returns color image data and other formats using the Kinect color sensor. It
supports the following formats.

Format Description
RawYUV_640x480 Raw YUV format. Resolution of 640 x 480, frame

rate of 15 frames per second, which is the
maximum allowed.

RGB_1280x960 RGB format. Resolution of 1280 x 960, frame rate
of 12 frames per second, which is the maximum
allowed.

RGB_640x480 RGB format. Resolution of 640 x 480, frame rate
of 30 frames per second, which is the maximum
allowed.

YUV_640x480 YUV format. Resolution of 640 x 480, frame rate
of 15 frames per second, which is the maximum
allowed.

Infrared_640x480 Infrared format. MONO16 frame type with
resolution of 640 x 480, frame rate of 30 frames
per second, which is the maximum allowed.

The infrared stream allows you to capture frames
in low light situations.

RawBayer_1280x960 Raw Bayer format. MONO8 frame type with
resolution of 1280 x 960, frame rate of 12 frames
per second, which is the maximum allowed.

This format returns the raw Bayer pattern, so you
can use your own algorithm to reconstruct the
color image.

 Data Streams Returned by the Kinect

12-3

Format Description
RawBayer_640x480 Raw Bayer format. MONO8 frame type with

resolution of 640 x 480, frame rate of 30 frames
per second, which is the maximum allowed.

This format returns the raw Bayer pattern, so you
can use your own algorithm to reconstruct the
color image.

Depth Stream

The depth stream returns person segmentation data using the Kinect depth sensor. The depth map is
distance in millimeters from the camera plane. For Skeletal Tracking only two people can be tracked
at a given time, although six people can be segmented at a time. This means it can provide full
tracking on two skeletons, and partial position tracking on up to four more. The tracking ranges are a
default range of 50 cm to 400 cm and a near range of 40 cm to 300 cm.

The depth stream supports the following formats.

Format Description
Depth_640x480 Resolution of 640 x 480, frame rate of 30 frames

per second
Depth_320x240 Resolution of 320 x 240, frame rate of 30 frames

per second
Depth_80x60 Resolution of 80 x 60, frame rate of 30 frames per

second

Skeletal Stream

The skeletal stream returns skeletal data using the Kinect depth device. The skeleton frame returned
contains data on the ground plane position and a time stamp. It contains the overall position of the
skeleton and the 3-D position of all 20 joints (position in meters). Two skeletons are actively tracked,
and another four are tracked passively.

Note To understand the differences in using the Kinect adaptor compared to other toolbox adaptors,
see “Important Information About the Kinect Adaptor” on page 12-2. For information about Kinect
device discovery and the use of two device IDs, see “Detecting the Kinect Devices” on page 12-5.
For an example that shows how to access the skeletal metadata, see “Acquiring Image and Skeletal
Data Using Kinect” on page 12-7.

12 Using the Kinect for Windows Adaptor

12-4

Detecting the Kinect Devices
Typically in the Image Acquisition Toolbox, each camera or image device has one DeviceID. Because
the Kinect for Windows camera has two separate sensors, the color sensor and the depth sensor, the
toolbox lists two DeviceIDs. If you use imaqhwinfo on the adaptor, you can see this.
info = imaqhwinfo('kinect');
info

info =

 AdaptorDllName: '<matlabroot>\toolbox\imaq\imaqadaptors\win64\mwkinectimaq.dll'
 AdaptorDllVersion: '4.6 (R2013b)'
 AdaptorName: 'kinect'
 DeviceIDs: {[1] [2]}
 DeviceInfo: [1x2 struct]

You can see the two device IDs in the output.

If you look at each device, you can see that they represent the color sensor and the depth sensor. The
following shows the color sensor.
info.DeviceInfo(1)

ans =

 DefaultFormat: 'RGB_640x480'
 DeviceFileSupported: 0
 DeviceName: 'Kinect Color Sensor'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('kinect', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('kinect', 1)'
 SupportedFormats: {'RGB_1280x960' 'RGB_640x480' 'RawYUV_640x480' 'YUV_640x480'
 'Infrared_640x480' 'RawBayer_1280x960' 'RawBayer_640x480'}

In the output, you can see that Device 1 is the color sensor.

The following shows the depth sensor, which is Device 2.
info.DeviceInfo(2)

ans =

 DefaultFormat: 'Depth_640x480'
 DeviceFileSupported: 0
 DeviceName: 'Kinect Depth Sensor'
 DeviceID: 2
 VideoInputConstructor: 'videoinput('kinect', 2)'
 VideoDeviceConstructor: 'imaq.VideoDevice('kinect', 2)'
 SupportedFormats: {'Depth_640x480' 'Depth_320x240' 'Depth_80x60'}

You can use multiple Kinect cameras together. Multiple Kinect sensors are enumerated as
DeviceIDs [1] [2] [3] [4] and so on. For example, if you had two Kinect cameras, the first one
would have Kinect Color Sensor with DeviceID 1 and Kinect Depth Sensor with DeviceID
2 and the second Kinect camera would have Kinect Color Sensor with DeviceID 3 and Kinect
Depth Sensor with DeviceID 4.

Note To understand the differences in using the Kinect adaptor compared to other toolbox adaptors,
see “Important Information About the Kinect Adaptor” on page 12-2. For more information on the
Kinect streams, see “Data Streams Returned by the Kinect” on page 12-3. For an example that shows

 Detecting the Kinect Devices

12-5

how to access the skeletal metadata, see “Acquiring Image and Skeletal Data Using Kinect” on page
12-7.

12 Using the Kinect for Windows Adaptor

12-6

Acquiring Image and Skeletal Data Using Kinect
In “Detecting the Kinect Devices” on page 12-5, you could see that the two sensors on the Kinect for
Windows are represented by two device IDs, one for the color sensor and one of the depth sensor. In
that example, Device 1 is the color sensor and Device 2 is the depth sensor. This example shows how
to create a videoinput object for the color sensor to acquire RGB images and then for the depth
sensor to acquire skeletal data.

1 Create the videoinput object for the color sensor. DeviceID 1 is used for the color sensor.

vid = videoinput('kinect',1,'RGB_640x480');
2 Look at the device-specific properties on the source device, which is the color sensor on the

Kinect camera.

src = getselectedsource(vid);

src

Display Summary for Video Source Object:

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = ColorSource
 Tag =
 Type = videosource

 Device Specific Properties:
 Accelerometer = [0.0 -1.0 0.0]
 AutoExposure = on
 AutoWhiteBalance = on
 BacklightCompensation = AverageBrightness
 Brightness = 0.2156
 CameraElevationAngle = 3
 Contrast = 1
 ExposureTime = 1.0
 FrameInterval = 0
 FrameRate = 30
 Gain = 0
 Gamma = 2.2
 Hue = 0
 PowerLineFrequency = Disabled
 Saturation = 1
 Sharpness = 0.5
 WhiteBalance = 2700

As you can see in the output, the color sensor has a set of device-specific properties.

 Acquiring Image and Skeletal Data Using Kinect

12-7

Device-Specific Property –
Color Sensor

Description

Accelerometer Returns 3D vector of acceleration data for both the color
and depth sensors. The data is updated while the device
is running or previewing.

This 1 x 3 double represents the x, y, and z values of
acceleration in gravity units g (9.81m/s^2). For
example,

[0.06 -1.00 -0.09]

represents values of x as 0.06 g, y as -1.00 g, and z as
-0.09 g.

AutoExposure Use to set the exposure automatically. This control
whether other related properties are activated. Values
are on (default) and off.

on means that exposure is set automatically, and these
properties are not able to be set and will throw a
warning: FrameInterval, ExposureTime, and Gain.

off means that these properties are not able to be set
and will throw a warning: PowerLineFrequency,
BacklightCompensation, and Brightness.

AutoWhiteBalance Use to enable or disable automatic white balance setting.

on (default) means that it will automatically configure
white balance and the WhiteBalance property cannot
be set.

off means that the WhiteBalance property is settable.
BacklightCompensation Configures backlight compensation modes to adjust the

camera to capture images dependent on environmental
conditions.

Note that this property is only valid if AutoExposure is
set to Enabled. The default is AverageBrightness.

Values are:

AverageBrightness favors an average brightness level

CenterPriority favors the center of the scene

LowLightsPriority favors a low light level

CenterOnly favors the center only

12 Using the Kinect for Windows Adaptor

12-8

Device-Specific Property –
Color Sensor

Description

Brightness Indicates the brightness level. The value range is 0.0 to
1.0, and the default value is 0.2156.

Note that this property is only valid if AutoExposure is
set to Enabled.

CameraElevationAngle Controls the angle of the sensor lens. This is the camera
angle relative to the ground. The value must be an
integer property with range of -27 to 27 degrees. The
default value is the last set value, since this is a sticky
setting. Only set it if you want to change the angle of the
camera. This property is shared with the depth sensor
also.

Contrast Indicates contrast level. Values must be in the range 0.5
to 2, with a default value of 1.

ExposureTime Indicates the exposure time in increments of 1/10,000 of
a second. The value range is 0 to 4000, and the default is
0.

Note that this property is only valid if AutoExposure is
set to Disabled.

FrameInterval Indicates the frame interval in units of 1/10,000 of a
second. The value range is 0 to 4000, and the default is
0.

Note that this property is only valid if AutoExposure is
set to Disabled.

FrameRate Frames per second for the acquisition. This property is
read only and the possible values for the color sensor are
12, 15, and 30 (default). It reflects the actual frame rate
when running.

Gain Indicates a multiplier for the RGB color values. The value
range is 1.0 to 16.0, and the default is 1.0.

Note that this property is only valid if AutoExposure is
set to Disabled.

Gamma Indicates gamma measurement. Values must be in the
range 1 to 2.8, with a default value of 2.2.

Hue Indicates hue setting. Values must be in the range -22 to
22, with a default value of 0.

 Acquiring Image and Skeletal Data Using Kinect

12-9

Device-Specific Property –
Color Sensor

Description

PowerLineFrequency Option for reducing flicker caused by the frequency of a
power line. Values are Disabled, FiftyHertz, and
SixtyHertz. The default is Disabled.

Note that this property is only valid if AutoExposure is
set to Enabled.

Saturation Indicates saturation level. Values must be in the range 0
to 2, with a default value of 1.

Sharpness Indicates sharpness level. Values must be in the range 0
to 1, with a default value of 0.5.

WhiteBalance Indicates color temperature in degrees Kelvin. The value
range is 2700 to 6500 and the default is 2700.

Note that this property is only valid if
AutoWhiteBalance is set to Disabled.

3 You can optionally set some of these properties shown in the previous step. For example, you
might be acquiring images in a low light situation. You could adjust the acquisition for this by
setting the BacklightCompensation property to LowLightsPriority, which favors a low
light level.

src.BacklightCompensation = 'LowLightsPriority';
4 Preview the color stream by calling preview on the color sensor object created in step 1.

preview(vid);

When you are done previewing, close the preview window.

closepreview(vid);
5 Create the videoinput object for the depth sensor. Note that a second object is created (vid2),

and DeviceID 2 is used for the depth sensor.

vid2 = videoinput('kinect',2,'Depth_640x480');
6 Look at the device-specific properties on the source device, which is the depth sensor on the

Kinect.

src = getselectedsource(vid2);

src

Display Summary for Video Source Object:

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = DepthSource
 Tag =
 Type = videosource

 Device Specific Properties:

12 Using the Kinect for Windows Adaptor

12-10

 Accelerometer = [0.0 -1.0 0.0]
 BodyPosture = Standing
 CameraElevationAngle = 4
 DepthMode = Default
 FrameRate = 30
 IREmitter = on
 SkeletonsToTrack = [1x0 double]
 TrackingMode = off

As you can see in the output, the depth sensor has a set of device-specific properties associated
with skeletal tracking. These properties are specific to the depth sensor.

Device-Specific Property –
Depth Sensor

Description

Accelerometer Returns 3D vector of acceleration data for both the color
and depth sensors. The data is updated while the device
is running or previewing.

This 1 x 3 double represents the x, y, and z values of
acceleration in gravity units g (9.81m/s^2). For
example,

[0.06 -1.00 -0.09]

represents values of x as 0.06 g, y as -1.00 g, and z as
-0.09 g.

BodyPosture Indicates whether the tracked skeletons are standing or
sitting. Values are Standing (gives 20 point skeleton
data) and Seated (gives 10 point skeleton data, using
joint indices 2 - 11). Standing is the default.

Note that if BodyPosture is set to Seated mode, and
TrackingMode is set to Position, no position is
returned, since Position is the location of the hip joint
and the hip joint is not tracked in Seated mode.

See the subsection “BodyPosture Joint Indices” at the end
of this example for the list of indices of the 20 skeletal
joints.

CameraElevationAngle Controls the angle of the sensor lens. This is the camera
angle relative to the ground. The value must be an
integer property with range of -27 to 27 degrees. The
default value is the last set value, since this is a sticky
setting. Only set it if you want to change the angle of the
camera. This property is shared with the color sensor
also.

DepthMode Indicates the range of depth in the depth map. Values are
Default (range of 50 to 400 cm) and Near (range of 40
to 300 cm).

 Acquiring Image and Skeletal Data Using Kinect

12-11

Device-Specific Property –
Depth Sensor

Description

FrameRate Frames per second for the acquisition. This property is
read only and is fixed at 30 for the depth sensor for all
formats. It reflects the actual frame rate when running.

IREmitter Controls whether the IR emitter is on or off. Values are
on and off. Initially, the default value is on. However,
this is a sticky property, so the default value is the last
set value. If you set it to off, it will remain off in future
uses until you change the setting.

An advantage of this property is that it is useful when
using multiple Kinect devices to avoid interference.

SkeletonsToTrack Indicates the Skeleton Tracking ID returned as part of
the metadata. Values are:

[] Default tracking

[TrackingID1] Track 1 skeleton with Tracking ID =
TrackingID1

[TrackingID1 TrackingID2] Track 2 skeletons with
Tracking IDs = TrackingID1 and TrackingID2

TrackingMode Indicates tracking state. Values are:

Skeleton tracks full skeleton with joints

Position tracks hip joint position only

Off disables skeleton position tracking (default)

Note that if BodyPosture is set to Seated mode, and
TrackingMode is set to Position, no position is
returned, since Position is the location of the hip joint
and the hip joint is not tracked in Seated mode.

7 Start the second videoinput object (the depth stream).

start(vid2);
8 Skeletal data is accessed as metadata on the depth stream. You can use getdata to access it.

% Get the data on the object.
[frame, ts, metaData] = getdata(vid2);

% Look at the metadata to see the parameters in the skeletal data.
metaData

metaData =

10x1 struct array with fields:
 AbsTime: [1x1 double]

12 Using the Kinect for Windows Adaptor

12-12

 FrameNumber: [1x1 double]
 IsPositionTracked: [1x6 logical]
 IsSkeletonTracked: [1x6 logical]
 JointDepthIndices: [20x2x6 double]
 JointImageIndices: [20x2x6 double]
 JointTrackingState: [20x6 double]
 JointWorldCoordinates: [20x3x6 double]
 PositionDepthIndices: [2x6 double]
 PositionImageIndices: [2x6 double]
 PositionWorldCoordinates: [3x6 double]
 RelativeFrame: [1x1 double]
 SegmentationData: [640x480 double]
 SkeletonTrackingID: [1x6 double]
 TriggerIndex: [1x1 double]

These metadata fields are related to tracking the skeletons.

MetaData Description
AbsTime This is a 1 x 1 double and represents the full

timestamp, including date and time, in
MATLAB clock format.

FrameNumber This is a 1 x 1 double and represents the
frame number.

IsPositionTracked This is a 1 x 6 Boolean matrix of true/false
values for the tracking of the position of each
of the six skeletons. A 1 indicates the
position is tracked and a 0 indicates it is not.

IsSkeletonTracked This is a 1 x 6 Boolean matrix of true/false
values for the tracked state of each of the six
skeletons. A 1 indicates it is tracked and a 0
indicates it is not.

JointDepthIndices If the BodyPosture property is set to
Standing, this is a 20 x 2 x 6 double matrix
of x-and y-coordinates for 20 joints in pixels
relative to the depth image, for the six
possible skeletons. If BodyPosture is set to
Seated, this would be a 10 x 2 x 6 double for
10 joints.

JointImageIndices If the BodyPosture property is set to
Standing, this is a 20 x 2 x 6 double matrix
of x-and y-coordinates for 20 joints in pixels
relative to the color image, for the six
possible skeletons. If BodyPosture is set to
Seated, this would be a 10 x 2 x 6 double for
10 joints.

 Acquiring Image and Skeletal Data Using Kinect

12-13

MetaData Description
JointTrackingState This 20 x 6 integer matrix contains

enumerated values for the tracking accuracy
of each joint for all six skeletons. Values
include:

0 not tracked

1 position inferred

2 position tracked
JointWorldCoordinates This is a 20 x 3 x 6 double matrix of x-, y- and

z-coordinates for 20 joints, in meters from
the sensor, for the six possible skeletons, if
the BodyPosture is set to Standing. If it is
set to Seated, this would be a 10 x 3 x 6
double for 10 joints.

See step 9 for the syntax on how to see this
data.

PositionDepthIndices A 2 x 6 double matrix of X and Y coordinates
of each skeleton in pixels relative to the
depth image.

PositionImageIndices A 2 x 6 double matrix of X and Y coordinates
of each skeleton in pixels relative to the color
image.

PositionWorldCoordinates A 3 x 6 double matrix of the X, Y and Z
coordinates of each skeleton in meters
relative to the sensor.

RelativeFrame This 1 x 1 double represents the frame
number relative to the execution of a trigger
if triggering is used.

SegmentationData Image size double array with each pixel
mapped to a tracked/detected skeleton,
represented by numbers 1 to 6. This
segmentation map is a bitmap with pixel
values corresponding to the index of the
person in the field-of-view who is closest to
the camera at that pixel position. A value of 0
means there is no tracked skeleton.

SkeletonTrackingID This 1 x 6 integer matrix contains the
tracking IDs of all six skeletons. These IDs
track specific skeletons using the
SkeletonsToTrack property in step 5.

Tracking IDs are generated by the Kinect and
change from acquisition to acquisition.

12 Using the Kinect for Windows Adaptor

12-14

MetaData Description
TriggerIndex This is a 1 x 1 double and represents the

trigger the event is associated with if
triggering is used.

9 You can look at any individual property by drilling into the metadata. For example, look at the
IsSkeletonTracked property.

metaData.IsSkeletonTracked

ans =

 1 0 0 0 0 0

In this case it means that of the six possible skeletons, there is one skeleton being tracked and it
is in the first position. If you have multiple skeletons, this property is useful to confirm which
ones are being tracked.

10 Get the joint locations for the first person in world coordinates using the
JointWorldCoordinates property. Since this is the person in position 1, the index uses 1.

metaData.JointWorldCoordinates(:,:,1)

ans =

 -0.1408 -0.3257 2.1674
 -0.1408 -0.2257 2.1674
 -0.1368 -0.0098 2.2594
 -0.1324 0.1963 2.3447
 -0.3024 -0.0058 2.2574
 -0.3622 -0.3361 2.1641
 -0.3843 -0.6279 1.9877
 -0.4043 -0.6779 1.9877
 0.0301 -0.0125 2.2603
 0.2364 0.2775 2.2117
 0.3775 0.5872 2.2022
 0.4075 0.6372 2.2022
 -0.2532 -0.4392 2.0742
 -0.1869 -0.8425 1.8432
 -0.1869 -1.2941 1.8432
 -0.1969 -1.3541 1.8432
 -0.0360 -0.4436 2.0771
 0.0382 -0.8350 1.8286
 0.1096 -1.2114 1.5896
 0.1196 -1.2514 1.5896

The columns represent the X, Y, and Z coordinates in meters of the 20 points on skeleton 1.
11 You can optionally view the segmentation data as an image.

% View the segmentation data as an image.
imagesc(metaDataDepth.SegmentationData);
% Set the color map to jet to color code the people detected.
colormap(jet);

BodyPosture Joint Indices

 Acquiring Image and Skeletal Data Using Kinect

12-15

The BodyPosture property, in step 5, indicates whether the tracked skeletons are standing or
sitting. Values are Standing (gives 20 point skeleton data) and Seated (gives 10 point skeleton
data, using joint indices 2 - 11).

This is the order of the joints returned by the Kinect adaptor:

 Hip_Center = 1;
 Spine = 2;
 Shoulder_Center = 3;
 Head = 4;
 Shoulder_Left = 5;
 Elbow_Left = 6;
 Wrist_Left = 7;
 Hand_Left = 8;
 Shoulder_Right = 9;
 Elbow_Right = 10;
 Wrist_Right = 11;
 Hand_Right = 12;
 Hip_Left = 13;
 Knee_Left = 14;
 Ankle_Left = 15;
 Foot_Left = 16;
 Hip_Right = 17;
 Knee_Right = 18;
 Ankle_Right = 19;
 Foot_Right = 20;

When BodyPosture is set to Standing, all 20 indices are returned, as shown above. When
BodyPosture is set to Seated, numbers 2 through 11 are returned, since this represents the upper
body of the skeleton.

Note To understand the differences in using the Kinect adaptor compared to previous toolbox
adaptors, see “Important Information About the Kinect Adaptor” on page 12-2. For information about
Kinect device discovery and the use of two device IDs, see “Detecting the Kinect Devices” on page 12-
5. For an example of simultaneous acquisition, see “Acquiring from Color and Depth Devices
Simultaneously” on page 12-17.

12 Using the Kinect for Windows Adaptor

12-16

Acquiring from Color and Depth Devices Simultaneously
You can synchronize the data from the Kinect for Windows color stream and the depth stream using
software manual triggering.

This synchronization method example triggers both objects manually.

1 Create the objects for the color and depth sensors. Device 1 is the color sensor and Device 2 is
the depth sensor.

vid = videoinput('kinect',1);
vid2 = videoinput('kinect',2);

2 Get the source properties for the depth device.

srcDepth = getselectedsource(vid2);
3 Set the frames per trigger for both devices to 1.

vid.FramesPerTrigger = 1;
vid2.FramesPerTrigger = 1;

4 Set the trigger repeat for both devices to 200, in order to acquire 201 frames from both the color
sensor and the depth sensor.

vid.TriggerRepeat = 200;
vid2.TriggerRepeat = 200;

5 Configure the camera for manual triggering for both sensors.

triggerconfig([vid vid2],'manual');
6 Start both video objects.

start([vid vid2]);
7 Trigger the devices, then get the acquired data.

% Trigger 200 times to get the frames.
for i = 1:201
 % Trigger both objects.
 trigger([vid vid2])
 % Get the acquired frames and metadata.
 [imgColor, ts_color, metaData_Color] = getdata(vid);
 [imgDepth, ts_depth, metaData_Depth] = getdata(vid2);
end

 Acquiring from Color and Depth Devices Simultaneously

12-17

Using Skeleton Viewer for Kinect Skeletal Data
If you do an acquisition with a Kinect for Windows and get skeletal data, you can view the skeleton
joints in this viewer. This example function displays one RGB image with skeleton joint locations
overlaid on the image.

1 Create the Kinect objects and acquire image and skeletal data, as shown in “Acquiring Image and
Skeletal Data Using Kinect” on page 12-7.

2 Use the skeletonViewer function to view the skeletal data.

In this code, skeleton is the joint image locations returned by the Kinect depth sensor, and
image is the RGB image corresponding to the skeleton frame. nSkeleton is the number of
skeletons.

function [] = skeletonViewer(skeleton, image, nSkeleton)

This is the order of the joints returned by the Kinect adaptor:

 Hip_Center = 1;
 Spine = 2;
 Shoulder_Center = 3;
 Head = 4;
 Shoulder_Left = 5;
 Elbow_Left = 6;
 Wrist_Left = 7;
 Hand_Left = 8;
 Shoulder_Right = 9;
 Elbow_Right = 10;
 Wrist_Right = 11;
 Hand_Right = 12;
 Hip_Left = 13;
 Knee_Left = 14;
 Ankle_Left = 15;
 Foot_Left = 16;
 Hip_Right = 17;
 Knee_Right = 18;
 Ankle_Right = 19;
 Foot_Right = 20;

3 Show the RGB image.

imshow(image);
4 Create a skeleton connection map to link the joints.

SkeletonConnectionMap = [[1 2]; % Spine
 [2 3];
 [3 4];
 [3 5]; %Left Hand
 [5 6];
 [6 7];
 [7 8];
 [3 9]; %Right Hand
 [9 10];
 [10 11];
 [11 12];
 [1 17]; % Right Leg
 [17 18];

12 Using the Kinect for Windows Adaptor

12-18

 [18 19];
 [19 20];
 [1 13]; % Left Leg
 [13 14];
 [14 15];
 [15 16]];

5 Draw the skeletons on the RGB image.
for i = 1:19

 if nSkeleton > 0
 X1 = [skeleton(SkeletonConnectionMap(i,1),1,1) skeleton(SkeletonConnectionMap(i,2),1,1)];
 Y1 = [skeleton(SkeletonConnectionMap(i,1),2,1) skeleton(SkeletonConnectionMap(i,2),2,1)];
 line(X1,Y1, 'LineWidth', 1.5, 'LineStyle', '-', 'Marker', '+', 'Color', 'r');
 end
 if nSkeleton > 1
 X2 = [skeleton(SkeletonConnectionMap(i,1),1,2) skeleton(SkeletonConnectionMap(i,2),1,2)];
 Y2 = [skeleton(SkeletonConnectionMap(i,1),2,2) skeleton(SkeletonConnectionMap(i,2),2,2)];
 line(X2,Y2, 'LineWidth', 1.5, 'LineStyle', '-', 'Marker', '+', 'Color', 'g');
 end
 hold on;
 end
 hold off;

The viewer will show the following for this example, which contains the color image of one
person, with the skeletal data overlaid on the image.

 Using Skeleton Viewer for Kinect Skeletal Data

12-19

Installing the Kinect for Windows Sensor Support Package
With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through MATLAB Add-Ons. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses, in this case, the Kinect for Windows Sensor support package.

In order to use the Kinect for Windows support in the Image Acquisition Toolbox, you must have the
correct version of the Kinect for Windows Runtime installed on your system. If you do not already
have it installed, it will be installed when you install the Kinect support package. After you complete
the support package installation, you can acquire images using the Kinect for Windows V1 or V2 with
the Image Acquisition Toolbox.

Using this installation process, you download and install the following file(s) on your host computer:

• MATLAB files to use Kinect for Windows V1 cameras with the toolbox
• MATLAB files to use Kinect for Windows V2 cameras with the toolbox
• Kinect for Windows Runtime, if you do not already have a current version installed

Note You can use this support package only on a host computer running a version of 64-bit Windows
that Image Acquisition Toolbox supports.

If the installation fails, see the Troubleshooting section at the end of this topic.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the Add-On Explorer, scroll to the Hardware Support Packages section, and click show all
to find your support package.

3 You can refine the list by selecting Imaging/Cameras in the Refine by Hardware Type section
on the left side of the Explorer.

4 Select Image Acquisition Toolbox Support Package for Kinect For Windows Sensor.

Troubleshooting

If the setup fails, it could be caused by an internet security setting. If you get an error message such
as “KINECT Setup Failed – An error occurred while installing,” try the following and then run the
installer again.

1 In Internet Explorer, go to Tools > Internet Options.
2 In Internet Options, select the Advanced tab.
3 Under the Security subsection, uncheck Check for publisher’s certificate revocation to

temporarily disable it, and click OK.
4 Run the installer again.
5 After you have installed the support package, re-enable the security option in Internet Explorer.

12 Using the Kinect for Windows Adaptor

12-20

Using the Matrox Interface

• “Matrox Acquisition – matroxcam Object vs videoinput Object” on page 13-2
• “Connect to Matrox Frame Grabbers” on page 13-3
• “Set Properties for Matrox Acquisition” on page 13-4
• “Acquire Images from Matrox Frame Grabbers” on page 13-6

13

Matrox Acquisition – matroxcam Object vs videoinput Object
The Image Acquisition Toolbox includes a separate interface for use with Matrox frame grabbers. This
interface is designed for Matrox hardware and supports more Matrox-specific functionality.

You can continue to use the Matrox adaptor (matrox) with the videoinput object, or you can use
the matroxcam object, which takes advantage of Matrox features.

Note The Matrox support, using either object, requires that you download and install the necessary
files via MATLAB Add-Ons. The Matrox Hardware support package installs the files for both the
matrox adaptor for the videoinput object and the matroxcam object. For more information, see
“Installing the Support Packages for Image Acquisition Toolbox Adaptors” on page 4-5.

Advantages of matroxcam Object

• More robust support for a wider configuration of supported devices. Supports more device
configurations than the videoinput matrox adaptor.

• Added support for the MIL 10.
• Supports newer devices.

Advantages of videoinput Object

• Uses advanced toolbox features such as buffering and callbacks
• Supported in Image Acquisition Explorer, the VideoDevice System Object, and Simulink

If you do not need to use any advanced toolbox features and you do not need to use the Image
Acquisition Explorer, the VideoDevice System Object, or the Simulink block, use the matroxcam
object to take advantage of the advanced Matrox feature support it offers.

Note that the matroxcam and matroxlist functions that are available with the matroxcam object
starting in release R2015a work with MIL or MIL-Lite 10.x only. Use of the matrox adaptor with the
videoinput object can use either MIL 9 or 10.

13 Using the Matrox Interface

13-2

Connect to Matrox Frame Grabbers
Use the matroxlist function to return the list of available Matrox frame grabbers connected to your
system. The function returns a cell array with model name and digitizer number for each frame
grabber detected.

In this example, three frame grabbers have been detected.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

If no boards are detected, it returns an empty cell array.

Note The Matrox support requires that you download and install the necessary files via MATLAB
Add-Ons. The Matrox Hardware support package installs the files for both the matrox adaptor for the
videoinput object and the matroxcam object. For more information, see “Installing the Support
Packages for Image Acquisition Toolbox Adaptors” on page 4-5.

If you have the support package installed and matroxlist does not recognize your hardware, see
the troubleshooting information in “Matrox Hardware” on page 16-10.

 Connect to Matrox Frame Grabbers

13-3

Set Properties for Matrox Acquisition
You cannot directly set properties for the matroxcam object in the Image Acquisition Toolbox. To set
acquisition properties, use your Digitizer Configuration File (DCF) file. You can set properties in the
DCF file using the Matrox Intellicam software. The DCF file contains properties relating to exposure
signal, grab mode, sync signal, camera, video signal, video timing, and pixel clock. Once you have
configured these properties in your DCF file, you create the matroxcam object using that file name
and path as an input argument.

1 Set any properties you want to configure in your DCF file, using the Matrox Intellicam software.
2 Use the matroxlist function to ensure that MATLAB is discovering your frame grabber.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

3 Use the matroxcam function to create the object and connect it to the frame grabber. If you want
to use the second frame grabber in the list, the Solios XCL at digitizer 1, use a 2 as the index
number, since it is the second device on the list. The second argument must be the name of your
DCF file, entered as a character vector. It must contain the fully qualified path to the file as well.
In this example, the DCF file is named mycam.dcf.

m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf')

m =

Display Summary for matroxcam:

 DeviceName: 'Solios XCL (digitizer 1)'
 DCFName: 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf'
 FrameResolution: '1300 x 1080'
 Timeout: 10

The four properties shown when you create the object are read-only properties that identify the
frame grabber.

4 You can then preview and acquire images, as described in “Acquire Images from Matrox Frame
Grabbers” on page 13-6.

Note If you need to change any properties after you preview your image, you must change them in
the DCF file, and then create a new object to pick up the changes.

Configuring Hardware Triggering

If your DCF file is configured for hardware triggering, then you must provide the trigger to acquire
images. To do that, call the snapshot function as you normally would, as described in “Acquire One
Image Frame from a Matrox Frame Grabber” on page 13-7, and then perform the hardware trigger
to acquire the frame.

13 Using the Matrox Interface

13-4

Note that when you call the snapshot function with hardware triggering set, it will not timeout as it
normally would. Therefore, the MATLAB command-line will be blocked until you perform the
hardware trigger.

 Set Properties for Matrox Acquisition

13-5

Acquire Images from Matrox Frame Grabbers
In this section...
“Create the matroxcam Object” on page 13-6
“Acquire One Image Frame from a Matrox Frame Grabber” on page 13-7

Create the matroxcam Object
To acquire images from a Matrox frame grabber, use the matroxcam function to create a Matrox
object. Specify a frame grabber by the list order, using an index number, as the first input argument.
The second input argument must be the name and fully qualified path of your DCF file.

Note that you cannot create more than one object connected to the same device, and trying to do that
generates an error.

After you create the object, you can preview and acquire images.

Note The Matrox support requires that you download and install the necessary files via MATLAB
Add-Ons. The Matrox Hardware support package installs the files for both the matrox adaptor for the
videoinput object and the matroxcam object. For more information, see “Installing the Support
Packages for Image Acquisition Toolbox Adaptors” on page 4-5.

Create a matroxcam Object Using Device Number as an Index

Use the matroxcam function with an index as the first input argument to create the object
corresponding to that index and connect it to that frame grabber. The index corresponds to the order
of boards in the cell array returned by matroxlist when you have multiple frame grabbers
connected. If you only have one frame grabber, you must use a 1 as the input argument.

Use the matroxlist function to ensure that MATLAB is discovering your frame grabbers.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

Create an object, m, using the index number and DCF file. If you want to use the second frame
grabber in the list, the Solios XCL at digitizer 1, use a 2 as the index number, since it is the second
camera on the list. The second argument must be the name of your DCF file, entered as a character
vector. It must contain the fully qualified path to the file as well. In this example, the DCF file is
named mycam.dcf.
m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf')

m =

Display Summary for matroxcam:

 DeviceName: 'Solios XCL (digitizer 1)'

13 Using the Matrox Interface

13-6

 DCFName: 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf'
 FrameResolution: '1300 x 1080'
 Timeout: 10

It creates the object and connects it to the Solios XCL with that index number, in this case, the second
one displayed by matroxlist. The DCF file is specified so that the acquisition can use the properties
you have set in your DCF file.

The four properties shown when you create the object are read-only properties that identify the frame
grabber.

Acquire One Image Frame from a Matrox Frame Grabber
Use the snapshot function to acquire one image frame from a Matrox frame grabber.

1 Use the matroxlist function to ensure that MATLAB is discovering your frame grabber.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

2 Use the matroxcam function to create the object and connect it to the frame grabber. If you want
to use the second frame grabber in the list, the Solios XCL at digitizer 1, use a 2 as the index
number, since it is the second board on the list. The second argument must be the name and path
of your DCF file, entered as a character vector.
m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf')

m =

Display Summary for matroxcam:

 DeviceName: 'Solios XCL (digitizer 1)'
 DCFName: 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf'
 FrameResolution: '1300 x 1080'
 Timeout: 10

It creates the object and connects it to the Solios XCL with that index number, in this case, the
second one displayed by matroxlist. The DCF file is specified so that the acquisition can use
the properties you have set in your DCF file.

3 Preview the image from the camera.

preview(m)
4 You can leave the Preview window open, or close it any time. To close the preview:

closePreview(m)
5 Acquire a single image using the snapshot function, and assign it to the variable img

img = snapshot(m);
6 Display the acquired image.

imshow(img)

 Acquire Images from Matrox Frame Grabbers

13-7

7 Clean up by clearing the object.

clear m

Configuring Hardware Triggering

If your DCF file is configured for hardware triggering, then you must provide the trigger to acquire
images. To do that, call the snapshot function as you normally would, as shown in step 5, and then
perform the hardware trigger to acquire the frame.

Note that when you call the snapshot function with hardware triggering set, it will not timeout as it
normally would. Therefore, the MATLAB command-line will be blocked until you perform the
hardware trigger.

13 Using the Matrox Interface

13-8

Using the VideoDevice System Object

• “VideoDevice System Object Overview” on page 14-2
• “Creating the VideoDevice System Object” on page 14-3
• “Using VideoDevice System Object to Acquire Frames” on page 14-4
• “Using Properties on a VideoDevice System Object” on page 14-8
• “Code Generation with VideoDevice System Object” on page 14-11

14

VideoDevice System Object Overview
The Image Acquisition Toolbox introduces the VideoDevice System object™, which allows single-
frame image acquisition and code generation from MATLAB.

You use the imaq.VideoDevice function to create the System object. It supports the same adaptors
and hardware that the videoinput object supports; however, it has different functions and
properties associated with it. For example, the System object uses the step function to acquire single
frames.

14 Using the VideoDevice System Object

14-2

Creating the VideoDevice System Object
You use the imaq.VideoDevice function to create the System object. You can specify the
adaptorname, deviceid, and format at the time of object creation, or it will use defaults, as
follows.

Constructor Purpose
obj = imaq.VideoDevice Creates a VideoDevice System object, obj, that

acquires images from a specified image
acquisition device. When you specify no
parameters, by default, it selects the first
available device for the first adaptor returned by
imaqhwinfo.

obj = imaq.VideoDevice(adaptorname) Creates a VideoDevice System object, obj, using
the first device of the specified adaptorname.
adaptorname is a character vector that specifies
the name of the adaptor used to communicate
with the device. Use the imaqhwinfo function to
determine the adaptors available on your system.

obj = imaq.VideoDevice(adaptorname,
deviceid)

Creates a VideoDevice System object, obj, with
the default format for specified adaptorname
and deviceid. deviceid is a numeric scalar
value that identifies a particular device available
through the specified adaptorname. Use the
imaqhwinfo(adaptorname) syntax to
determine the devices available and
corresponding values for deviceid.

obj = imaq.VideoDevice(adaptorname,
deviceid, format)

Creates a VideoDevice System object, obj, where
format is a character vector that specifies a
particular video format supported by the device
or a device configuration file (also known as a
camera file).

obj = imaq.VideoDevice(adaptorname,
deviceid, format, P1, V1, ...)

Creates a VideoDevice System object, obj, with
the specified property values. If an invalid
property name or property value is specified, the
object is not created.

Specifying properties at the time of object creation is optional. They can also be specified after the
object is created. See “Using Properties on a VideoDevice System Object” on page 14-8 for a list of
applicable properties.

 Creating the VideoDevice System Object

14-3

Using VideoDevice System Object to Acquire Frames
You can use these functions with the VideoDevice System object.

Function Purpose

step Acquire a single frame from the image acquisition device.

frame = step(obj);

acquires a single frame from the VideoDevice System object, obj.

Note that the first time you call step, it acquires exclusive use of the
hardware and will start streaming data.

release Release VideoDevice resources and allow property value changes.

release(obj)

releases system resources (such as memory, file handles, or hardware
connections) of System object, obj, and allows all its properties and input
characteristics to be changed.

isLocked Returns a value that indicates if the VideoDevice resource is locked. (Use
release to unlock.)

L = isLocked(obj)

returns a logical value, L, which indicates whether properties are locked
for the System object, obj. The object performs an internal initialization
the first time the step function is executed. This initialization locks
properties and input specifications. Once this occurs, the isLocked
function returns a value of true.

preview Activate a live image preview window.

preview(obj)

creates a Video Preview window that displays live video data for the
VideoDevice System object, obj. The Video Preview window displays the
video data at 100% magnification. The size of the preview image is
determined by the value of the VideoDevice System object ROI property. If
not specified, it uses the default resolution for the device.

closepreview Close live image preview window.

closepreview(obj)

closes the live preview window for VideoDevice System object, obj.
imaqhwinfo Returns information about the object.

imaqhwinfo(obj)

displays information about the VideoDevice System object, obj.

14 Using the VideoDevice System Object

14-4

The basic workflow for using the VideoDevice System object is to create the object, preview the
image, set any properties, acquire a frame, and clear the object, as shown here.

1 Construct a VideoDevice System object associated with the Winvideo adaptor with device ID of 1.

vidobj = imaq.VideoDevice('winvideo', 1);
2 Set an object-level property, such as ReturnedColorSpace.

vidobj.ReturnedColorSpace = 'grayscale';

Note that the syntax for setting an object-level property is <object_name>.<property_name>
= <property_value>, where the value can be a character vector or a numeric.

3 Set a device-specific property, such as Brightness.

vidobj.DeviceProperties.Brightness = 150;

Note that the syntax for setting a device-specific property is to list the object name, the
DeviceProperties object, and the property name using dot notation, and then make it equal to
the property value.

4 Preview the image.

preview(vidobj)
5 Acquire a single frame using the step function.

frame = step(vidobj);
6 Display the acquired frame.

imshow(frame)
7 Release the hardware resource.

release(vidobj);
8 Clear the VideoDevice System object.

clear vidobj;

Kinect for Windows Metadata
You can return Kinect for Windows skeleton data using the VideoDevice System object on the Kinect
Depth sensor.

Typically in the Image Acquisition Toolbox, each camera or image device has one device ID. Because
the Kinect for Windows camera has two separate sensors, the Color sensor and the Depth sensor, the
toolbox lists two device IDs. The Kinect Color sensor is device 1 and the Kinect depth sensor is device
2.

This example uses a Kinect V1 device. The toolbox also supports Kinect V2. For information on the
properties and metadata of Kinect V2 devices, install the Image Acquisition Toolbox Support Package
for Kinect For Windows Sensor and see the “Acquire Images with Kinect V2” section in the
documentation.

To create a System object using the Color sensor:

vidobjcolor = imaq.VideoDevice('kinect', 1);

 Using VideoDevice System Object to Acquire Frames

14-5

To create a System object using the Depth sensor:

vidobjdepth = imaq.VideoDevice('kinect', 2);

The Depth sensor returns skeleton metadata. To access this, you need to add a second output
argument for the step function. The Color sensor works the same way as other devices. So acquiring
a frame using the Kinect Color sensor is done as shown here:

imageData = step(vidobjcolor);

where imageData is the frame acquired if vidobjcolor is a System object created with Device 1,
the Kinect Color sensor.

The Kinect Depth sensor requires a second output argument, as shown here:

[depthData metadata] = step(vidobjdepth);

where depthData is the frame acquired if vidobjdepth is a System object created with Device 2,
the Kinect Depth sensor, and metadata is the skeleton metadata returned with the frame.

These metadata fields are related to tracking the skeletons. The metadata is returned as a structure
that contains these parameters:

 IsPositionTracked
 IsSkeletonTracked
 JointDepthIndices
 JointImageIndices
 JointTrackingState
 JointWorldCoordinates
 PositionDepthIndices
 PositionImageIndices
 PositionWorldCoordinates
 SegmentationData
 SkeletonTrackingID

You can then look at both outputs. To see the image frame:

imshow(imageData)

To see the metadata output:

metadata

Note The Kinect for Windows Depth sensor may take some seconds to be ready to begin acquiring
skeletal metadata. In order to see values in the metadata output, you need to acquire multiple frames
using the step function repeatedly. You can do this by using a for loop.

Note By default the System object returns data as single precision values with the range 0.0 to 1.0.
The value represents the fraction through the sensor’s dynamic range. The Kinect depth sensor has a
range of 0 to 8192 mm.

“Acquiring Image and Skeletal Data Using Kinect” on page 12-7 is an example that shows how to
access the skeletal metadata using the videoinput object (not the VideoDevice System object), and
it contains information about the properties you can set on both the Color and Depth sensors, and

14 Using the VideoDevice System Object

14-6

descriptions of all the metadata fields. The property names and values are the same as they would be
for the System object, but you would then need to set the properties as shown in step 3 of the above
example (in the current topic) for use with the VideoDevice System object.

 Using VideoDevice System Object to Acquire Frames

14-7

Using Properties on a VideoDevice System Object
You can specify properties at the time of object creation, or they can be specified and changed after
the object is created.

Properties that can be used with the VideoDevice System object include:

Property Description
Device Device from which to acquire images.

Specify the image acquisition device to use to acquire a frame. It
consists of the device name, adaptor, and device ID. The default
device is the first device returned by imaqhwinfo.

obj.Device

shows the list of available devices for VideoDevice System object,
obj.

VideoFormat Video format to be used by the image acquisition device.

Specify the video format to use while acquiring the frame. The
default value of VideoFormat is the default format returned by
imaqhwinfo for the selected device. To specify a Video Format
using a device file, set the VideoFormat property to 'From
device file' This option exists only if your device supports
device configuration files.

obj.VideoFormat

shows the list of available video formats.
DeviceFile Name of file specifying video format. This property is only visible

when VideoFormat is set to 'From device file'.
DeviceProperties Object containing properties specific to the image acquisition

device.

obj.DeviceProperties.<property_name> =
 <property_value>

shows a device-specific property for VideoDevice System object,
obj.

ROI Region-of-interest for acquisition. This is set to the default ROI
value for the specified device, which is the maximum resolution
possible for the specified format. You can change the value to
change the size of the captured image. The format is 1-based, that
is, it is specified in pixels in a 1-by-4 element vector [x y width
height], where x is x offset and y is y offset.

Note that this differs from the videoinput object and the From
Video Device block, which are 0-based.

14 Using the VideoDevice System Object

14-8

Property Description
HardwareTriggering Turn hardware triggering on/off. Set this property to 'on' to

enable hardware triggering to acquire images. The property is
visible only when the device supports hardware triggering.

TriggerConfiguration Specifies the trigger source and trigger condition before
acquisition. The triggering condition must be met via the trigger
source before a frame is acquired. This property is visible only
when HardwareTriggering is set to 'on'.

obj.TriggerConfiguration

shows the list of available hardware trigger configurations.
ReturnedColorSpace Specify the color space of the returned image. The default value of

the property depends on the device and the video format selected.
Possible values are {rgb|grayscale|YCbCr} when the default
returned color space for the device is not grayscale. Possible
values are {rgb|grayscale|YCbCr|bayer} when the default
returned color space for the device is grayscale

obj.ReturnedColorSpace

shows the list of available color space settings.
BayerSensorAlignment Character vector indicating the 2x2 sensor alignment. Specifies

Bayer patterns returned by hardware. Specify the sensor
alignment for Bayer demosaicing. The default value of this
property is 'grbg'. Possible values are {grbg|gbrg|rggb|bggr}.
Visible only if ReturnedColorSpace is set to 'bayer'.

obj.BayerSensorAlignment

shows the list of available sensor alignments.
ReturnedDataType The returned data type of the acquired frame. The default

ReturnedDataType is single.

obj.ReturnedDataType

shows the list of available data types.
ReadAllFrames Specify whether to read one image frame or all available frames.

Set to 'on' to capture all available image frames. When set to the
default of 'off', the system object takes a snapshot of one frame,
which is the equivalent of the getsnapshot function in the
toolbox. When the option is on, all available image frames are
captured, which is the equivalent of the getdata function in the
toolbox.

Note The setting of properties for the System object supports tab completion for enumerated
properties while coding in MATLAB. Using the tab completion is an easy way to see available
property values. After you type the property name, type a comma, then a space, then the first quote
mark for the value, then hit tab to see the possible values.

 Using Properties on a VideoDevice System Object

14-9

Once you have created a VideoDevice System object, you can set either object-level properties or
device-specific properties on it.

To set an object-level property, use this syntax:

vidobj.ReturnedColorSpace = 'grayscale';

You can see that the syntax for setting an object-level property is to use
<object_name>.<property_name> = <property_value>, where the value may be a character
vector or a numeric.

Another example of an object-level property is setting the region-of-interest, or ROI, to change the
dimensions of the acquired image. The ROI format is specified in pixels in a 1-by-4 element vector [x
y width height].

vidobj.ROI = [1 1 200 200];

Note This ROI value is 1-based. This differs from the videoinput object and the From Video Device
block, which are 0-based.

To set a device-specific property, use this syntax:

vidobj.DeviceProperties.Brightness = 150;

You can see that the syntax for setting a device-specific property is to use dot notation with the object
name, the DeviceProperties object, and the property name and then make it equal to the property
value.

Another example of a device-specific property is setting the frame rate for a device that supports it.

vidobj.DeviceProperties.FrameRate = '30';

Note Once you have done a step, in order to change a property or set a new one, you need to release
the object using the release function, before setting the new property.

14 Using the VideoDevice System Object

14-10

Code Generation with VideoDevice System Object

In this section...
“Using the codegen Function” on page 14-11
“Shared Library Dependencies” on page 14-11
“Usage Rules for System Objects in Generated MATLAB Code” on page 14-12
“Limitations on Using System Objects in Generated MATLAB Code” on page 14-12

Using the codegen Function
The VideoDevice System object supports code generation in MATLAB via the codegen function. To
use the codegen function, you must have a MATLAB Coder license. System objects also support code
generation using the MATLAB Function block in Simulink. You can also use the System object with
MATLAB Compiler™.

Note The MATLAB Compiler software supports System objects for use inside MATLAB functions. The
MATLAB Compiler does not support System objects for use in MATLAB scripts.

Note If you use the codegen command to generate a MEX function on a Windows platform, you
need to perform imaqreset before running the generated MEX file. However, MEX does not work
correctly if the Kinect for Windows Sensor support package is installed.

After running the generated MEX file, if you run some MATLAB code that includes a VideoDevice
System object with a camera adaptor that is also used in the generated MEX file, you need to perform
clear mex first.

Note The codegen command can be used to generate executable files on non-Windows platforms.
However, generation of the MEX function is not supported on Linux and macOS platforms.

For more information see the documentation for the MATLAB codegen function.

Shared Library Dependencies
The VideoDevice System object generates code with limited portability. The System object uses
precompiled shared libraries, such as DLLs, to support I/O for specific types of devices. The shared
library locations that the generated executable requires are as follows:

• Specific MathWorks shared libraries under [MATLABROOT]\bin\<ARCH>\
• MathWorks adaptor libraries under [MATLABROOT]\SupportPackages\<RELEASE>\toolbox\imaq

\supportpackages\genericvideo\adaptor\<ARCH>\ specific to the device selected.

For example, your path may look like this on a Windows system and using release R2018a:

C:\ProgramData\MATLAB\SupportPackages\R2018a\toolbox\imaq\supportpackages\genericvideo
\adaptor\win64

 Code Generation with VideoDevice System Object

14-11

You will need to add the above folders to your system path before running the generated executable
outside of MATLAB.

Usage Rules for System Objects in Generated MATLAB Code
• Assign System objects to persistent variables.
• Global variables are not supported.
• Initialize System objects once by embedding the object handles in an if statement with a call to

isempty().
• Call the constructor exactly once for each System object.
• Set arguments to System object constructors as compile-time constants.
• Use the object constructor to set System object properties because you cannot use dot notation

for code generation. You can use the get function to display properties.
• Test your code in simulation before generating code.

The following shows an example of some of these rules.

% Note: System Objects created for Codegen have to be persistent variables.
persistent vid;

% Construct the IMAQ VideoDevice System Object.
if isempty(vid)
 % Note: All required parameters must be passed to the System Object at
 % the point of construction.
 vid = imaq.VideoDevice('winvideo', 1, 'MJPG_320x240', ...
 'ROI', [1 1 320 240], ...
 'ReturnedColorSpace', 'rgb', ...
 'DeviceProperties.Brightness', 130, ...
 'DeviceProperties.Sharpness', 220);
end

Limitations on Using System Objects in Generated MATLAB Code
Ensure that the value assigned to a nontunable or public property is a constant and that there is at
most one assignment to that property (including the assignment in the constructor). Do not set any
properties during code generation.

The only System object functions supported in code generation are:

• get
• getNumInputs
• getNumOutputs
• reset
• step

Do not set System objects to become outputs from the MATLAB Function block.

Do not pass a System object as an example input argument to a function being compiled with
codegen.

14 Using the VideoDevice System Object

14-12

Do not pass a System object to functions declared as extrinsic (i.e., functions called in interpreted
mode) using the coder.extrinsic function. Do not return System objects from any extrinsic
functions.

 Code Generation with VideoDevice System Object

14-13

Adding Support for Additional Hardware

15

Support for Additional Hardware
The Image Acquisition Toolbox software supports connections with hardware from many common
vendors, but it might not support the hardware you use. To add support for your hardware, you can
create an adaptor using the Image Acquisition Toolbox Adaptor Kit.

The Image Acquisition Toolbox Adaptor Kit is a C++ framework that you can use to implement an
adaptor. An adaptor is a dynamic link library (DLL) that implements the connection between the
Image Acquisition Toolbox engine and a device driver via the vendor's SDK API. When you use the
Adaptor Kit framework, you can take advantage of many prepackaged toolbox features such as disk
logging, multiple triggering modes, and a standardized interface to the image acquisition device.

After you create your adaptor DLL and register it with the toolbox using the imaqregister function,
you can create a video input object to connect with a device through your adaptor. In this way,
adaptors enable the dynamic loading of support for hardware without requiring recompilation and
linking of the toolbox.

To build an adaptor requires familiarity with C++, knowledge of the application programming
interface (API) provided by the manufacturer of your hardware, and familiarity with Image
Acquisition Toolbox concepts, functionality, and terminology. To learn more about creating an adaptor,
see “Creating Custom Adaptors”. For detailed information about the adaptor kit framework classes,
see the Image Acquisition Toolbox Adaptor Kit Class Reference, which is available in

matlabroot\toolbox\imaq\imaqadaptors\kit\doc\adaptorkit.chm

where matlabroot represents your MATLAB installation directory.

15 Adding Support for Additional Hardware

15-2

Troubleshooting

This chapter provides information about solving common problems you might encounter with the
Image Acquisition Toolbox software and the video acquisition hardware it supports.

• “Troubleshooting Overview” on page 16-2
• “DALSA Sapera Hardware” on page 16-3
• “DCAM IEEE 1394 (FireWire) Hardware on Windows” on page 16-5
• “Matrox Hardware” on page 16-10
• “National Instruments Hardware” on page 16-12
• “Point Grey Hardware” on page 16-14
• “Kinect for Windows Hardware” on page 16-17
• “GigE Vision Hardware” on page 16-19
• “GenICam GenTL Hardware” on page 16-24
• “Windows Video Hardware” on page 16-25
• “Linux Video Hardware” on page 16-27
• “Linux DCAM IEEE 1394 Hardware” on page 16-29
• “Macintosh Video Hardware” on page 16-30
• “Macintosh DCAM IEEE 1394 Hardware” on page 16-31
• “Video Preview Window Troubleshooting” on page 16-32
• “Contacting MathWorks and Using the imaqsupport Function” on page 16-33

16

Troubleshooting Overview
If, after installing the Image Acquisition Toolbox software and using it to establish a connection to
your image acquisition device, you are unable to acquire data or encounter other problems, try these
troubleshooting steps first. They might help fix the problem.

1 Verify that your image acquisition hardware is functioning properly.
2 If the hardware is functioning properly, verify that you are using a hardware device driver that is

compatible with the Image Acquisition Toolbox software.

The following sections describe how to perform these steps for the vendors and categories of devices
supported by the Image Acquisition Toolbox software.

If you are encountering problems with the preview window, see “Video Preview Window
Troubleshooting” on page 16-32.

Note To see the full list of hardware that the toolbox supports, visit the Image Acquisition Toolbox
product page at the MathWorks website www.mathworks.com/products/image-acquisition.

Note With previous versions of the Image Acquisition Toolbox, the files for all of the adaptors were
included in your installation. Starting with version R2014a, each adaptor is available separately
through support packages. In order to use the Image Acquisition Toolbox, you must install the
adaptor that your camera uses. See “Image Acquisition Support Packages for Hardware Adaptors” on
page 4-2 for information about installing the adaptors using MATLAB Add-Ons.

16 Troubleshooting

16-2

https://www.mathworks.com/products/image-acquisition.html

DALSA Sapera Hardware
In this section...
“Troubleshooting DALSA Sapera Devices” on page 16-3
“Determining the Driver Version for DALSA Sapera Devices” on page 16-4

Troubleshooting DALSA Sapera Devices
The Image Acquisition Toolbox software supports the use of DALSA Sapera hardware.

If you are having trouble using the Image Acquisition Toolbox software with a supported DALSA
Sapera frame grabber, try the following:

1 Install the Image Acquisition Toolbox Support Package for DALSA Sapera Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Install the third-party hardware device driver separately and verify that it is compatible with
Image Acquisition Toolbox. For the correct driver information, check the list of supported drivers
for your MATLAB release under Third-Party Requirements on Teledyne DALSA Support from
Image Acquisition Toolbox.

Note Image Acquisition Toolbox is compatible only with specific driver versions provided with
the DALSA Sapera hardware and is not guaranteed to work with any other versions.

Find out the driver version you are using on your system. To learn how to get this information,
see “Determining the Driver Version for DALSA Sapera Devices” on page 16-4.

If you discover that you are using an unsupported driver version, visit the Teledyne DALSA
website to download the correct driver.

3 Use the imaqhwinfo function to verify if 'dalsa' is listed.

imaqhwinfo
 ans =
 struct with fields:
 InstalledAdaptors: {'dalsa' 'winvideo'}
 MATLABVersion: '9.4 (R2018a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '5.3 (R2018a)'

In the example shown, the DALSA and WinVideo adaptors are present, meaning the DALSA and
OS Generic Video Interface support packages are installed.

4 Verify that you have a supported frame grabber. See a list of supported frame grabbers on
Teledyne DALSA Support from Image Acquisition Toolbox.

5 Verify that your image acquisition hardware is functioning properly.

For DALSA Sapera devices, run the application that came with your hardware, the Sapera
CamExpert, and verify that you can view a live video stream from your camera.

 DALSA Sapera Hardware

16-3

https://www.mathworks.com/hardware-support/teledyne-dalsa.html
https://www.mathworks.com/hardware-support/teledyne-dalsa.html
https://www.mathworks.com/hardware-support/teledyne-dalsa.html

If you are using a camera file to configure the device, verify that the toolbox can locate your
camera file. Make sure that your camera appears in the Camera list in the Sapera CamExpert.
To test the camera, select the camera in the list, and click the Grab button.

6 Make sure no other application is using the camera.

Determining the Driver Version for DALSA Sapera Devices
To determine the DALSA Sapera Library version you are using, view the release notes for the driver.
You can access the release notes through the Windows Start menu.

1 Click the Start button to open the Start menu.
2 Select Programs > DALSA Coreco Imaging > Sapera LT to open the Sapera LT menu.
3 Select Readme to view the Sapera release notes.

16 Troubleshooting

16-4

DCAM IEEE 1394 (FireWire) Hardware on Windows

In this section...
“Troubleshooting DCAM IEEE 1394 Hardware on Windows” on page 16-5
“Manually Installing the CMU DCAM Driver on Windows” on page 16-6
“Running the CMU Camera Demo Application on Windows” on page 16-6

Troubleshooting DCAM IEEE 1394 Hardware on Windows
If you are having trouble using the Image Acquisition Toolbox software with an IEEE 1394 (FireWire)
camera using the toolbox's dcam adaptor, try the following:

1 Install the Image Acquisition Toolbox Support Package for DCAM Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 When installing the CMU 1394 Digital Camera Driver Setup, on the first page of the installation
wizard, under Select components to install, select these three items in the installation list, and
click Next.

• Program Group and Desktop Shortcuts
• Disable Default Windows Driver
• Update Driver for Attached Devices

3 Verify that your IEEE 1394 (FireWire) camera is plugged into the IEEE 1394 (FireWire) port on
your computer and is powered up.

4 Confirm that another imaging application is not connected to the camera.
5 Confirm that the camera is detected by "1394Camera Demo 64-bit" installed with the CMU

DCAM driver. See “Running the CMU Camera Demo Application on Windows” on page 16-6.

Verify that your IEEE 1394 (FireWire) camera can be accessed through the dcam adaptor.

• Make sure the camera is compliant with the IIDC 1394-based Digital Camera (DCAM)
specification. Vendors typically include this information in documentation that comes with the
camera. If your digital camera is not DCAM compliant, you might be able to use the
winvideo adaptor. See “Windows Video Hardware” on page 16-25 for information.

• Make sure the camera outputs data in uncompressed format. Cameras that output data in
Digital Video (DV) format, such as digital camcorders, cannot use the dcam adaptor. To access
these devices, use the winvideo adaptor. See “Windows Video Hardware” on page 16-25 for
information.

• Make sure you specified the dcam adaptor when you created the video input object. Some
IEEE 1394 (FireWire) cameras can be accessed through either the dcam or winvideo
adaptors. If you can connect to your camera from the toolbox but cannot access some camera
features, such as hardware triggering, you might be accessing the camera through a DirectX®

driver. See “Creating a Video Input Object” on page 5-7 for more information about specifying
adaptors.

• If the demo application does not recognize the camera, install the CMU DCAM driver. See
“Manually Installing the CMU DCAM Driver on Windows” on page 16-6 for instructions.

 DCAM IEEE 1394 (FireWire) Hardware on Windows

16-5

6 Verify that your CMU 1394 Digital Camera driver is version 6.4.6. The "CMU 1394 Digital
Camera Driver" installed version can be found from Windows Control Panel > Programs >
Programs and Features.

7 Confirm that the IEEE 1394 (FireWire) card is detected and drivers are correctly installed in
Windows Device Manager.

Manually Installing the CMU DCAM Driver on Windows
The Image Acquisition Toolbox software supports acquiring data from IEEE 1394 (FireWire) cameras
that support the IIDC 1394-based Digital Camera (DCAM) specification. To use a DCAM-compliant
camera, you must use the DCAM driver created by Carnegie Mellon University (CMU) to connect to
these devices.

Note The CMU DCAM driver is the only DCAM driver supported by the toolbox. You cannot use
vendor-supplied drivers, even if they are compliant with the DCAM specification.

Installing the Driver

To install the CMU DCAM driver on your system, follow this procedure:

1 Obtain the CMU DCAM driver files. The Image Acquisition Toolbox software includes the CMU
DCAM installation file, 1394camera646.exe, in the directory

matlabroot\toolbox\imaq\imaqextern\drivers\win64\dcam

where matlabroot represents the name of your MATLAB installation directory.

You can also download the DCAM driver directly from CMU. Go to the website
www.cs.cmu.edu/~iwan/1394 and click the download link.

2 Start the installation by double-clicking the .exe file.

On the first page of the installation wizard under Select components to install, select these
three items in the installation list and click Next.

• Program Group and Desktop Shortcuts
• Disable Default Windows Driver
• Update Driver for Attached Devices

On the second page of the wizard, accept the default location or browse to a new one, and click
Install.

Note You may need to have your camera recognized after installing the driver. If this happens, open
Device Manager and select the camera software. Right-click it, and choose Update Driver
Software. Browse for the vendor driver software, and install it.

Running the CMU Camera Demo Application on Windows
The Carnegie Mellon University (CMU) DCAM driver distribution includes a camera demo
application, named 1394CameraDemo.exe. The demo application is among the files you installed in
the previous section.

16 Troubleshooting

16-6

You can use this demo application to verify whether your camera is using the CMU DCAM driver. To
access a camera through this demo application:

1 Select Start > Programs > CMU 1394 Camera > 1394 Camera Demo.
2 The application opens a window, shown in the following figure.

3 From the Camera Demo application, select Camera > Check Link. This option causes the demo
application to look for DCAM-compatible cameras that are available through the IEEE 1394
(FireWire) connection.

The demo application displays the results of this search in a pop-up message box. In the following
example, the demo application found a camera. Click OK to continue.

4 Select Camera > Select Camera, and select the camera you want to use. The Select Camera
option is not enabled until after the Check Link option has successfully found cameras.

5 Select Camera > Init Camera. In this step, the demo application checks the values of various
camera properties. The demo application might resize itself to fit the video format of the
specified camera. If you see the following dialog box message, click Yes.

6 Select Camera > Show Camera to start acquiring video.

 DCAM IEEE 1394 (FireWire) Hardware on Windows

16-7

The demo application starts displaying live video in the window.

16 Troubleshooting

16-8

7 To exit, select Stop Camera from the Camera menu, and click Exit.

 DCAM IEEE 1394 (FireWire) Hardware on Windows

16-9

Matrox Hardware
In this section...
“Troubleshooting Matrox Devices” on page 16-10
“Determining the Driver Version for Matrox Devices” on page 16-10

Troubleshooting Matrox Devices
Device Discovery

If you are having trouble using the Image Acquisition Toolbox software with a supported Matrox
frame grabber, try the following:

1 Install the Image Acquisition Toolbox Support Package for Matrox Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Install the Matrox Imaging Library (MIL) separately and verify that it is the supported version for
your MATLAB release. Check the supported versions in the Third-Party Requirements section
on Matrox Frame Grabber Support from Image Acquisition Toolbox. If you discover that you are
using an unsupported driver version, visit the Matrox website to download the correct drivers.

Note that the matroxcam and matroxlist functions that are available with the matroxcam
object starting in release R2015a work with MIL or MIL-Lite 10.x only. Use of the matrox
adaptor with the videoinput object can use either MIL 9 or 10.

Find out the driver version you are using on your system. To learn how to get this information,
see “Determining the Driver Version for Matrox Devices” on page 16-10.

3 Verify that you are using supported image acquisition hardware and that it is functioning
properly. See a list of supported Matrox frame grabbers on Matrox Frame Grabber Support from
Image Acquisition Toolbox.

For Matrox devices, run the application that came with your hardware, Matrox Intellicam, and
verify that you can receive live video.

4 Make sure no other application is accessing the frame grabber.

Note There is no difference between MIL and MIL-Lite software inside of MATLAB. They both work
with Matrox Imaging devices.

Determining the Driver Version for Matrox Devices
To determine the Matrox Imaging Library version you are using, run the Matrox MIL Configuration
utility. You can access this software through the Windows Start button.

Select Start > Programs > Matrox Imaging Products > MIL Configuration.

The software version is listed on the Information tab.

16 Troubleshooting

16-10

https://www.mathworks.com/hardware-support/matrox.html
https://www.matrox.com
https://www.mathworks.com/hardware-support/matrox.html
https://www.mathworks.com/hardware-support/matrox.html

Note As of version R2014b, the Image Acquisition Toolbox supports MIL 10, and that is the
recommended version to use.

 Matrox Hardware

16-11

National Instruments Hardware
In this section...
“Troubleshooting National Instruments Devices” on page 16-12
“Determining the Driver Version for National Instruments Devices” on page 16-13

Troubleshooting National Instruments Devices
If you are having trouble using the Image Acquisition Toolbox software with a supported National
Instruments frame grabber, try the following:

1 Install the Image Acquisition Toolbox Support Package for National Instruments Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that your image acquisition hardware is functioning properly.

For National Instruments devices, run the application that came with your hardware, NI MAX
(Measurement & Automation Explorer), and verify that you can receive live video.

Launch NI MAX from Start > Programs > National Instruments > NI MAX.

To test that the hardware is working properly, in Measurement & Automation Explorer, expand
Devices and Interfaces, and then expand NI-IMAQ Devices, and expand the node that
represents the board you want to use.

With the board expanded, select the channel or port that you have connected a camera to.
3 Click the Grab button to verify that your camera is working. If it is not, see the National

Instruments device documentation.
4 Confirm that the NI-IMAQ vendor driver version installed is supported by Image Acquisition

Toolbox.

Note The Image Acquisition Toolbox software is compatible only with specific driver versions
provided with the National Instruments software and is not guaranteed to work with any other
versions.

• Find out the driver version you are using on your system. To learn how to get this information,
see Determining the Driver Version on page 16-13.

• Verify that the version is compatible with the Image Acquisition Toolbox software. Supported
NI-IMAQ driver versions are listed on the following hardware support web page: (https://
www.mathworks.com/hardware-support/national-instruments.html).

5 If you discover that you are using an unsupported driver version:

• Uninstall any existing NI-IMAQ driver version from Windows Control Panel > Programs
and Features > National Instruments Software.

• Reinstall the Image Acquisition Toolbox Support Package for National Instruments Hardware.

16 Troubleshooting

16-12

https://www.mathworks.com/hardware-support/national-instruments.html
https://www.mathworks.com/hardware-support/national-instruments.html

Determining the Driver Version for National Instruments Devices
To determine the National Instruments driver version you are using, run the Measurement &
Automation Explorer.

Select Help > System Information, and then see the NI-IMAQ Software field for the driver
version number.

 National Instruments Hardware

16-13

Point Grey Hardware
In this section...
“Device Discovery” on page 16-14
“Troubleshooting Point Grey Devices” on page 16-15
“Determining the Driver Version for Point Grey Devices” on page 16-16

Device Discovery
1 Install the Image Acquisition Toolbox Support Package for Point Grey Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that you have the correct FlyCapture version for the release.

Check the list of supported drivers on the Point Grey Camera Support from Image Acquisition
Toolbox product page.

Uninstall any unsupported versions of FlyCapture SDK/Viewer using Control Panel > Add/
Remove Programs.

3 Verify that the camera is working with the FlyCapture Viewer.

Select Start > Programs > Point Grey FlyCapture2 > Point Grey FlyCap2.

In FlyCapture, select your device, and click OK to open the dialog box that shows the video feed
to test that the hardware is working properly.

4 If you are using a Point Grey camera that is a GigE Vision device, do not try to use both the Point
Grey adaptor and the GigE Vision adaptor at the same time. You should use the Point Grey
adaptor.

5 Ensure that the FlyCapture driver is on the PATH Environment variable. To view the PATH:

• Click the Start button, right-click the Computer option in the Start menu, and select
Properties.

• Click the Advanced System Settings link in the left column.
• In the System Properties window, click on the Advanced tab, and click the Environment

Variables button near the bottom of that tab.
• In the Environment Variables window, highlight the Path variable in the System variables

section, and click the Edit button. Ensure that '%FC2PATH%' and '%FC2PATH\vs2013' are
on the path.

• If you are having trouble detecting your device in MATLAB, put both variables in the start of
your PATH.

6 Make sure that the FlyCapture DirectShow drivers are not installed.
7 If you are using a GigE Point Grey camera, you must configure it using FlyCapture Viewer before

using it with MATLAB.

• Connect the GigE Point Grey camera to your system.

16 Troubleshooting

16-14

https://www.mathworks.com/hardware-support/point-grey-camera.html
https://www.mathworks.com/hardware-support/point-grey-camera.html

• Launch FlyCapture Viewer.
• Select the camera that you connected in the list of devices.
• Click the Force IP button.

Troubleshooting Point Grey Devices
The Point Grey adaptor includes support for the following types of Point Grey devices:

• USB 3
• FireWire
• GigE Vision
• USB 2
• Bumblebee 2

If you are having trouble using the Image Acquisition Toolbox software with a supported Point Grey
camera, try the following:

1 Verify that your image acquisition hardware is functioning properly.

For Point Grey devices, run the application that came with your hardware, FlyCapture, and verify
that you can receive live video.

2 Select Start > Programs > Point Grey FlyCapture2 > Point Grey FlyCap2.
3 In FlyCapture, select your device, and click OK to open the dialog box that shows the video feed

to test that the hardware is working properly.
4 Install the Image Acquisition Toolbox Support Package for Point Grey Hardware.
5 If your hardware is functioning properly, verify that you are using a hardware device driver that

is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with specific driver versions
provided with the Point Grey software and is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn how to get this information,
see “Determining the Driver Version for Point Grey Devices” on page 16-16.

• Verify that the version is compatible with the Image Acquisition Toolbox software. For the
correct driver information, check the list of supported drivers on the Point Grey Camera
Support from Image Acquisition Toolbox

If you discover that you are using an unsupported driver version, visit the FlyCapture SDK
website to download the correct drivers.

Note If you are using a Point Grey camera that is a GigE Vision device, do not try to use both the
Point Grey adaptor and the GigE Vision adaptor at the same time. You should use the Point Grey
adaptor.

Note When using the Bumblebee 2 cameras, certain video formats may be suppressed. To see the
available video formats for your Bumblebee camera, open the Image Acquisition Explorer (using

 Point Grey Hardware

16-15

https://www.mathworks.com/hardware-support/point-grey-camera.html
https://www.mathworks.com/hardware-support/point-grey-camera.html
https://www.flir.com/products/flycapture-sdk/

the imageAcquisitionExplorer function), select your camera, and check the options available for
the Video Format parameter in the app toolstrip.

Determining the Driver Version for Point Grey Devices
To determine the Point Grey driver version you are using, run the Point Grey FlyCapture utility.

To see the driver version number:

1 Select Start > Programs > Point Grey FlyCapture2 > Point Grey FlyCap2 to open
FlyCapture.

2 The driver number appears on the banner of the FlyCapture dialog box.

16 Troubleshooting

16-16

Kinect for Windows Hardware
The Kinect adaptor is supported on 64-bit Windows.

Device Discovery

If you are having trouble using the Image Acquisition Toolbox software with a supported Kinect for
Windows sensor, try the following:

1 Install the Image Acquisition Toolbox Support Package for Kinect for Windows Sensor.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

If you have problems installing the Kinect support package, see the section below,
“Troubleshooting the Support Package Installation.”

2 Verify that you are using one of the supported Kinect hardware models. See Microsoft Kinect for
Windows Support from Image Acquisition Toolbox for a list of supported hardware. The Kinect
for Xbox 360 is not supported.

3 Verify that you have the supported Kinect driver version. You must have version 1.6 to use V1
devices, and version 2.0 for Kinect V2 and Xbox One devices.

4 Verify that your image acquisition hardware is functioning properly.

For Kinect for Windows devices, you can run the Kinect Explorer application for Kinect V1
devices, and verify that you can receive live video. You can run Kinect Evolution for Kinect V2 or
Xbox One and adapter.

5 For Kinect V1, make sure no other application is accessing the Kinect v1.
6 For Kinect V2, make sure it is plugged into a USB 3.0 port, and you are using an OS that is

Windows 8 or later.

System Requirements for the Kinect V2 Sensor

The Kinect V2 sensor requires the following:

• 64-bit (x64) processor
• Physical dual-core 3.1 GHz (2 logical cores per physical system) or faster processor
• USB 3.0 controller dedicated to the Kinect for Windows v2 sensor or the Kinect Adapter for

Windows for use with the Kinect for Xbox One sensor
• 4 GB of RAM
• Graphics card that supports DirectX 11
• Windows 8 or 8.1, Windows Embedded 8, or Windows 10

Troubleshooting the Support Package Installation

If the setup fails, it could be caused by an internet security setting. If you get an error message such
as “KINECT Setup Failed – An error occurred while installing,” try the following, and then run the
installer again.

1 In Internet Explorer, go to Tools > Internet Options.

 Kinect for Windows Hardware

16-17

https://www.mathworks.com/hardware-support/kinect-windows.html
https://www.mathworks.com/hardware-support/kinect-windows.html

2 In Internet Options, select the Advanced tab.
3 Under the Security subsection, uncheck Check for publisher’s certificate revocation to

temporarily disable it, and click OK.
4 Run the installer again.
5 After you have installed the support package, re-enable the security option in Internet Explorer.

16 Troubleshooting

16-18

GigE Vision Hardware
In this section...
“Troubleshooting GigE Vision Devices on Windows” on page 16-19
“Troubleshooting GigE Vision Devices on Linux” on page 16-20
“Troubleshooting GigE Vision Devices on macOS” on page 16-21

Troubleshooting GigE Vision Devices on Windows
If you are having trouble using the Image Acquisition Toolbox with a GigE Vision camera on a
Windows machine, using the toolbox's gige adaptor, try the following:

1 Install the Image Acquisition Toolbox Support Package for GigE Vision Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Go through the configuration steps of the “GigE Vision Image Acquisition Quick Start Guide”
(Image Acquisition Toolbox Support Package for GigE Vision Hardware).

In particular, confirm that:

The installed Ethernet network adapter driver is provided by the network adapter manufacturer
(and is not a custom high-performance driver installed for use with a third-party imaging
application).

Any packet filtering drivers from a third-party imaging application or an antivirus program are
disabled (unchecked) in the camera connection Network Settings.

A firewall is not blocking communication with the camera.
3 Confirm that another imaging application is not connected to the camera.
4 To refresh the list of detected devices, execute imaqreset followed by imaqhwinfo.

imaqreset
imaqhwinfo('gige')

When using the gigecam interface, use the gigecamlist command to show a list of the
detected GigE Vision cameras:

gigecamlist
5 Confirm that the camera is detected with other GigE Vision compliant imaging applications.
6 Confirm that there are no issues with the GenICam runtime libraries installation (such as a

conflict with a third-party imaging application) by executing the imaqsupport command and
checking for any error messages in the GENICAM section.

imaqsupport
7 Certain camera vendor software setup programs also install DirectShow drivers for use with

GigE Vision cameras. Uninstall the DirectShow drivers by using the vendor's software setup
program, as these DirectShow drivers might cause issues with the camera being detected when
using the gige adaptor.

 GigE Vision Hardware

16-19

Troubleshooting GigE Vision Devices on Linux
If you are having trouble using the Image Acquisition Toolbox with a GigE Vision camera on a Linux
machine, using the toolbox's gige adaptor, try the following:

1 Install the Image Acquisition Toolbox Support Package for GigE Vision Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that the adaptor loads. You can use the imaqhwinfo command to list installed adaptors.
The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is configured correctly using the imaqsupport
function.

If your camera requires a GenICam XML file on a local drive (most do not), and the adaptor loads
but no devices are shown, check the MWIMAQ_GENICAM_XML_FILES environment variable, and
make sure it contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment variables, see “Software
Configuration” on page 10-10.

3 Make sure you did not install your camera vendor's filtering or performance networking driver. If
you did, you should uninstall it.

4 Make sure the Ethernet card is configured properly.

For more information on this, see “Network Hardware Configuration Notes” on page 10-3 and
“Network Adaptor Configuration Notes” on page 10-4.

Also, if you have multiple cameras connected to multiple Ethernet cards, you cannot have them
all set to automatic IP configuration. You must specify the IP address for each card and each card
must be on a different subnet.

5 Examine the connectivity of your device separately from using the Image Acquisition Toolbox.
You may find using ping -b, arp, route, and ifconfig helpful with this.

6 If your acquisition stops due to a dropped frame, you can set the IgnoreDroppedFrames
property to 'on' to continue your acquisition with dropped frames. When this property is 'on',
the NumDroppedFrames property keeps track of the number of frames dropped while the
acquisition is running.

7 You might receive an error message such as:

“Block 23 is being dropped because packets are unavailable for resend.”

If it does not mention buffer size, it is likely that packets are being dropped due to overload of
the CPU. To lower the CPU load, raise the value of the PacketSize device-specific (source)
property. In order to do this, you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific (source) property.

Also, if you are using a CPU that is older than an Intel® Core™ 2 Quad or equivalent AMD®, you
might experience this type of error.

If you have a slower computer and experience packet loss using the GigE Vision adaptor, you can
set a packet delay to avoid overloading the computer. This action is useful in solving the

16 Troubleshooting

16-20

performance issue if you cannot achieve your camera’s frame rate. The PacketDelay property is
initially set to use your camera’s default value. You can then adjust the value if needed. The
TimeStampTickFrequency property is read-only, but is available for calculating the actual
packet delay value is being used.

For more information on the new PacketDelay property and how to calculate packet delay, see
this solution:

https://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html
8 If you are able to start acquisition without error but do not receive any frames, and if you are

using a larger PacketSize, make sure that your hardware and the network between the
computer and the camera support jumbo frames, and also that your Ethernet interface is set to
allow them at the size that you are attempting to use.

9 If you receive an error that says a block or frame is being dropped because a packet is
unavailable for resend, one likely cause is that the buffer size of the socket could not be set to the
reported value, for example 1000000.

See your system administrator about using sysctl for net.core.rmem_max. For example, the
system administrator could try:

sysctl -w net.inet.udp.recvspace=1000000
10 If your camera does not start a new acquisition at block 1, the toolbox attaches the block ID

(frame ID) as metadata to the frame. If you want to know if you lost initial frames, you can check
the metadata. If the first frame's block ID is not 1, you may have some missing frames. For
example, use this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer includes the Block ID and the FrameNumber.
11 Run the imaqsupport function for further troubleshooting information.

Troubleshooting GigE Vision Devices on macOS
If you are having trouble using the Image Acquisition Toolbox software with a GigE Vision camera on
a macOS machine using the toolbox's gige adaptor, try the following:

1 Install the Image Acquisition Toolbox Support Package for GigE Vision Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that the adaptor loads. You can use the imaqhwinfo command to list installed adaptors.
The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is installed and the environment variables exist. You
can check this using the imaqsupport function.

If your camera requires a GenICam XML file on a local drive (most do not), and the adaptor loads
but no devices are shown, check the MWIMAQ_GENICAM_XML_FILES environment variable, and
make sure it contains the directory where your camera’s XML file is located.

 GigE Vision Hardware

16-21

https://www.mathworks.com/matlabcentral/answers/91834-how-do-i-calculate-the-packet-delay-for-a-gige-vision-camera-to-prevent-dropped-frames

For information on installing GenICam and checking your environment variables, see “Software
Configuration” on page 10-10.

3 Make sure you did not install your camera vendor's filtering or performance networking driver. If
you did, uninstall it.

4 Make sure the Ethernet card is configured properly.

For more information on this, see “Network Hardware Configuration Notes” on page 10-3 and
“Network Adaptor Configuration Notes” on page 10-4.

Also, if you have multiple cameras connected to multiple Ethernet cards, you cannot have them
all set to automatic IP configuration. You must specify the IP address for each card, and each
card must be on a different subnet.

5 Examine the connectivity of your device separately from using the Image Acquisition Toolbox.
You may find using ping -b, arp, route, and ifconfig helpful with this process.

6 If your acquisition stops due to a dropped frame, you can set the IgnoreDroppedFrames
property to 'on' to continue your acquisition with dropped frames. When this property is 'on',
the NumDroppedFrames property keeps track of the number of frames dropped while the
acquisition is running.

7 You might receive an error message such as the following:

“Block 23 is being dropped because packets are unavailable for resend”.

If it does not mention buffer size, it is likely that packets are being dropped due to overload of
the CPU. To lower the CPU load, raise the value of the PacketSize device-specific (source)
property. In order to do this, you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific (source) property.

Also, if you are using a CPU that is older than an Intel Core 2 Quad or equivalent AMD, you might
experience this type of error.

If you have a slower computer and experience packet loss using the GigE Vision adaptor, you can
set a packet delay to avoid overloading the computer. This setting is useful in solving the
performance issue if you cannot achieve your camera’s frame rate. The PacketDelay property is
initially set to use your camera’s default value. You can then adjust the value if needed. The
TimeStampTickFrequency property is read-only but is available for calculating the actual
packet delay value is being used.

For more information on the new PacketDelay property and how to calculate packet delay, see
this solution:

https://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html
8 If you are able to start acquisition without error but do not receive any frames, and if you are

using a larger PacketSize, make sure that your hardware and the network between the
computer and the camera support jumbo frames, and also that your Ethernet interface is set to
allow them at the size that you are attempting to use.

9 If you receive an error that says a block or frame is being dropped because a packet is
unavailable for resend, one likely cause is that the buffer size of the socket could not be set to the
reported value, for example 1000000.

See your system administrator about using sysctl for net.core.rmem_max. For example, the
system administrator could try:

16 Troubleshooting

16-22

https://www.mathworks.com/matlabcentral/answers/91834-how-do-i-calculate-the-packet-delay-for-a-gige-vision-camera-to-prevent-dropped-frames

sysctl -w net.inet.udp.recvspace=1000000
10 If your camera does not start a new acquisition at block 1, the toolbox attaches the block ID

(frame ID) as metadata to the frame. If you want to know if you lost initial frames, you can check
the metadata – if the first frame's block ID is not 1, you may have some missing frames. For
example, use this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer includes the Block ID and the FrameNumber.
11 Run the imaqsupport function for further troubleshooting information.

 GigE Vision Hardware

16-23

GenICam GenTL Hardware

Device Discovery
If you are having trouble using the Image Acquisition Toolbox with a GenICam GenTL camera driver
using the toolbox's gentl adaptor, try the following:

1 Install the Image Acquisition Toolbox Support Package for GenICam Interface.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that the gentl adaptor loads. You can use the imaqhwinfo command to list installed
adaptors. The gentl adaptor should be included on the list.

If it does not load, make sure that GenICam is configured correctly using the imaqsupport
function.

For information on installing GenICam, see “Software Configuration” on page 10-10.
3 Install the manufacturer-provided GenTL producer. During setup, make sure to uncheck the

DirectShow driver installation. If a device is configured for DirectShow, it might not be available
to GenTL.

4 Make sure your environment variables are set. For example, depending on the GenTL producers
you have installed, on a 64-bit Windows system, it could be something like:
GENICAM_GENTL64_PATH=C:\Program Files\LeutronVision\Simplon\bin\cti;C:\Program
 Files\MATRIX VISION\mvIMPACT acquire\bin;C:\XIMEA\GenTL Producer\x86

5 Each directory that you list in the environment variables must contain a DLL file that has a .cti
extension and that exports the standard C functions that are expected for a GenTL producer. The
Image Acquisition Toolbox gentl adaptor scans these directories for all the CTI files and then
checks whether they export the correct minimum set of functions.

6 Test the connectivity of your device separately from using the Image Acquisition Toolbox. Use the
vendor program included with your device to see if you can detect and acquire images from the
camera.

7 If you are using the GenICam GenTL adaptor with a GigE Vision camera, it may be that the
producers for GigE Vision cameras do not send a ForceIP command. So sometimes, after
plugging in a new camera, it is not found. Using the toolbox’s gige adaptor first can resolve this.

8 Run the imaqsupport function for further troubleshooting information. The GenTL section
should list the detected producers, as follows.
--------------------GENTL--------------------

GENICAM_GENTL64_PATH = <C:\Program Files\MATRIX VISION\mvIMPACT Acquire\bin\x64;C:\Program> Files (x86)\Common Files\MVS\Runtime\Win64_x64;C:\XIMEA\GenTL Producer\x64;

Producer found = <C:\Program Files\MATRIX VISION\mvIMPACT Acquire\bin\x64\mvGenTLProducer.cti>

No producers found in C:\Program Files (x86)\Common Files\MVS\Runtime\Win64_x64

Producer found = <C:\XIMEA\GenTL Producer\x64\ximea.gentlX64.cti>

16 Troubleshooting

16-24

Windows Video Hardware

Troubleshooting Windows Video Devices
If you are having trouble using the Image Acquisition Toolbox software with a supported Windows
video acquisition device, try the following:

1 Install the Image Acquisition Toolbox OS Generic Video Interface Support Package. It includes
the necessary files to use the winvideo adaptor.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Confirm that another imaging application is not connected to the camera.
3 Confirm that the camera and its supported video formats are detected by the standalone

hardware detection utility detectDevices.exe (64-bit), which is installed in

MATLABROOT\toolbox\imaq\imaqextern\utilities\detectDevices\win64

where MATLABROOT is the MATLAB installation folder. For example:

C:Program Files\MATLAB\R2018a\toolbox\imaq\imaqextern\utilities\detectDevices\win64

The following is sample output when you run detectDevices.exe in this folder:

Hardware detection application for the R2018a version of Image Acquisition Toolbox.
Detecting hardware for the winvideo adaptor.

 Found device: IPEVO Point 2 View
 Found format: YUY2_640x480
 Found format: YUY2_320x240
 Found format: YUY2_800x600
 Found format: YUY2_1024x768
 Found format: YUY2_1280x1024
 Found format: YUY2_1600x1200
 Found format: YUY2_640x480
 Found format: MJPG_640x480
 Found format: MJPG_320x240
 Found format: MJPG_800x600
 Found format: MJPG_1024x768
 Found format: MJPG_1280x1024
 Found format: MJPG_1600x1200
 Found format: MJPG_640x480

4 Confirm that the camera is detected in other DirectShow compliant applications, such as VLC
Media Player. Utilities such as GraphEdit or AmCap Sample, which are included with Microsoft
Windows Software Development Kit (SDK), are also useful for troubleshooting DirectShow driver
related issues.

5 Some camera and video capture hardware manufacturers provide DirectShow drivers that need
to be installed in order to use the hardware with imaging applications on Windows. For example,
Thorlabs and IDS Imaging are both hardware manufacturers that provide software packages that
include DirectShow drivers. Make sure you install the 64-bit version of the DirectShow drivers,
as MATLAB is a 64-bit application.

 Windows Video Hardware

16-25

6 Some vendor-provided DirectShow drivers might need to be registered using a vendor-provided
utility in order to use the hardware with imaging applications on Windows. Refer to the vendor-
provided instructions.

16 Troubleshooting

16-26

Linux Video Hardware
Device Discovery for Linux Video Devices
If you have trouble using the Image Acquisition Toolbox with a supported Linux Video acquisition
device, try the following:

1 Install the Image Acquisition Toolbox OS Generic Video Interface Support Package. It includes
the necessary files to use the linuxvideo adaptor.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that you have a supported GStreamer version on the Third-Party Requirements section on
the MathWorks website (www.mathworks.com/hardware-support/gstreamer.html).

To find the version of GStreamer drivers installed on your system, run this command:

dpkg -l libgst* | grep ^i

If you had the GStreamer 1.0 libraries, it would return results similar to the following examples.

GStreamer development files for libraries from the "bad" set:

ii libgstreamer-plugins-bad1.0-0:amd64 1.4.4-2.1+b1 amd64

GStreamer libraries from the "base" set:

ii libgstreamer-plugins-base1.0-0:amd64 1.4.4-2 amd64

GStreamer development files for libraries from the "base" set :

ii libgstreamer-plugins-base1.0-dev 1.4.4-2 amd64

Core GStreamer libraries and elements:

ii libgstreamer1.0-0:amd64 1.4.4-2 amd64

Core GStreamer libraries and elements:

ii libgstreamer1.0-0-dbg:amd64 1.4.4-2 amd64

Core GStreamer development files:

ii libgstreamer1.0-dev 1.4.4-2 amd64
3 Verify that your camera can be detected and images can be acquired by running applications

such as Cheese or guvcview. If you can start the utility, run the utility, and close it without
encountering any errors, the toolbox should be able to operate with your image acquisition
device. If you encounter errors, resolve them before attempting to use the toolbox with the
device.

4 If the camera has a USB interface, make sure lsusb on a Linux terminal can detect your camera.
5 For releases R2017a and later, MathWorks supports the GStreamer 1.0 drivers.

Note The Linux Video driver is a generic interface, and you should only use it if you do not have a
more specific driver to use with your device. If your device is an IEEE 1394 IIDC compliant device,

 Linux Video Hardware

16-27

https://www.mathworks.com/hardware-support/video-capture-device.html

use the DCAM (dcam) adaptor. If your device is GigE Vision compliant, use the GigE (gige) adaptor.
If your device manufacturer provides a GenTL producer, use the GenTL (gentl) adaptor. Use the
Linux Video driver only if there is no more specific option for your device.

16 Troubleshooting

16-28

Linux DCAM IEEE 1394 Hardware

Troubleshooting Linux DCAM Devices
If you are having trouble using the Image Acquisition Toolbox with a supported Linux DCAM IEEE
1394 hardware acquisition device, try the following:

1 Verify that your IEEE 1394 (FireWire) camera can be accessed through the dcam adaptor.

• Make sure the camera is compliant with the IIDC 1394-based Digital Camera (DCAM)
specification. Vendors typically include this information in documentation or data sheet that
comes with the camera. If your digital camera is not DCAM compliant, you should be able to
use the Linux Video adaptor.

2 Install the Image Acquisition Toolbox Support Package for DCAM Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

3 Verify that your image acquisition hardware is functioning properly and that you have permission
to access it.

Be sure that your system and login have the proper permissions to access the hardware. See your
system administrator if you need help.

You can verify that your hardware is functioning properly by running Coriander. See your system
administrator if you need help installing Coriander.

If you can start the utility, run the utility, and close the utility without encountering any errors,
the toolbox should be able to operate with your image acquisition device. If you encounter errors,
resolve them before attempting to use the toolbox with the device.

4 To use DCAM on Linux, you need to have installed the libdc1394-22 package, as well as the
libraw1394-11.

 Linux DCAM IEEE 1394 Hardware

16-29

Macintosh Video Hardware

Troubleshooting Macintosh Video Devices
Device Discovery

If you are having trouble using the Image Acquisition Toolbox with a supported Macintosh video
acquisition device, try the following:

1 Install the Image Acquisition Toolbox OS Generic Video Interface Support Package. It includes
the necessary files to use the macvideo adaptor.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

2 Verify that you have supported libraries that work with the camera. Make sure you have Apple AV
Foundation Libraries installed on your computer. If you do not have it installed, you can download
it.

The OS Generic Video Adaptor on Mac (macvideo) uses Apple AV Foundation Libraries starting
with R2016b. The use of the Macintosh Video adaptor previously required that you have
QuickTime installed on your computer. QuickTime is no longer required.

3 Verify that your camera can be detected and images can be acquired by running applications that
come with Macintosh OS, such as Photo Booth, iMovie or FaceTime. If you can start the utility,
run the utility, and close the utility without encountering any errors, then the toolbox should be
able to operate with your image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

Note The Macintosh Video Adaptor is a generic interface and should only be used if you do not
have a more specific adaptor to use with your device. If your device is a DCAM or FireWire IIDC
device, use the DCAM (dcam) adaptor. If your device is GigE Vision compliant, use the GigE
(gige) adaptor. Use the Macintosh Video Adaptor only if there is no more specific option for your
device.

16 Troubleshooting

16-30

Macintosh DCAM IEEE 1394 Hardware

Troubleshooting Macintosh DCAM Devices
If you are having trouble using the Image Acquisition Toolbox with a supported Macintosh DCAM
IEEE 1394 hardware acquisition device, try the following:

1 Verify that your IEEE 1394 (FireWire) camera can be accessed through the dcam adaptor.

• Make sure the camera complies with the IIDC 1394-based Digital Camera (DCAM)
specification. Vendors typically include this information in documentation that comes with the
camera. If your digital camera is not DCAM compliant, you might be able to use the
Macintosh Video Adaptor.

2 Install the Image Acquisition Toolbox Support Package for DCAM Hardware.

Starting with version R2014a, each adaptor is available separately through MATLAB Add-Ons.
See “Image Acquisition Support Packages for Hardware Adaptors” on page 4-2 for information
about installing the adaptors.

3 Verify that your image acquisition hardware is functioning properly.

You can verify that your hardware is functioning properly by running an external webcam
application, for example, Photo Booth or iMovie.

If you can start the utility, run the utility, and close the utility without encountering any errors,
then the toolbox should be able to operate with your image acquisition device. If you encounter
errors, resolve them before attempting to use the toolbox with the device.

 Macintosh DCAM IEEE 1394 Hardware

16-31

Video Preview Window Troubleshooting
When previewing the video stream, if you encounter a problem, try one of the following solutions.

Problem Possible Solutions
Video Preview window stops running. • Close the preview window and reopen it.

• Verify that your image acquisition device is working
properly. Close MATLAB and run the application that
came with your device.

• Make sure no other application is using the device.
Video Preview window displays a
white window with a red X.

• Close the preview window and reopen it.
• Make sure no other application is using the device.
• If you are using a GigE Vision camera (either the gige

adaptor with the videoinput object or the gigecam
object), you may need to disable your firewall. See “GigE
Vision Hardware” on page 16-19 for more information.

Video Preview window displays
dropped frames message.

• Close the preview window and reopen it.

16 Troubleshooting

16-32

Contacting MathWorks and Using the imaqsupport Function
If you need support from MathWorks, visit our website at https://www.mathworks.com/
support/.

Before contacting MathWorks, you should run the imaqsupport function. This function returns
diagnostic information such as:

• The versions of MathWorks products you are using
• Your MATLAB path
• The characteristics of your hardware
• Information about your adaptors

The output from imaqsupport is automatically saved to a text file, imaqsupport.txt, which you
can use to help troubleshoot your problem.

To have MATLAB generate this file for you, type

imaqsupport

 Contacting MathWorks and Using the imaqsupport Function

16-33

https://www.mathworks.com/support.html
https://www.mathworks.com/support.html

Image Acquisition Toolbox Examples

• “Identifying Available Devices” on page 17-2
• “Accessing Devices and Video Sources” on page 17-5
• “Working with Properties” on page 17-8
• “Managing Video Input Objects” on page 17-13
• “Logging Data to Memory” on page 17-16
• “Logging Data to Disk” on page 17-21
• “Working with Triggers” on page 17-24
• “Acquiring a Single Image in a Loop” on page 17-27
• “Configuring Callback Properties” on page 17-31
• “Viewing Events” on page 17-33
• “Alpha Blending Streamed Image Pairs” on page 17-36
• “Alpha Blending Streamed Image Pairs” on page 17-40
• “Averaging Images Over Time” on page 17-43
• “Calculating the Length of a Pendulum in Motion” on page 17-49
• “Color-Based Segmentation of Fabric Using the L*a*b Color Space” on page 17-55
• “Determining the Rate of Acquisition” on page 17-65
• “Laser Tracking” on page 17-69
• “Logging Data at Constant Intervals” on page 17-82
• “Video Display with Live Histogram” on page 17-84
• “Live Motion Detection Using Optical Flow” on page 17-87
• “Synchronizing Two NI Frame Grabbers” on page 17-89
• “Synchronizing an NI Frame Grabber and Data Acquisition Card” on page 17-93
• “Using the Kinect for Windows V1 from Image Acquisition Toolbox” on page 17-97
• “Creating Time-Lapse Video Using a Noncontiguous Acquisition” on page 17-104
• “Creating Time-Lapse Video Using Timer Events” on page 17-107
• “Creating Time-Lapse Video Using Postprocessed Data” on page 17-110
• “Barcode Recognition Using Live Video Acquisition” on page 17-112
• “Live Image Acquisition and Histogram Display” on page 17-114
• “Edge Detection on Live Video Stream” on page 17-116
• “Acquire Images Using Parallel Workers” on page 17-119

17

Identifying Available Devices

This example shows how to identify the available devices on your system and obtain device
information.

Identifying Installed Adaptors

The imaqhwinfo function provides a structure with an InstalledAdaptors field that lists all
adaptors on the current system that the toolbox can access.

imaqInfo = imaqhwinfo

imaqInfo =

 InstalledAdaptors: {'dcam' 'winvideo'}
 MATLABVersion: '7.1 (R14SP3)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '1.9 (R14SP3)'

imaqInfo.InstalledAdaptors

ans =

 'dcam' 'winvideo'

Obtaining Device Information

Calling imaqhwinfo with an adaptor name returns a structure that provides information on all
accessible image acquisition devices.

hwInfo = imaqhwinfo('winvideo')

hwInfo =

 AdaptorDllName: [1x68 char]
 AdaptorDllVersion: '1.9 (R14SP3)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1] [3]}
 DeviceInfo: [1x2 struct]

hwInfo.DeviceInfo

ans =

1x2 struct array with fields:
 DefaultFormat
 DeviceFileSupported
 DeviceName
 DeviceID
 VideoInputConstructor

17 Image Acquisition Toolbox Examples

17-2

 VideoDeviceConstructor
 SupportedFormats

Information on a specific device can be obtained by simply indexing into the device information
structure array.

device1 = hwInfo.DeviceInfo(1)

device1 =

 DefaultFormat: 'RGB555_320x240'
 DeviceFileSupported: 0
 DeviceName: 'Veo PC Camera'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('winvideo', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('winvideo', 1)'
 SupportedFormats: {1x30 cell}

The DeviceName field contains the image acquisition device name.

device1.DeviceName

ans =

Veo PC Camera

The DeviceID field contains the image acquisition device identifier.

device1.DeviceID

ans =

 1

The DefaultFormat field contains the image acquisition device's default video format.

device1.DefaultFormat

ans =

RGB555_320x240

The SupportedFormats field contains a cell array of all valid video formats supported by the image
acquisition device.

device1.SupportedFormats

ans =

 Identifying Available Devices

17-3

 Columns 1 through 4

 'I420_128x96' 'I420_160x120' 'I420_176x144' 'I420_320x240'

 Columns 5 through 8

 'I420_352x240' 'I420_352x288' 'RGB24_128x96' 'RGB24_160x120'

 Columns 9 through 11

 'RGB24_176x144' 'RGB24_320x240' 'RGB24_352x240'

 Columns 12 through 14

 'RGB24_352x288' 'RGB555_128x96' 'RGB555_160x120'

 Columns 15 through 17

 'RGB555_176x144' 'RGB555_320x240' 'RGB555_352x240'

 Columns 18 through 21

 'RGB555_352x288' 'UYVY_128x96' 'UYVY_160x120' 'UYVY_176x144'

 Columns 22 through 25

 'YUY2_128x96' 'YUY2_160x120' 'YUY2_176x144' 'YV12_128x96'

 Columns 26 through 29

 'YV12_160x120' 'YV12_176x144' 'YV12_320x240' 'YV12_352x240'

 Column 30

 'YV12_352x288'

17 Image Acquisition Toolbox Examples

17-4

Accessing Devices and Video Sources

This example shows how to access and connect to a video device.

Accessing an Image Acquisition Device

A video input object represents the connection between MATLAB® and an image acquisition device.
To create a video input object, use the VIDEOINPUT function and indicate what device the object is to
be associated with.

% Access an image acquisition device.
vidobj = videoinput('dt', 1, 'RS170')

Summary of Video Input Object Using 'Dt313xK'.

 Acquisition Source(s): VID0, VID1, and VID2 are available.

 Acquisition Parameters: 'VID0' is the current selected source.
 10 frames per trigger using the selected source.
 'RS170' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

Identifying a Device's Video Source Object

A video source object represents a collection of one or more physical data sources that are treated as
a single entity. For example, one video source object could represent the three physical connections
of an RGB source (red, green, and blue).

The Source property of a video input object provides an array of the device's available video source
objects.

% Access the device's video sources that can be used for acquisition.
sources = vidobj.Source

 Display Summary for Video Source Object Array:

 Index: SourceName: Selected:
 1 'VID0' 'on'
 2 'VID1' 'off'
 3 'VID2' 'off'

whos sources

 Name Size Bytes Class

 sources 1x3 872 videosource object

 Accessing Devices and Video Sources

17-5

Grand total is 47 elements using 872 bytes

Selecting a Video Source Object for Acquisition

A video source object can be selected for acquisition by specifying its name.

vidobj.SelectedSourceName = 'VID2'

% Notice that the corresponding video source has been selected.
sources

 Display Summary for Video Source Object Array:

 Index: SourceName: Selected:
 1 'VID0' 'off'
 2 'VID1' 'off'
 3 'VID2' 'on'

To obtain the video source object that is currently selected, use the GETSELECTEDSOURCE function.

selectedsrc = getselectedsource(vidobj)

 Display Summary for Video Source Object:

 Index: SourceName: Selected:
 1 'VID2' 'on'

Accessing a Video Source Object's Properties

Each video source object provides a list of general and device specific properties.

% List the video source object's properties and their current values.
get(selectedsrc)

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = VID2
 Tag =
 Type = videosource
 UserData = []

 Device Specific Properties:
 FirstActiveLine = 21
 FirstActivePixel = 140
 FrameType = interlacedEvenFieldFirst
 StrobeOutput = off
 StrobeOutputDuration = 3.3ms
 StrobeOutputPolarity = activeHigh
 StrobeOutputType = afterFrame
 SyncInput = composite
 TriggerTimeout = 0

Note: Each video source object maintains its own property configuration. Modifying the selected
video source is equivalent to selecting a new video source configuration.

17 Image Acquisition Toolbox Examples

17-6

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

 Accessing Devices and Video Sources

17-7

Working with Properties

This example shows how to access and configure video acquisition properties.

Accessing Properties

To access a complete list of an object's properties and their current values, use the get function with
the object.

% Create a video input object.
vidobj = videoinput('dcam', 1);

% List the video input object's properties and their current values.
get(vidobj)

 General Settings:
 DeviceID = 1
 DiskLogger = []
 DiskLoggerFrameCount = 0
 EventLog = [1x0 struct]
 FrameGrabInterval = 1
 FramesAcquired = 0
 FramesAvailable = 0
 FramesPerTrigger = 10
 Logging = off
 LoggingMode = memory
 Name = RGB24_640x480-dcam-1
 NumberOfBands = 3
 Previewing = off
 ReturnedColorSpace = rgb
 ROIPosition = [0 0 640 480]
 Running = off
 Tag =
 Timeout = 10
 Type = videoinput
 UserData = []
 VideoFormat = RGB24_640x480
 VideoResolution = [640 480]

 Callback Function Settings:
 ErrorFcn = @imaqcallback
 FramesAcquiredFcn = []
 FramesAcquiredFcnCount = 0
 StartFcn = []
 StopFcn = []
 TimerFcn = []
 TimerPeriod = 1
 TriggerFcn = []

 Trigger Settings:
 InitialTriggerTime = []
 TriggerCondition = none
 TriggerFrameDelay = 0
 TriggerRepeat = 0
 TriggersExecuted = 0
 TriggerSource = none

17 Image Acquisition Toolbox Examples

17-8

 TriggerType = immediate

 Acquisition Sources:
 SelectedSourceName = input1
 Source = [1x1 videosource]

% Access the currently selected video source object
src = getselectedsource(vidobj);

% List the video source object's properties and their current values.
get(src)

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource

 Device Specific Properties:
 AutoExposure = 511
 AutoExposureMode = auto
 Brightness = 304
 BrightnessMode = auto
 FrameRate = 15
 Gain = 87
 Gamma = 1
 Saturation = 90
 Sharpness = 80
 Shutter = 6
 WhiteBalance = [95 87]
 WhiteBalanceMode = auto

To access a specific property value, use dot notation with the object and property name.

framesPerTriggerValue = vidobj.FramesPerTrigger;

framesPerTriggerValue =

 10

brightnessValue = src.Brightness;

brightnessValue =

 304

Configuring Properties

Enumerated properties have a defined set of possible values. To list the enumerated values of a
property, use the set function with the object and property name. The property's default value is
listed in braces.

 Working with Properties

17-9

set(vidobj, 'LoggingMode')

[{memory} | disk | disk&memory]

To access a complete list of an object's configurable properties, use the set function with the object.

% List the video input object's configurable properties.
set(vidobj)

 General Settings:
 DiskLogger
 FrameGrabInterval
 FramesPerTrigger
 LoggingMode: [{memory} | disk | disk&memory]
 Name
 ReturnedColorSpace: [{rgb} | grayscale | YCbCr]
 ROIPosition
 Tag
 Timeout
 UserData

 Callback Function Settings:
 ErrorFcn: string -or- function handle -or- cell array
 FramesAcquiredFcn: string -or- function handle -or- cell array
 FramesAcquiredFcnCount
 StartFcn: string -or- function handle -or- cell array
 StopFcn: string -or- function handle -or- cell array
 TimerFcn: string -or- function handle -or- cell array
 TimerPeriod
 TriggerFcn: string -or- function handle -or- cell array

 Trigger Settings:
 TriggerFrameDelay
 TriggerRepeat

 Acquisition Sources:
 SelectedSourceName: [{input1}]

% List the video source object's configurable properties.
set(src)

 General Settings:
 Tag

 Device Specific Properties:
 AutoExposure
 AutoExposureMode: [{auto} | manual]
 Brightness
 BrightnessMode: [{auto} | manual]
 FrameRate: [{15} | 7.5 | 3.75]
 Gain
 Gamma
 Saturation
 Sharpness
 Shutter
 WhiteBalance
 WhiteBalanceMode: [{auto} | manual]

17 Image Acquisition Toolbox Examples

17-10

To configure an object's property value, use dot notation with the object, property name, and property
value.

vidobj.TriggerRepeat = 2;
src.Saturation = 100;

Getting Property Help and Information

To obtain a property's description, use the imaqhelp function with the object and property name.
imaqhelp can also be used for function help.

imaqhelp(vidobj, 'LoggingMode')

 LOGGINGMODE [{memory} | disk | disk&memory] (Read-only: whileRunning)

 LoggingMode specifies the destination for acquired data.

 LoggingMode can be set to disk, memory,or disk&Memory.

 If LoggingMode is set to disk, then acquired data is streamed to a disk file
 as specified by the DiskLogger property.

 If LoggingMode is set to memory, acquired data is stored in a memory buffer.

 If LoggingMode is set to disk&Memory, then acquired data is stored in memory
 and is streamed to a disk file as specified by the DiskLogger property.

 When logging to memory, you must extract the data in a timely manner with the
 GETDATA function. If the data is not extracted in a timely manner, memory
 resources may be used up.

 The value of LoggingMode cannot be modified while the object is running.

 See also DiskLogger, IMAQDEVICE/GETDATA.

To obtain information on a property's attributes, use the propinfo function with the object and
property name.

propinfo(vidobj, 'LoggingMode')

ans =

 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {'memory' 'disk' 'disk&memory'}
 DefaultValue: 'memory'
 ReadOnly: 'whileRunning'
 DeviceSpecific: 0

When an image acquisition object is no longer needed, remove it from memory and clear the
MATLAB® workspace of the associated variable.

 Working with Properties

17-11

delete(vidobj);
clear vidobj

17 Image Acquisition Toolbox Examples

17-12

Managing Video Input Objects

This example shows how to find video input objects and remove video input objects from memory.

Finding Video Input Objects in Memory

To find video input objects in memory, use the IMAQFIND function. IMAQFIND returns an array of
video input objects.

objects = imaqfind

objects =

 []

% Create video input objects.
vidobj1 = videoinput('matrox', 1, 'M_CCIR');
vidobj2 = videoinput('matrox', 1, 'M_PAL_RGB');
vidobj3 = videoinput('matrox', 1, 'M_NTSC_RGB');

% Find all valid objects.
objects = imaqfind

 Video Input Object Array:

 Index: Type: Name:
 1 videoinput M_CCIR-matrox-1
 2 videoinput M_PAL_RGB-matrox-1
 3 videoinput M_NTSC_RGB-matrox-1

Removing Objects From Memory

To delete a video input object from memory, use the DELETE function with the object.

% Delete the first object in the array.
delete(objects(1))

Find all remaining valid objects.

objects = imaqfind

 Video Input Object Array:

 Index: Type: Name:
 1 videoinput M_PAL_RGB-matrox-1
 2 videoinput M_NTSC_RGB-matrox-1

Using the DELETE function with the object will remove the object from memory but not from the
MATLAB® workspace. To remove an object from the MATLAB workspace use the CLEAR function. To
see what objects are in the MATLAB workspace, use the WHOS function.

% Display the current workspace.
whos

 Managing Video Input Objects

17-13

 Name Size Bytes Class

 objects 1x2 1200 videoinput object
 vidobj1 1x1 1060 videoinput object
 vidobj2 1x1 1060 videoinput object
 vidobj3 1x1 1060 videoinput object

Grand total is 185 elements using 4380 bytes

Since an object was deleted, it is no longer valid.

vidobj1

Invalid Image Acquisition object.
This object is not associated with any hardware and
should be removed from your workspace using CLEAR.

Clear the associated variable.

clear vidobj1

Display the current workspace.

whos

 Name Size Bytes Class

 objects 1x2 1200 videoinput object
 vidobj2 1x1 1060 videoinput object
 vidobj3 1x1 1060 videoinput object

Grand total is 142 elements using 3320 bytes

To remove all video input objects from memory and to reset the toolbox to its initial state, use the
IMAQRESET function.

Note: Using the IMAQRESET function will only delete objects from memory, not clear them from the
MATLAB workspace.

imaqreset

Verify no objects remain.

objects = imaqfind

objects =

 []

Variables associated with deleted objects still remain.

whos

 Name Size Bytes Class

17 Image Acquisition Toolbox Examples

17-14

 objects 0x0 0 double array
 vidobj2 1x1 1060 videoinput object
 vidobj3 1x1 1060 videoinput object

Grand total is 86 elements using 2120 bytes

Clear any remaining variables associated with deleted objects.

clear vidobj2 vidobj3

 Managing Video Input Objects

17-15

Logging Data to Memory

This example shows how to log image data and view logged data.

Previewing Data

Before logging data, images from an image acquisition device can be previewed live using the
PREVIEW function. Calling the PREVIEW function, will open a preview window. To close the preview
window, use the CLOSEPREVIEW function.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1);

% Open the preview window.
preview(vidobj)

Single Frame Acquisition

To acquire a single frame, use the GETSNAPSHOT function.

snapshot = getsnapshot(vidobj);

% Display the frame in a figure window.
imagesc(snapshot)

17 Image Acquisition Toolbox Examples

17-16

Multi-Frame Acquisition

To specify the number of frames to log upon triggering, configure the video input object's
FramesPerTrigger property.

% Configure the number of frames to log upon triggering.
vidobj.FramesPerTrigger = 50;

An image acquisition object must be running before data can be logged. To initiate an acquisition, use
the START function.

start(vidobj)

% Notice that the number of frames being logged to memory ...
numAvail = vidobj.FramesAvailable

numAvail =

 7

% ... is increasing ...
numAvail = vidobj.FramesAvailable

numAvail =

 14

% ... over time.
numAvail = vidobj.FramesAvailable

numAvail =

 21

To retrieve logged data from memory, use the GETDATA function with the video input object and the
number of frames to retrieve.

% Retrieve some of the logged frames.
imageData = getdata(vidobj, 30);

% Notice the number of frames remaining in memory.
numAvail = vidobj.FramesAvailable

numAvail =

 20

% Display the last frame extracted from memory.
imagesc(imageData(:,:,:,30))

 Logging Data to Memory

17-17

% Wait for the acquisition to finish.
wait(vidobj);

To acquire data continuously, configure the FramesPerTrigger property to infinity. Upon triggering,
data will be logged until the video input object stops running. To stop an object from running, use the
STOP function.

vidobj.FramesPerTrigger = inf;

% Initiate the acquisition.
start(vidobj)

% Notice the number of frames in memory.
numAvail = vidobj.FramesAvailable

numAvail =

 6

% Loop through till 10 frames are acquired
while(numAvail<=10)
 numAvail = vidobj.FramesAvailable;
end

% Stop the acquisition.
stop(vidobj)

17 Image Acquisition Toolbox Examples

17-18

% View the total number of frames that were logged before stopping.
numAcquired = vidobj.FramesAcquired;

numAcquired =

 10

% Retrieve all logged data.
imageData = getdata(vidobj, numAcquired);

% Display one of the logged frames.
imagesc(imageData(:,:,:,numAcquired))

Viewing Logged Data.

To view the most recently logged image data without extracting it from memory, use the PEEKDATA
function with the video input object and the number of frames to view. Viewing logged data using
PEEKDATA will not remove any logged data from memory.

% Configure the number of frames to log upon triggering.
vidobj.FramesPerTrigger = 35;

% Initiate the acquisition.
start(vidobj)

% Wait for the acquisition to finish.
wait(vidobj, 3);

 Logging Data to Memory

17-19

% Verify the number of frames logged to memory.
numAvail = vidobj.FramesAvailable

numAvail =

 35

% Access the logged data without extracting them from memory.
imageData = peekdata(vidobj, numAvail);

% Verify that all logged frames are still available in memory.
numFramesAvailable = vidobj.FramesAvailable

numFramesAvailable =

 35

Once the video input object is no longer needed, delete and clear the associated variable.

delete(vidobj)
clear vidobj

17 Image Acquisition Toolbox Examples

17-20

Logging Data to Disk

This example shows how to configure logging properties for disk logging and then initiate an
acquisition to log.

Configuring Logging Mode

Data acquired from an image acquisition device may be logged to memory, to disk, or both. By
default, data is logged to memory. To change the logging mode, configure the video input object's
LoggingMode property.

% Access an image acquisition device, using a grayscale video format with
% 10 bits per pixel.
vidobj = videoinput('gige', 1, 'Mono10');

% View the default logging mode.
currentLoggingMode = vidobj.LoggingMode;

currentLoggingMode =

memory

% List all possible logging modes.
set(vidobj, 'LoggingMode')

[{memory} | disk | disk&memory]

% Configure the logging mode to disk.
vidobj.LoggingMode = 'disk';

% Verify the configuration.
currentLoggingMode = vidobj.LoggingMode;

currentLoggingMode =

disk

Configuring Disk Logging Properties

Logging to disk requires a MATLAB® VideoWriter object. VideoWriter is a MATLAB function, not
a toolbox function. After you create and configure a VideoWriter object, provide it to the video
input object's DiskLogger property.

VideoWriter provides a number of different profiles that log the data in different formats. This
example uses the Motion JPEG 2000 profile which can log single-banded (grayscale) data as well as
multi-byte data. The complete list of profiles provided by VideoWriter can be found in the
documentation.

% Create a VideoWriter object.
logfile = VideoWriter('logfile.mj2', 'Motion JPEG 2000')

 VideoWriter

 Logging Data to Disk

17-21

 General Properties:
 Filename: 'logfile.mj2'
 Path: 'C:\Temp'
 FileFormat: 'mj2'
 Duration: 0

 Video Properties:
 ColorChannels:
 Height:
 Width:
 FrameCount: 0
 FrameRate: 30
 VideoBitsPerPixel:
 VideoFormat:
 VideoCompressionMethod: 'Motion JPEG 2000'
 CompressionRatio: 10
 LosslessCompression: 0
 MJ2BitDepth:

% Configure the video input object to use the VideoWriter object.
vidobj.DiskLogger = logfile;

Initiating the Acquisition

Now that the video input object is configured for logging data to a Motion JPEG 2000 file, initiate the
acquisition.

% Start the acquisition.
start(vidobj)

% Wait for the acquisition to finish.
wait(vidobj, 5)

When logging large amounts of data to disk, disk writing sometimes lags behind the acquisition. To
determine whether all frames have been written to disk, use the DiskLoggerFrameCount property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
 pause(.1)
end

Verify that the FramesAcquired property and the DiskLoggerFrameCount property have the same
value.

vidobj.FramesAcquired

ans =

 10

vidobj.DiskLoggerFrameCount

ans =

17 Image Acquisition Toolbox Examples

17-22

 10

% When the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

 Logging Data to Disk

17-23

Working with Triggers

This example shows how to use the different types of triggering and how to configure other trigger
properties.

Configuring Trigger Properties

To obtain a list of configurable trigger settings, use the TRIGGERINFO function with the video input
object. TRIGGERINFO will return all possible trigger configurations supported by the image
acquisition device associated with the video input object. Possible configurations consists of a valid
trigger type, trigger condition, and trigger source combination.

Note: All image acquisition devices support immediate and manual trigger types. A hardware trigger
type is available only if it is supported by the image acquisition device.

% Access an image acquisition device.
vidobj = videoinput('matrox', 1);

% Display all valid trigger configurations.
triggerinfo(vidobj)

 Valid Trigger Configurations:

 TriggerType: TriggerCondition: TriggerSource:
 'immediate' 'none' 'none'
 'manual' 'none' 'none'
 'hardware' 'fallingEdge' 'digitalTrigger'
 'hardware' 'fallingEdge' 'optoTrigger'
 'hardware' 'fallingEdge' 'timer1'
 'hardware' 'fallingEdge' 'timer2'
 'hardware' 'risingEdge' 'digitalTrigger'
 'hardware' 'risingEdge' 'optoTrigger'
 'hardware' 'risingEdge' 'timer1'
 'hardware' 'risingEdge' 'timer2'

To configure the trigger settings for an image acquisition device, use the TRIGGERCONFIG function
with the desired trigger type, trigger condition, and trigger source.

triggerconfig(vidobj, 'hardware', 'fallingEdge', 'optoTrigger')

% View the current trigger configuration.
currentConfiguration = triggerconfig(vidobj)

currentConfiguration =

 TriggerType: 'hardware'
 TriggerCondition: 'fallingEdge'
 TriggerSource: 'optoTrigger'

Note: Configuring trigger settings requires a unique configuration to be specified. If specifying the
trigger type uniquely identifies a configuration, no further arguments need to be provided to
TRIGGERCONFIG.

Hardware triggers are the only trigger type that typically have multiple valid configurations.

17 Image Acquisition Toolbox Examples

17-24

Immediate Triggering

By default, a video input object's trigger type is configured for immediate triggering. Immediate
triggering indicates that data logging is to begin as soon as the START function is issued.

% Configure the trigger type.
triggerconfig(vidobj, 'immediate')

% Initiate the acquisition.
start(vidobj)

% Wait for acquisition to end.
wait(vidobj, 2)

% Determine the number frames acquired.
frameslogged = vidobj.FramesAcquired;

frameslogged =

 10

Manual Triggering

Manual triggering requires that the TRIGGER function be issued before data logging is to begin.

% Configure the trigger type.
triggerconfig(vidobj, 'manual')

% Initiate the acquisition.
start(vidobj)

% Verify no frames have been logged.
frameslogged = vidobj.FramesAcquired;

frameslogged =

 0

% Trigger the acquisition.
trigger(vidobj)

% Wait for the acquisition to end.
wait(vidobj, 2);

% Determine the number frames acquired.
frameslogged = vidobj.FramesAcquired;

frameslogged =

 10

Hardware Triggering

Hardware triggering begins logging data as soon as a trigger condition has been met via the trigger
source.

 Working with Triggers

17-25

In this example, we have connected an opto-isolated trigger source from a function generator to our
image acquisition device. The image acquisition device will begin logging data upon detecting a
falling edge signal from the source.

% Configure the trigger settings.
triggerconfig(vidobj, 'hardware', 'fallingEdge', 'optoTrigger')

Initially, no signal is sent from the source to the image acquisition device.

% Initiate the acquisition.
start(vidobj)

% Verify nothing has been acquired.
frameslogged = vidobj.FramesAcquired;

frameslogged =

 0

A square wave signal will now be sent from the trigger source to the image acquisition device.

% Wait for the acquisition to end.
wait(vidobj, 10)

% Verify frames were acquired.
frameslogged = vidobj.FramesAcquired;

frameslogged =

 10

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

17 Image Acquisition Toolbox Examples

17-26

Acquiring a Single Image in a Loop

This example shows how to use the GETSNAPSHOT function. The GETSNAPSHOT function allows for
quick acquisition of a single video frame.

Set up the Acquisition Object

Most interaction with Image Acquisition Toolbox is done through a video input object. These objects
are created with the VIDEOINPUT command. This example uses a webcam that is accessed through
the toolbox's "winvideo" adaptor.

vidobj = videoinput('winvideo');

Acquire a Frame

To acquire a single frame, use the GETSNAPSHOT function.

snapshot = getsnapshot(vidobj);

% Display the frame in a figure window.
imagesc(snapshot)

Acquire Multiple Frames

A common task is to repeatedly acquire a single image, process it, and then store the result. To do
this, GETSNAPSHOT can be called in a loop.

 Acquiring a Single Image in a Loop

17-27

for i = 1:5
 snapshot = getsnapshot(vidobj);
 imagesc(snapshot);
end

Timing Implications

The GETSNAPSHOT function performs a lot of work when it is called. It must connect to the device,
configure it, start the acquisition, acquire one frame, stop the acquisition, and then close the device.
This means that the acquisition of one frame can take significantly longer than would be expected
based on the frame rate of the camera. To illustrate this, call GETSNAPSHOT in a loop.

% Measure the time to acquire 20 frames.
tic
for i = 1:20
 snapshot = getsnapshot(vidobj);
end

elapsedTime = toc

% Compute the time per frame and effective frame rate.
timePerFrame = elapsedTime/20
effectiveFrameRate = 1/timePerFrame

elapsedTime =

 21.2434

17 Image Acquisition Toolbox Examples

17-28

timePerFrame =

 1.0622

effectiveFrameRate =

 0.9415

The next example illustrates a more efficient way to perform the loop.

Using Manual Trigger Mode

You can avoid the overhead of GETSNAPSHOT described in the previous setting by using the manual
triggering mode of the videoinput object. Manual triggering mode allows the toolbox to connect to
and configure the device a single time without logging data to memory. This means that frames can
be returned to MATLAB® with less of a delay.

% Configure the object for manual trigger mode.
triggerconfig(vidobj, 'manual');

% Now that the device is configured for manual triggering, call START.
% This will cause the device to send data back to MATLAB, but will not log
% frames to memory at this point.
start(vidobj)

% Measure the time to acquire 20 frames.
tic
for i = 1:20
 snapshot = getsnapshot(vidobj);
end

elapsedTime = toc

% Compute the time per frame and effective frame rate.
timePerFrame = elapsedTime/20
effectiveFrameRate = 1/timePerFrame

% Call the STOP function to stop the device.
stop(vidobj)

elapsedTime =

 1.4811

timePerFrame =

 0.0741

effectiveFrameRate =

 Acquiring a Single Image in a Loop

17-29

 13.5031

You can see that the elapsed time using manual triggering is much smaller than the previous
example.

Cleanup

Once the video input object is no longer needed, delete the associated variable.

delete(vidobj)

17 Image Acquisition Toolbox Examples

17-30

Configuring Callback Properties

This example explains how callback functions work and shows how to use them.

Callback functions are executed when an associated event occurs. To configure a callback to execute
for a particular event, configure one of the video input object's callback properties:

• ErrorFcn
• FramesAcquiredFcn
• StartFcn
• StopFcn
• TimerFcn
• TriggerFcn

This tutorial uses a callback function that displays the N'th frame, where N is provided as an input
argument to the callback function.

Select a device to use for acquisition and configure it to acquire data upon executing a manual
trigger.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1);

% Acquire an infinite number of frames when manually triggered.
triggerconfig(vidobj, 'manual');
vidobj.FramesPerTrigger = inf;

Configure the video input object to execute a callback function when the acquisition is stopped.

% Specify the N'th frame the callback function will display.
frameNumber = 3;

% Have the callback function executed when the acquisition ends.
vidobj.StopFcn = {'util_showframe', frameNumber};

% Initiate the acquisition.
start(vidobj)

Upon triggering the image acquisition device, a tennis ball is dropped within the camera's view.

% Trigger the object for logging and acquire data for a few seconds.
trigger(vidobj)
pause(5);

When the acquisition is stopped, it will cause the callback function to execute and display the N'th
frame.

% Stop the acquisition.
stop(vidobj)

 Configuring Callback Properties

17-31

Once the video input object is no longer needed, delete it and clear it from the workspace.

delete(vidobj)
clear vidobj

17 Image Acquisition Toolbox Examples

17-32

Viewing Events

Events occur during an acquisition at a particular time when a condition is met. These events include:

• Error
• FramesAcquired
• Start
• Stop
• Timer
• Trigger

All acquisitions consist of at least 3 events:

• Starting the device
• Triggering the device
• Stopping the device.

Executing an Acquisition

Initiate a basic acquisition using a video input object.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1);

% Use a manual trigger to initiate data logging.
triggerconfig(vidobj, 'manual');

% Start the acquisition.
start(vidobj)

% Trigger the object to start logging and allow the acquisition to run for
% couple of seconds.
trigger(vidobj)
pause(2);

% Stop the acquisition
stop(vidobj)

Viewing Event Information

To view event information for the acquisition, access the EventLog property of the video input
object. Events are recorded in chronological order.

% View the event log.
events = vidobj.EventLog

events =

1x3 struct array with fields:
 Type
 Data

 Viewing Events

17-33

Each event provides information on the state of the object at the time the event occurred.

% Display first event.
event1 = events(1)

event1 =

 Type: 'Start'
 Data: [1x1 struct]

data1 = events(1).Data

data1 =

 AbsTime: [2005 6 5 23 53 14.1680]
 FrameMemoryLimit: 341692416
 FrameMemoryUsed: 0
 FrameNumber: 0
 RelativeFrame: 0
 TriggerIndex: 0

% Display second event.
event2 = events(2)

event2 =

 Type: 'Trigger'
 Data: [1x1 struct]

data2 = events(2).Data

data2 =

 AbsTime: [2005 6 5 23 53 14.7630]
 FrameMemoryLimit: 341692416
 FrameMemoryUsed: 0
 FrameNumber: 0
 RelativeFrame: 0
 TriggerIndex: 1

% Display third event.
event3 = events(3)

event3 =

 Type: 'Stop'
 Data: [1x1 struct]

data3 = events(3).Data

17 Image Acquisition Toolbox Examples

17-34

data3 =

 AbsTime: [2005 6 5 23 53 16.9970]
 FrameMemoryLimit: 341692416
 FrameMemoryUsed: 768000
 FrameNumber: 5
 RelativeFrame: 5
 TriggerIndex: 1

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

 Viewing Events

17-35

Alpha Blending Streamed Image Pairs

This example shows how to capture streaming images from an image acquisition device, perform on-
line image processing on each frame and display the processed frames.

The result is an alpha blend of two images, one a stationary pendulum, the other a pendulum in
motion, making moving features appear transparent.

Step 1: Capture A Background Image

Log and display a snapshot of the background with no moving features.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1, 'RGB24_320X240');

% Using the preview window, properly position the camera.
preview(vidobj)
pause(1)

% Capture an image with no moving features.
background = getsnapshot(vidobj);

% Convert the background from uint8 to double.
background = double(background)/255;

% Display the background image in a figure window.
imagesc(background);

17 Image Acquisition Toolbox Examples

17-36

Step 2: Process Logged Data

Using the acquired image data, perform on-line image processing, and display the processed images
in a figure window.

For each streamed image frame, calculate the linear combination between that frame and the
background image. The linear combination effectively alpha blends the two images so any moving
features appear transparent.

% Set the object into motion.
pause(2);

% Configure the acquisition.
vidobj.FramesPerTrigger = 20;

% Start the acquisition.
start(vidobj)

% While logging data, perform a linear combination between
% the current and background images.
current = getdata(vidobj, 1, 'double');
transparent = (current * 0.5) + (background * 0.5);

% Display the processed image.
imagesc(transparent);

 Alpha Blending Streamed Image Pairs

17-37

% Repeat for all remaining images.
while (vidobj.FramesAvailable > 0),
 % Perform a linear combination between the current and background images.
 current = getdata(vidobj, 1, 'double');
 transparent = (current * 0.5) + (background * 0.5);

 % Display the processed image.
 imagesc(transparent);
end

17 Image Acquisition Toolbox Examples

17-38

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

 Alpha Blending Streamed Image Pairs

17-39

Alpha Blending Streamed Image Pairs

This example shows how to capture streaming images from an image acquisition device, perform on-
line image processing on each frame and display the processed frames.

The result is an alpha blend of two images, one a stationary pendulum, the other a pendulum in
motion, making moving features appear transparent.

This example requires Image Processing Toolbox™.

Step 1: Capture A Background Image

Log and display a snapshot of the background with no moving features.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1, 'RGB24_320X240');

% Using the preview window, properly position the camera.
preview(vidobj)
pause(1)

% Capture an image with no moving features.
background = getsnapshot(vidobj);

% Display the background image in a figure window.
imshow(background);

Step 2: Process Logged Data

Using the acquired image data, perform on-line image processing, and display the processed images
in a figure window.

For each streamed image frame, calculate the linear combination between that frame and the
background image. The linear combination effectively alpha blends the two images so any moving
features appear transparent.

17 Image Acquisition Toolbox Examples

17-40

% Set the object into motion.
pause(2);

% Configure the acquisition.
vidobj.FramesPerTrigger = 20;

% Start the acquisition.
start(vidobj)

% While logging data, perform a linear combination between
% the current and background images.
current = getdata(vidobj, 1);
transparent = imlincomb(0.5, current, 0.5, background);

% Display the processed image.
imshow(transparent);

% Repeat for all remaining images.
while (vidobj.FramesAvailable > 0),
 % Perform a linear combination between the current and background images.
 current = getdata(vidobj, 1);
 transparent = imlincomb(0.5, current, 0.5, background);

 % Display the processed image.
 imshow(transparent);
end

 Alpha Blending Streamed Image Pairs

17-41

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

17 Image Acquisition Toolbox Examples

17-42

Averaging Images Over Time

This example shows how to average images acquired over time.

For some advanced applications, the acquisition process may require that images be processed as
they are acquired, while your processing results are recorded to disk.

Using Image Acquisition Toolbox™ callbacks, triggering, and logging features, this example
illustrates how to accomplish the following task:

• acquire 5 frames every 10 seconds
• repeat the acquisition 10 times
• while acquiring images, average the acquired frames and save results to disk.

The experimental setup consists of an hourglass with white sand trickling down over time. The
example uses a callback function that averages acquired image frames using Image Processing
Toolbox™ functions.

Configuring the Acquisition

Create and configure a video input object for the acquisition.

% Access a device using a 24 bit RGB format.
vid = videoinput('winvideo', 1, 'RGB24_320x240');

% Assuming data logging can begin immediately upon START,
% an immediate trigger is used.
triggerconfig(vid, 'immediate');

% Configure the acquisition to collect 5 frames...
framesPerTrigger = 5;
vid.FramesPerTrigger = framesPerTrigger;

% ...and repeat the trigger 9 additional times
% (for a total of 10 trigger executions).
nAdditionalTrigs = 9;
vid.TriggerRepeat = nAdditionalTrigs;

To control the rate at which frames will be logged, there are 2 options available:

• configure the device frame rate
• use a TimerFcn to execute a callback

First, a solution using the device's frame rate will be shown, followed by an alternative solution using
a timer callback.

Using the frame rate option will provide acquisition results that are most closely aligned with the
device's actual video stream rate, whereas using the timer approach provides acquisition results
independent of the device's streaming rate.

 Averaging Images Over Time

17-43

Frame Rate Based Acquisition (Solution 1)

The device frame rate can only be configured if it is supported by the device. As it is a device specific
property, it can be found on the video source object.

% Access the video source selected for acquisition.
src = getselectedsource(vid);

% Notice this device provides a FrameRate property.
get(src)

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = input1
 Tag =
 Type = videosource
 UserData = []

 Device Specific Properties:
 BacklightCompensation = on
 Brightness = 255
 BrightnessMode = auto
 Contrast = 127
 Exposure = 511
 ExposureMode = auto
 Focus = 58
 FrameRate = 15.1500
 Gamma = 0
 Iris = 4
 Saturation = 108
 Sharpness = 127
 WhiteBalance = 100
 WhiteBalanceMode = auto

% Using the FrameRate property, one can configure the acquisition source
% to provide the toolbox 30 frames per second.
fps = 30;
src.FrameRate = num2str(fps);

% Since the goal is to acquire 5 frames every 10 seconds, the toolbox
% should not acquire any frames until the device provides the 300'th
% frame:
acqPeriod = 10;
frameDelay = fps * acqPeriod

frameDelay =

 300

% If the trigger is delayed by this value, the toolbox will not buffer
% any frames until the 300'th frame is provided by the device.
vid.TriggerFrameDelay = frameDelay;

% To ensure the acquisition does not come close to timing out, configure
% the time out value slightly above the expected acquisition duration.

17 Image Acquisition Toolbox Examples

17-44

totalTrigs = nAdditionalTrigs + 1;
acqDuration = (acqPeriod * totalTrigs) + 3

acqDuration =

 103

vid.Timeout = acqDuration;

Image Averaging

In order to save processed images to disk, a VIDEOWRITER object is used. Each set of acquired
frames is averaged using Image Processing Toolbox functions, and then written to disk.

% Create an AVI file and configure it.
vwObj = VideoWriter('imaverages.avi', 'Uncompressed AVI');
vwObj.FrameRate = fps;

% Use the video input object's UserData to store processing information.
userdata.average = {};
userdata.avi = vwObj;
vid.UserData = userdata;

% Configure the video input object to process every 5 acquired frames by
% specifying a callback routine that is executed upon every trigger.
vid.TriggerFcn = {'util_imaverage', framesPerTrigger};

% Now that the image acquisition and processing configuration is complete,
% the acquisition is started.
start(vid)

% Wait for the acquisition to complete. This provides the acquisition
% time to complete before the object is deleted.
wait(vid, acqDuration);

% Verify the averaged frames were saved to the AVI file.
userdata = vid.UserData;
vwObj = userdata.avi;
framesWritten1 = vwObj.FrameCount

framesWritten1 =

 10

% Display the resulting averages of the acquired frames.
% Notice the change in the lower chamber of the hourglass over time.
imaqmontage(userdata.average);
title('Averaging Results - Frame Rate Based');

 Averaging Images Over Time

17-45

% Once the video input object is no longer needed, delete
% it and clear it from the workspace. Also delete and clear the VideoWriter object.
delete(vid)
delete(vwObj)
clear vid vwObj

Timer Based Acquisition (Solution 2)

An alternative solution for this task is to use a TimerFcn. The TimerFcn can be executed every 10
seconds, at which point 5 frames are acquired and averaged. In order to initiate the acquisition at the
correct moment, manual triggers are used.

Note, this approach is independent of configuring the device's frame rate.

% Access a device and configure the acquisition. Have
% the TimerFcn trigger the acquisition every 10 seconds.
vid = videoinput('winvideo', 1, 'RGB24_320x240');
triggerconfig(vid, 'manual');
vid.TimerFcn = @trigger;
vid.TimerPeriod = acqPeriod;

% Configure the acquisition to collect 5 frames each time the
% device is triggered. Repeat the trigger 9 additional times.
vid.FramesPerTrigger = framesPerTrigger;
vid.TriggerRepeat = nAdditionalTrigs;

% Configure the processing routine and AVI file.
vid.TriggerFcn = {'util_imaverage', framesPerTrigger};

17 Image Acquisition Toolbox Examples

17-46

vwObj2 = VideoWriter('imaverages2.avi', 'Uncompressed AVI');
vwObj2.FrameRate = fps;

% Use the video input object's UserData to store processing information.
userdata2.average = {};
userdata2.avi = vwObj2;
vid.UserData = userdata2;

% Start the acquisition.
start(vid);
wait(vid, acqDuration);

% Verify the averaged frames were saved to the AVI file.
userdata2 = vid.UserData;
vwObj2 = userdata2.avi;
framesWritten2 = vwObj2.FrameCount

framesWritten2 =

 10

% Display the resulting averages of the acquired frames.
% Notice the change in the lower chamber of the hourglass over time.
imaqmontage(userdata2.average);
title('Averaging Results - Timer Based');

 Averaging Images Over Time

17-47

% Once the video input object is no longer needed, delete
% it and clear it from the workspace. Also delete and clear the VideoWriter object.
delete(vid)
delete(vwObj2)
clear vid vwObj2

17 Image Acquisition Toolbox Examples

17-48

Calculating the Length of a Pendulum in Motion

This example shows how to capture and analyze images of an object in motion.

This example captures images of a pendulum in motion. The pendulum consists of a blue ball
attached to a nylon string. Image data is captured as the pendulum is swung. Once captured, the
images are processed to determine the length of the pendulum.

Images are acquired using the Image Acquisition Toolbox™ and analyzed with the Image Processing
Toolbox™.

Acquire Images

Acquire a series of images to analyze.

% Access an image acquisition device.
vid = videoinput('winvideo', 1, 'RGB24_352x288');
vid.Timeout = 12;

% Configure object to capture every fifth frame.
vid.FrameGrabInterval = 5;

% Configure the number of frames to be logged.
vid.FramesPerTrigger = 50;

% Access the device's video source object selected for acquisition.
src = getselectedsource(vid);

% Configure the device to provide 30 frames per second.
src.FrameRate = '30';

% Open a live preview window. Focus camera onto a moving pendulum.
preview(vid);

% Initiate the acquisition.
start(vid);

% Extract frames from memory.
frames = getdata(vid);

% Remove video input object from memory.
delete(vid)
clear vid

% Display the first frame in the series.
imshow(frames(:, :, :, 1));

 Calculating the Length of a Pendulum in Motion

17-49

% Display all acquired images.
imaqmontage(frames);

17 Image Acquisition Toolbox Examples

17-50

Select Region Of Interest

Since the pendulum's motion is confined to the upper half of the image series. Create a new series of
frames that contain the region of interest.

To crop a series of frames using imcrop, first perform imcrop on one frame and store its output.
Then create a series of frames having the size of the previous output.

% Determine the total number of frames acquired.
nFrames = size(frames, 4);

% Crop the first frame.
roi = [50 16 222 68];
firstFrame = frames(:,:,:,1);
frameRegion = imcrop(firstFrame, roi);

% Create a storage for the modified image series.
regions = repmat(uint8(0), [size(frameRegion) nFrames]);
for count = 1:nFrames,
 regions(:,:,:,count) = imcrop(frames(:,:,:,count), roi);
 imshow(regions(:,:,:,count));
end

Segment the Pendulum in Each Frame

Since the pendulum is much darker than the background, the pendulum can be segmented in each
frame by converting the frame to grayscale, thresholding it, and removing background structures.

% Initialize array to contain the segmented pendulum frames.
segPend = false([size(frameRegion, 1) size(frameRegion, 2) nFrames]);
centroids = zeros(nFrames, 2);
structDisk = strel('disk', 3);

for count = 1:nFrames,
 % Convert to grayscale.
 fr = regions(:,:,:,count);
 gfr = rgb2gray(fr);
 gfr = imcomplement(gfr);

 % Experimentally determine the threshold.
 bw = im2bw(gfr, .7);
 bw = imopen(bw, structDisk);
 bw = imclearborder(bw);
 segPend(:,:,count) = bw;
 imshow(bw);
end

 Calculating the Length of a Pendulum in Motion

17-51

Find the Centers of Each Segmented Pendulum

The shape of the segmented pendulum in each frame is not a serious issue because the pendulum's
center is the only characteristic needed to determine the length of the pendulum.

% Calculate the pendulum centers.
for count = 1:nFrames,
 property = regionprops(segPend(:, :, count), 'Centroid');
 pendCenters(count,:) = property.Centroid;
end

% Display the pendulum centers and adjust the plot.
figure;
x = pendCenters(:, 1);
y = pendCenters(:, 2);
plot(x, y, 'm.');
axis ij;
axis equal;
hold on;
xlabel('x');
ylabel('y');
title('Pendulum Centers');

17 Image Acquisition Toolbox Examples

17-52

Calculate Pendulum Length

By fitting a circle through the pendulum centers, the pendulum length can be calculated. Rewrite the
basic equation of a circle:

• (x-xc)^2 + (y-yc)^2 = radius^2

where (xc,yc) is the center, in terms of parameters a, b, and c:

• x^2 + y^2 + a*x + b*y + c = 0

where:

• a = -2*xc
• b = -2*yc
• c = xc^2 + yc^2 - radius^2.

Solving for parameters a, b, and c using the least squares method, the above equation can be
rewritten as:

• a*x + b*y + c = -(x^2 + y^2)

which can also be rewritten as:

• [a; b; c] * [x y 1] = -x^2 - y^2

This equation can be solved in MATLAB® using the backslash(\) operator.

 Calculating the Length of a Pendulum in Motion

17-53

% Solve the equation.
abc = [x y ones(length(x),1)] \ [-(x.^2 + y.^2)];
a = abc(1);
b = abc(2);
c = abc(3);
xc = -a/2;
yc = -b/2;
circleRadius = sqrt((xc^2 + yc^2) - c);

% Circle radius is the length of the pendulum in pixels.
pendulumLength = round(circleRadius)

pendulumLength =

 253

% Superimpose results onto the pendulum centers
circle_theta = pi/3:0.01:pi*2/3;
x_fit = circleRadius*cos(circle_theta) + xc;
y_fit = circleRadius*sin(circle_theta) + yc;
plot(x_fit, y_fit, 'b-');
plot(xc, yc, 'bx', 'LineWidth', 2);
plot([xc x(1)], [yc y(1)], 'b-');
titleStr = sprintf('Pendulum Length = %d pixels', pendulumLength);
text(xc-110, yc+100, titleStr);

17 Image Acquisition Toolbox Examples

17-54

Color-Based Segmentation of Fabric Using the L*a*b Color
Space

This example shows how to acquire a single image frame of a piece of colorful fabric. The different
colors in the fabric are identified using the L*a*b color space.

This example requires the use of the Image Processing Toolbox™.

Step 1: Acquire Image

% Create a video input object to access the image acquisition device.
vid = videoinput('matrox', 1, 'M_NTSC');

% Capture one frame of data.
fabric = getsnapshot(vid);
figure(1)
imshow(fabric)
title('original image');

 Color-Based Segmentation of Fabric Using the L*a*b Color Space

17-55

% Determine the image resolution.
imageRes = vid.VideoResolution;
imageWidth = imageRes(1);
imageHeight = imageRes(2);

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vid)
clear vid

Step 2: Calculate Sample Colors in L*a*b Color Space for Each Region

Count the number of major colors visible in the image. Notice how easily you can visually distinguish
these colors from one another. The L*a*b color space (also known as CIELAB or CIE L*a*b) enables
you to quantify these visual differences.

The L*a*b color space is derived from the CIE XYZ tristimulus values. The L*a*b space consists of a
luminosity ('L') or brightness layer, chromaticity layer 'a' indicating where color falls along the red-
green axis, and chromaticity layer 'b' indicating where the color falls along the blue-yellow axis.

Your approach is to choose a small sample region for each color and to calculate each sample region's
average color in 'a*b' space. You will use these color markers to classify each pixel.

% Initialize storage for each sample region.
colorNames = { 'red','green','purple','blue','yellow' };
nColors = length(colorNames);
sample_regions = false([imageHeight imageWidth nColors]);

% Select each sample region.
f = figure;
for count = 1:nColors
 f.Name = ['Select sample region for ' colorNames{count}];
 sample_regions(:,:,count) = roipoly(fabric);
end
close(f);

% Display a sample region.
imshow(sample_regions(:,:,1))
title(['sample region for ' colorNames{1}]);

17 Image Acquisition Toolbox Examples

17-56

% Convert the fabric RGB image into an L*a*b image.
cform = makecform('srgb2lab');
lab_fabric = applycform(fabric,cform);

% Calculate the mean 'a' and 'b' value for each area extracted.
% These values serve as your color markers in 'a*b' space.
a = lab_fabric(:,:,2);
b = lab_fabric(:,:,3);
color_markers = repmat(0, [nColors, 2]);

for count = 1:nColors
 color_markers(count,1) = mean2(a(sample_regions(:,:,count)));
 color_markers(count,2) = mean2(b(sample_regions(:,:,count)));
end

% For example, the average color of the second sample region in 'a*b' space is:
disp(sprintf('[%0.3f,%0.3f]', color_markers(2,1), color_markers(2,2)));

[105.956,147.867]

 Color-Based Segmentation of Fabric Using the L*a*b Color Space

17-57

Step 3: Classify Each Pixel Using the Nearest Neighbor Rule

Each color marker now has an 'a' and a 'b' value. You can classify each pixel in the image by
calculating the Euclidean distance between that pixel and each color marker. The smallest distance
will tell you that the pixel most closely matches that color marker. For example, if the distance
between a pixel and the second color marker is the smallest, then the pixel would be labeled as that
color.

% Create an array that contains your color labels:
% 0 = background
% 1 = red
% 2 = green
% 3 = purple
% 4 = magenta
% 5 = yellow
color_labels = 0:(nColors-1);

% Initialize matrices to be used in the nearest neighbor classification.
a = double(a);
b = double(b);
distance = repmat(0,[size(a), nColors]);

% Perform classification.
for count = 1:nColors
 distance(:,:,count) = ((a - color_markers(count,1)).^2 + ...
 (b - color_markers(count,2)).^2).^0.5;
end

[value, label] = min(distance, [], 3);
label = color_labels(label);
clear value distance;

Step 4: Display Results of Nearest Neighbor Classification

The label matrix contains a color label for each pixel in the fabric image. Use the label matrix to
separate objects in the original fabric image by color.

rgb_label = repmat(label, [1 1 3]);
segmented_images = repmat(uint8(0), [size(fabric), nColors]);

for count = 1:nColors
 color = fabric;
 color(rgb_label ~= color_labels(count)) = 0;
 segmented_images(:,:,:,count) = color;
end

imshow(segmented_images(:,:,:,1));
title([colorNames{1} ' objects']);

17 Image Acquisition Toolbox Examples

17-58

imshow(segmented_images(:,:,:,2));
title([colorNames{2} ' objects']);

 Color-Based Segmentation of Fabric Using the L*a*b Color Space

17-59

imshow(segmented_images(:,:,:,3));
title([colorNames{3} ' objects']);

17 Image Acquisition Toolbox Examples

17-60

imshow(segmented_images(:,:,:,4));
title([colorNames{4} ' objects']);

 Color-Based Segmentation of Fabric Using the L*a*b Color Space

17-61

imshow(segmented_images(:,:,:,5));
title([colorNames{5} ' objects']);

17 Image Acquisition Toolbox Examples

17-62

Step 5: Display 'a' and 'b' Values of the Labeled Colors

You can see how well the nearest neighbor classification separated the different color populations by
plotting the 'a' and 'b' values of pixels that were classified into separate colors. For display purposes,
label each point with its color label.

purple = [119/255 73/255 152/255];
plot_labels = {'k', 'r', 'g', purple, 'b', 'y'};

figure
for count = 1:nColors
 h(count) = plot(a(label==count-1),b(label==count-1),'.','MarkerEdgeColor', ...
 plot_labels{count}, 'MarkerFaceColor', plot_labels{count});
 hold on;
end

title('Scatterplot of the segmented pixels in ''a*b'' space');
xlabel('''a'' values');
ylabel('''b'' values');

 Color-Based Segmentation of Fabric Using the L*a*b Color Space

17-63

17 Image Acquisition Toolbox Examples

17-64

Determining the Rate of Acquisition

This example shows how to use the timestamps provided by the GETDATA function, and estimate the
device frame rate using MATLAB® functions.

Step 1: Access and Configure a Device.

Create a video input object and access its video source object to configure the desired acquisition
rate. The acquisition rate is determined by the value of the device specific FrameRate property of the
video source object.

Note, since FrameRate is a device specific property, not all devices may support it.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1);

% Configure the number of frames to log.
vidobj.FramesPerTrigger = 50;

% Skip the first few frames the device provides
% before logging data.
vidobj.TriggerFrameDelay = 5;

% Access the device's video source.
src = getselectedsource(vidobj);

% Determine the device specific frame rates (frames per second) available.
frameRates = set(src, 'FrameRate')

frameRates =

 '30.0000'
 '24.0000'
 '8.0000'

% Configure the device's frame rate to the highest available setting.
src.FrameRate = frameRates{1};
actualRate = str2num(frameRates{1})

actualRate =

 30

Step 2: Log and Retrieve Data.

Initiate the acquisition and retrieve the logged frames and timestamps.

% Start the acquisition.
start(vidobj)

% Wait for data logging to end before retrieving data. Set the wait time
% to be equal to the expected time to acquire the number of frames
% specified plus a little buffer time to accommodate overhead.
waittime = actualRate * (vidobj.FramesPerTrigger + vidobj.TriggerFrameDelay) + 5;
wait(vidobj, waittime);

 Determining the Rate of Acquisition

17-65

% Retrieve the data and timestamps.
[frames, timeStamp] = getdata(vidobj);

Step 3: Calculate the Acquisition Rate.

By plotting each frame's timestamp, one can verify that the rate of acquisition is constant.

% Graph frames vs time.
plot(timeStamp,'x')
xlabel('Frame Index')
ylabel('Time(s)')

The average time difference can also be determined to compare to the expected acquisition rate.

% Find the time difference between frames.
diffFrameTime = diff(timeStamp);

% Graph the time differences.
plot(diffFrameTime, 'x');
xlabel('Frame Index')
ylabel('Time Difference(s)')
ylim([0 .12])

17 Image Acquisition Toolbox Examples

17-66

% Find the average time difference between frames.
avgTime = mean(diffFrameTime)

avgTime =

 0.0333

% Determine the experimental frame rate.
expRate = 1/avgTime

expRate =

 30.0245

Comparing the time difference between the experimental and the known frame rate, the percent
error can be calculated. Since a generic USB web camera is being used as the acquisition device, it is
to be expected that the actual device frame rate will fluctuate.

% Determine the percent error between the determined and actual frame rate.
diffRates = abs(actualRate - expRate)

diffRates =

 0.0245

percentError = (diffRates/actualRate) * 100

 Determining the Rate of Acquisition

17-67

percentError =

 0.0817

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

17 Image Acquisition Toolbox Examples

17-68

Laser Tracking

This example shows how to track a moving laser dot.

Using the Image Acquisition Toolbox™, image data streams from a camera are acquired directly into
MATLAB®. These images are used to track objects in the camera's view. For this example, the object
being tracked is the dot produced by a laser pointer.

The monitor of a computer running MATLAB is placed in the camera's view while a laser pointer
shines a red dot on a MATLAB figure window. The camera is used to acquire images of the MATLAB
figure window while the laser pointer moves around. By tracking the movement of the laser dot, the
laser pointer can be used as a pointer device similar to a mouse.

The first task involves calibrating the data to establish a relationship between the acquired image
pixels and the MATLAB figure axes. Once this relationship is established, the laser dot can be tracked
as it moves around within the MATLAB figure window.

This example uses a set of utility functions that aid in the processing of images. These utility
functions require the Image Processing Toolbox™ and can be found in the following directory:

• MATLABROOT\examples\imaq\main

Physical Setup

Focus a camera onto the screen of a computer that MATLAB is running on.

It is best to have the ambient light in the room minimized. This example has been successfully run in
auditoriums using a projector.

 Laser Tracking

17-69

Configure the Acquisition

An image acquisition device will be used to acquire image data to perform the calibration and laser
tracking. The device used will be a generic Windows® video WebCam.

% Access and configure a device.
vid = videoinput('winvideo', 1, 'RGB24_320x240');
vid.FramesPerTrigger = 1;
vid.TriggerRepeat = Inf;
triggerconfig(vid,'manual')

Create the Calibration Screen

The calibration screen created is purposely set to black to get the best contrast for the laser pointer.
Some systems work better when the window's colors are set dark for the title bars.

Since a red laser will be used, the red plane of the image is the only color plane of interest. The
calibration square is made blue in order to make it appear "invisible" in the red plane.

% Create the laser figure window.
laserFig = figure;
hBox = plot([0 0 1 1 0], [0 1 1 0 0], 'b-');
hold on

% Set up calibration screen. Modify the cursor so it does not
% interfere with the calibration.
hTarget = plot(0, 0, 'yo');
ax = gca;
ax.Color = [0, 0, 0];
laserFig.Color = [0, 0, 0];
laserFig.Menubar = 'none';
laserFig.Pointer = 'custom';
laserFig.PointerShapeCData = NaN(16, 16);

17 Image Acquisition Toolbox Examples

17-70

Position the Camera

Position the camera such that only the blue square is visible.

% Display positioning information.
posText = sprintf('%s\n%s', ...
 'Position the camera and ensure the blue box', ...
 'is the only thing in the camera''s view.');
infoText = text(0, -0.2, posText, 'Color', [1 1 1]);
axis([-0.2 1.2 -0.2 1.2])
axis equal

 Laser Tracking

17-71

% Using the preview window, request that the camera be positioned such
% that the view is of the blue box and little else.
preview(vid)
smallFigPos = laserFig.Position;
laserFig.Position = get(0, 'ScreenSize');
disp('Waiting for camera to be positioned...press any key to continue.')
pause

Waiting for camera to be positioned...press any key to continue.

Perform Image Calibration

Now that the camera is focused on the right area, a target is drawn at each of the four corners of the
box. The calibration is performed by aiming the laser on each corner of the blue square, allowing a
relationship to be established between the camera pixel coordinates (the image) and MATLAB axis
coordinates (the square). For each target displayed:

• output a sound indicating the laser should be aimed
• output a sound indicating a frame is about to be acquired
• trigger the acquisition device
• access the acquired image frame and determine the laser position in pixel coordinates

The laser position is determined by thresholding the red plane and looking for high intensity values.
Some additional processing is performed to make sure the laser is not obscured by ghost images
caused by poor optics in some WebCams. It is also verified that a laser dot was actually present on
the screen.

17 Image Acquisition Toolbox Examples

17-72

% Provide calibration instructions.
calibText = sprintf('%s\n%s', ...
 'Aim the laser pointer on each target as it appears.', ...
 'Hold the laser on the target until the target moves.');
infoText.String = calibText;

% Start the acquisition and create a new figure to display
% calibration results in a MATLAB SPY plot.
start(vid)
spyFig = figure;

% Target 1...
figure(laserFig);
hTarget.XData = 0;
hTarget.YData = 0;
sound(1), pause(2)
sound(1), trigger(vid);
acqResults{1} = getdata(vid, 1);

[xCalib(1), yCalib(1), laserSights] = util_findlaser(acqResults{1});
figure(spyFig);
spy(laserSights)
title('Target 1: Suspected Laser Sighting')

 Laser Tracking

17-73

% Target 2...
figure(laserFig);
hTarget.XData = 0;
hTarget.YData = 1;
sound(1), pause(2)
sound(1), trigger(vid);
acqResults{2} = getdata(vid, 1);

[xCalib(2), yCalib(2), laserSights] = util_findlaser(acqResults{2});
figure(spyFig);
spy(laserSights)
title('Target 2: Suspected Laser Sighting')

17 Image Acquisition Toolbox Examples

17-74

% Target 3...
figure(laserFig);
hTarget.XData = 1;
hTarget.YData = 1;
sound(1), pause(2)
sound(1), trigger(vid);
acqResults{3} = getdata(vid, 1);

[xCalib(3), yCalib(3), laserSights] = util_findlaser(acqResults{3});
figure(spyFig);
spy(laserSights)
title('Target 3: Suspected Laser Sighting')

 Laser Tracking

17-75

% Target 4...
figure(laserFig);
hTarget.XData = 1;
hTarget.YData = 0;
sound(1), pause(2)
sound(1), trigger(vid);
acqResults{4} = getdata(vid, 1);

[xCalib(4), yCalib(4), laserSights] = util_findlaser(acqResults{4});
figure(spyFig);
spy(laserSights)
title('Target 4: Suspected Laser Sighting')

17 Image Acquisition Toolbox Examples

17-76

% Close the SPY plot and stop the acquisition.
close(spyFig)
stop(vid);

Calibration Results

Plot the acquired image and the calculated laser pointer coordinates for each target. Since the yellow
crosshairs are positioned at the proper location in each image, the processing results are validated.

% Target 1 results...
calibFig = figure;
util_plotpos(acqResults{1}, xCalib(1), yCalib(1));

 Laser Tracking

17-77

% Target 2 results...
util_plotpos(acqResults{2}, xCalib(2), yCalib(2));

% Target 3 results...
util_plotpos(acqResults{3}, xCalib(3), yCalib(3));

17 Image Acquisition Toolbox Examples

17-78

% Target 4 results...
util_plotpos(acqResults{4}, xCalib(4), yCalib(4));

% Close the figure illustrating calibration results.
close(calibFig)

Laser Tracking

Start the acquisition and process the acquired data a set number of times. The processing consists of
locating the laser in the acquired image and determining the laser positions in pixel and MATLAB axis
coordinates.

In order to make things interesting, using the laser pointer, attempt to "draw" the letter 'M' (for
MATLAB) within the blue box.

 Laser Tracking

17-79

% Update instructions on laser screen.
figure(laserFig);
infoText.String = 'Move the laser pointer within the blue box.';

% Start the acquisition. For each iteration:
%
% * output a sound to indicate a frame is about to be acquired
% * trigger the device
% * process the acquired image and locate the laser
% * convert pixel coordinates to MATLAB axis coordinates
laser.x = [];
laser.y = [];
start(vid)
for i = 1:100,
 % Acquire an image frame and determine the
 % camera pixel coordinates.
 sound(1), trigger(vid);
 frame = getdata(vid, 1);
 [x, y] = util_findlaser(frame);

 if ~isnan(x) && ~isnan(y),
 % If coordinates were valid, ensure the camera pixel coordinate
 % was in the calibration range.
 x = max([x min(xCalib([1 2]))]);
 x = min([x max(xCalib([3 4]))]);
 y = min([y max(yCalib([1 4]))]);
 y = max([y min(yCalib([2 3]))]);

 % Determine spatial transformation from the unit square calibration points.
 tform = cp2tform([xCalib(:) yCalib(:)], [0 0; 0 1; 1 1; 1 0], 'projective');
 xyScreen = tformfwd([x, y], tform);
 xScreen = xyScreen(1);
 yScreen = xyScreen(2);

 % Ensure the new coordinates remain within the unit square.
 xScreen = min([xScreen 1]);
 xScreen = max([xScreen 0]);
 yScreen = min([yScreen 1]);
 yScreen = max([yScreen 0]);

 % Store the new MATLAB axis coordinates.
 laser.x = [laser.x(:); xScreen];
 laser.y = [laser.y(:); yScreen];
 end
end

% Plot the tracked laser positions.
laserFig.Position = smallFigPos;
plot(laser.x, laser.y, 'r*');

17 Image Acquisition Toolbox Examples

17-80

% Close the laser figure.
close(laserFig);

% Stop the acquisition, remove the object from memory,
% and clear the variable.
stop(vid)
delete(vid)
clear vid

 Laser Tracking

17-81

Logging Data at Constant Intervals

This example shows how to log data at intervals instead of logging the entire acquisition.

In certain applications, it may not be necessary to log every frame provided by an image acquisition
device. In fact, it may be more practical and resourceful to log frames at certain intervals.

To log frames at a constant interval, configure the video input object's FrameGrabInterval property.
Configuring the property to an integer value N specifies that every Nth frame should be logged,
starting with the first frame.

Note, specifying a FrameGrabInterval value does not modify the rate at which a device is providing
frames (device frame rate). It only specifies the interval at which frames are logged.

Step 1: Access and Configure a Device.

Create a video input object and configure the desired logging interval. The logging interval is
determined by the value of the FrameGrabInterval property.

% Access an image acquisition device.
vidobj = videoinput('winvideo', 1);

% Configure the number of frames to log.
framesToLog = 9;
vidobj.FramesPerTrigger = framesToLog;

% Configure the logging interval. This specifies that
% every 10th frame provided by the device is to be logged.
grabInterval = 10;
vidobj.FrameGrabInterval = grabInterval;

% Access the device's video source and configure the device's frame rate.
% FrameRate is a device specific property, therefore, it may not be supported by
% some devices.
frameRate = 30;
src = getselectedsource(vidobj);
src.FrameRate = num2str(frameRate);

Step 2: Log and Retrieve Data.

Initiate the acquisition of images and retrieve the logged frames and their timestamps.

% Start the acquisition.
start(vidobj)

% Wait for the acquisition to end.
wait(vidobj, 10)

% Retrieve the data.
[frames, timeStamp] = getdata(vidobj);

Step 3: Calculate the Time Difference Between Frames.

Knowing the device's actual frame rate and the grab interval at which frames were logged, the
number of frames logged per second can be calculated.

17 Image Acquisition Toolbox Examples

17-82

% Number of frames logged per second.
loggedPerSec = frameRate/grabInterval

loggedPerSec =

 3

Knowing the number of frames logged per second, the expected time interval between each logged
frame can be calculated and compared.

% Expected number of seconds between each logged frame.
loggingRate = 1/loggedPerSec

loggingRate =

 0.3333

% Actual time difference between each logged frame.
% Note that frames were logged at a constant interval.
diff(timeStamp')

ans =

 0.3332 0.3338 0.3331 0.3332 0.3330 0.3332 0.3331 0.3330

% Determine the average time difference between frames.
avgDiff = mean(diff(timeStamp'))

avgDiff =

 0.3332

percentError = (abs(loggingRate-avgDiff)) * 100

percentError =

 0.0125

% Once the video input object is no longer needed, delete
% it and clear it from the workspace.
delete(vidobj)
clear vidobj

 Logging Data at Constant Intervals

17-83

Video Display with Live Histogram

This example shows how to set up and display a live histogram.

The Image Acquisition Toolbox™ together with the Image Processing Toolbox™ can be used to display
a video feed with a live histogram. This can be useful when calibrating camera settings such as
aperture using manual controls. This example shows how to use the PREVIEW function, its associated
custom update function and the IMHIST function to place a video preview window adjacent to a live
histogram. The techniques here can be used to display other live information too. For example, a live
video feed can be placed next to a filtered version of the video.

Watch a clip of the video feed and histogram. (8 seconds)

Setup Video Object and Figure
% Access an image acquisition device.
vidobj = videoinput('winvideo');

% Convert the input images to grayscale.
vidobj.ReturnedColorSpace = 'grayscale';

An image object of the same size as the video is used to store and display incoming frames.

% Retrieve the video resolution.
vidRes = vidobj.VideoResolution;

% Create a figure and an image object.
f = figure('Visible', 'off');

% The Video Resolution property returns values as width by height, but
% MATLAB images are height by width, so flip the values.
imageRes = fliplr(vidRes);

subplot(1,2,1);

hImage = imshow(zeros(imageRes));

% Set the axis of the displayed image to maintain the aspect ratio of the
% incoming frame.
axis image;

Specify the UpdatePreviewWindowFcn callback function that is called each time a new frame is
available. The callback function is responsible for displaying new frames and updating the histogram.
It can also be used to apply custom processing to the frames. More details on how to use this callback
can be found in the documentation for the PREVIEW function. This callback function itself is defined
in the file update_livehistogram_display.m.

setappdata(hImage,'UpdatePreviewWindowFcn',@update_livehistogram_display);

Define the Callback Function
% Here are the contents of update_livehistogram_display.m which contains
% the callback function.
dbtype('update_livehistogram_display.m')

1 function update_livehistogram_display(obj,event,hImage)

17 Image Acquisition Toolbox Examples

17-84

https://www.mathworks.com/videos/video-display-with-live-histogram-101623.html

2 % This callback function updates the displayed frame and the histogram.
3
4 % Copyright 2007-2017 The MathWorks, Inc.
5 %
6
7 % Display the current image frame.
8 set(hImage, 'CData', event.Data);
9
10 % Select the second subplot on the figure for the histogram.
11 subplot(1,2,2);
12
13 % Plot the histogram. Choose 128 bins for faster update of the display.
14 imhist(event.Data, 128);
15
16 % Refresh the display.
17 drawnow

Start Previewing
% The PREVIEW function starts the camera and display. The image on which to
% display the video feed is also specified.
preview(vidobj, hImage);

% View the histogram for 30 seconds.
pause(30);

Above is a sample image of the histogram and video feed.

 Video Display with Live Histogram

17-85

% Stop the preview image and delete the figure.
stoppreview(vidobj);
delete(f);

Once the video input object is no longer needed, delete and clear the associated variable.

delete(vidobj)
clear vidobj

17 Image Acquisition Toolbox Examples

17-86

Live Motion Detection Using Optical Flow

This example shows how to create a video algorithm to detect motion using optical flow technique.
This example uses the Image Acquisition Toolbox™ System object™ along with Computer Vision
Toolbox™ System objects.

Introduction

This example streams images from an image acquisition device to detect motion in the live video. It
uses the optical flow estimation technique to estimate the motion vectors in each frame of the live
video sequence. Once the motion vectors are determined, we draw it over the moving objects in the
video sequence.

Initialization

Create the Video Device System object.

vidDevice = imaq.VideoDevice('winvideo', 1, 'YUY2_320x240', ...
 'ReturnedColorSpace', 'rgb', ...
 'DeviceProperties.Brightness', 130, ...
 'DeviceProperties.Sharpness', 50);

Create a System object to estimate direction and speed of object motion from one video frame to
another using optical flow.

opticFlow = opticalFlowHS;

Stream Acquisition and Processing Loop

Create a processing loop to perform motion detection in the input video. This loop uses the System
objects you instantiated above.

% Set up for stream
nFrames = 0;
while (nFrames<100) % Process for the first 100 frames.
 % Acquire single frame from imaging device.
 frameRGB = vidDevice();

 % Compute the optical flow for that particular frame.
 flow = estimateFlow(opticFlow,rgb2gray(frameRGB));

 imshow(frameRGB)
 hold on
 plot(flow,'DecimationFactor',[5 5],'ScaleFactor',25)
 hold off

 % Increment frame count
 nFrames = nFrames + 1;
end

 Live Motion Detection Using Optical Flow

17-87

Summary

In the figure window, you can see that the example detected the motion of the black file. The moving
objects are represented using the vector field lines as seen in the image.

Release

Here you call the release method on the System objects to close any open files and devices.

release(vidDevice);

17 Image Acquisition Toolbox Examples

17-88

Synchronizing Two NI Frame Grabbers

This example shows how to synchronize the start of image capture using Image Acquisition Toolbox™
and two NI® RTSI capable frame grabbers.

It is often necessary to synchronize two or more frame grabbers very closely. For example, you could
record synchronized video during an experiment that is costly or impossible to duplicate. Because of
the nature of the experiment, it would be beneficial to use RTSI to ensure the most reliable
connection between your NI PCI-1409 and PCIe-1430 frame grabbers.

Configure the PCI-1409

Using the Image Acquisition Toolbox, create the video input object to record video and set up the
parameters for acquisition.

% Create the object.
vid1409 = videoinput('ni', 1);
% Set to acquire approximately one second of frames per trigger.
vid1409.FramesPerTrigger = 30;

You can use either card to trigger the other, but this example uses the PCIe-1430 to trigger the
PCI-1409. See what triggering settings are available for the PCI-1409.

% See the possible settings.
triggerinfo(vid1409)

 Valid Trigger Configurations:

 TriggerType: TriggerCondition: TriggerSource:
 'immediate' 'none' 'none'
 'manual' 'none' 'none'
 'hardware' 'fallingEdge' 'external0'
 'hardware' 'fallingEdge' 'external1'
 'hardware' 'fallingEdge' 'external2'
 'hardware' 'fallingEdge' 'external3'
 'hardware' 'fallingEdge' 'rtsi0'
 'hardware' 'fallingEdge' 'rtsi1'
 'hardware' 'fallingEdge' 'rtsi2'
 'hardware' 'fallingEdge' 'rtsi3'
 'hardware' 'fallingEdge' 'rtsi4'
 'hardware' 'fallingEdge' 'rtsi5'
 'hardware' 'fallingEdge' 'rtsi6'
 'hardware' 'risingEdge' 'external0'
 'hardware' 'risingEdge' 'external1'
 'hardware' 'risingEdge' 'external2'
 'hardware' 'risingEdge' 'external3'
 'hardware' 'risingEdge' 'rtsi0'
 'hardware' 'risingEdge' 'rtsi1'
 'hardware' 'risingEdge' 'rtsi2'
 'hardware' 'risingEdge' 'rtsi3'
 'hardware' 'risingEdge' 'rtsi4'
 'hardware' 'risingEdge' 'rtsi5'
 'hardware' 'risingEdge' 'rtsi6'

 Synchronizing Two NI Frame Grabbers

17-89

Set the video input object for hardware triggering off of RTSI line 1 upon a rising edge.

% Set the triggering configuration.
triggerconfig(vid1409, 'hardware', 'risingEdge', 'rtsi1');

Configure the PCIe-1430

Create the video input object to record video and set up the parameters for acquisition and for
driving RTSI1 high when the acquisition starts.

% Create the object.
vid1430 = videoinput('ni', 2);
% Set to acquire approximately one second of frames per trigger.
vid1430.FramesPerTrigger = 30;

In order to drive the PCI-1409's RTSI line, you need to set the correct line and polarity on the
PCIe-1430. In addition, you need to determine what frame grabber event will drive the RTSI line. You
can see a list of events that are available by looking at the device-specific source properties that end
in “DriveLine” and “DrivePolarity”:

% Get the currently selected source.
src = getselectedsource(vid1430);
% Display the properties and their possible settings.
set(src)

 General Settings:
 Tag

 Device Specific Properties:
 AcquisitionDoneDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 AcquisitionDoneDrivePolarity: [{activeHigh} | activeLow]
 AcquisitionInProgressDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 AcquisitionInProgressDrivePolarity: [{activeHigh} | activeLow]
 ExternalTriggerLineFilter: [off | {on}]
 FrameDoneDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 FrameDoneDrivePolarity: [{activeHigh} | activeLow]
 FrameStartDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 FrameStartDrivePolarity: [{activeHigh} | activeLow]
 HSyncDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 HSyncDrivePolarity: [{activeHigh} | activeLow]
 RTSITriggerLineFilter: [off | {on}]
 VSyncDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 VSyncDrivePolarity: [{activeHigh} | activeLow]

In this case, you want to drive RTSI line 1 high when the acquisition is in progress. This ensures that
the line is driven high as soon as the acquisition begins. To do this, you need to set the acquisition in
progress drive line to 'rtsi1':

% Set to drive RTSI1 high when the acquisition begins.
src.AcquisitionInProgressDriveLine = 'rtsi1';

Looking at the output above, you can see that the polarity for the acquisition in progress event is
already set to 'activeHigh', so you do not need to set it.

Note that the maximum number of lines that you can drive is hardware dependent and will possibly
vary between devices.

17 Image Acquisition Toolbox Examples

17-90

At this point you are set to acquire approximately one second of frames from each device when the
PCIe-1430 is started.

Start the Image Acquisition

You can now start the PCI-1409 video input object and see that it is waiting for a hardware trigger.

start(vid1409);
vid1409

Summary of Video Input Object Using 'PCI/PXI-1409'.

 Acquisition Source(s): Channel 0, Channel 1, Channel 2, and
 Channel 3 are available.

 Acquisition Parameters: 'Channel 0' is the current selected source.
 30 frames per trigger using the selected source.
 'img1' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'hardware' trigger(s).

 Status: Waiting for trigger 1 of 1.
 0 frames acquired since starting.
 0 frames available for GETDATA.

You can now display a summary of the PCIe-1430 video input object and see that it is set up to trigger
immediately upon start.

vid1430

Summary of Video Input Object Using 'PCIe-1430'.

 Acquisition Source(s): Channel 0 is available.

 Acquisition Parameters: 'Channel 0' is the current selected source.
 30 frames per trigger using the selected source.
 'img0_Port0' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

When you start the PCIe-1430 video input object, it will immediately be triggered and begin
acquiring. At that moment, the frame grabber will send a signal to the other frame grabber across
RTSI line 1, which will cause the PCI-1409 to begin nearly synchronously.

start(vid1430)
% Wait on both objects until you are done acquiring.
wait(vid1430), wait(vid1409)

 Synchronizing Two NI Frame Grabbers

17-91

Display a Summary of Acquisitions

If you now display a summary you will see that both devices have acquired frames.

vid1409

Summary of Video Input Object Using 'PCI/PXI-1409'.

 Acquisition Source(s): Channel 0, Channel 1, Channel 2, and
 Channel 3 are available.

 Acquisition Parameters: 'Channel 0' is the current selected source.
 30 frames per trigger using the selected source.
 'img1' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'hardware' trigger(s).

 Status: Waiting for START.
 30 frames acquired since starting.
 30 frames available for GETDATA.

and:

vid1430

Summary of Video Input Object Using 'PCIe-1430'.

 Acquisition Source(s): Channel 0 is available.

 Acquisition Parameters: 'Channel 0' is the current selected source.
 30 frames per trigger using the selected source.
 'img0_Port0' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 30 frames acquired since starting.
 30 frames available for GETDATA.

Clean Up the Objects

Once the video input objects are no longer needed, delete them and clear them and the reference to
the source from the workspace.

delete(vid1430)
delete(vid1409)
clear vid1430 vid1409 src

17 Image Acquisition Toolbox Examples

17-92

Synchronizing an NI Frame Grabber and Data Acquisition Card

This example shows how to synchronize the start of image and data acquisition using Image
Acquisition Toolbox™, Data Acquisition Toolbox™, and NI® RTSI capable equipment.

It is often necessary to synchronize two or more acquisition boards very closely. For example, you can
record the voltage from an analog sensor, such as a strain gauge, as well as synchronized video
during an experiment. For the synchronization/triggering signal, you can use an RTSI cable for a
reliable connection between your NI PCI-6229 data acquisition card and PCIe-1430 frame grabber.

Configure the Data Acquisition Board

Using the Data Acquisition Toolbox, create the analog input object to record voltage from the strain
gage and set up the parameters for acquisition.

% Create the object.
d = daq('ni');
% Add one channel for recording the strain.
ai = addinput(d,'Dev1','ai0','Voltage');
% Set the sample rate to 10,000 Hz.
d.Rate = 10000;

Next, configure the DataAcquisition object for hardware-triggered acquisition using the RTSI1
terminal as the external trigger source.

addtrigger(d,'Digital','StartTrigger','External','Dev1/RTSI1');
d.DigitalTriggers(1).Condition = 'RisingEdge';

Configure the Image Acquisition Board

Using the Image Acquisition Toolbox, create the video input object to record video and set up the
parameters for acquisition and for driving RTSI1 high when the acquisition starts.

% Create the object.
vid = videoinput('ni', 2);
% Set to acquire approximately one second of frames per trigger.
vid.FramesPerTrigger = 30;

In order to drive the data acquisition card's RTSI line, you need to set the correct line and polarity on
the frame grabber. In addition, you need to determine what frame grabber event will drive the RTSI
line. You can see a list of events that are available by looking at the device-specific source properties
that end in “DriveLine” and “DrivePolarity”:

% Get the currently selected source.
src = getselectedsource(vid);
% Display the properties and their possible settings.
set(src)

 General Settings:
 Tag

 Device Specific Properties:
 AcquisitionDoneDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 AcquisitionDoneDrivePolarity: [{activeHigh} | activeLow]
 AcquisitionInProgressDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]

 Synchronizing an NI Frame Grabber and Data Acquisition Card

17-93

 AcquisitionInProgressDrivePolarity: [{activeHigh} | activeLow]
 ExternalTriggerLineFilter: [off | {on}]
 FrameDoneDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 FrameDoneDrivePolarity: [{activeHigh} | activeLow]
 FrameStartDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 FrameStartDrivePolarity: [{activeHigh} | activeLow]
 HSyncDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 HSyncDrivePolarity: [{activeHigh} | activeLow]
 RTSITriggerLineFilter: [off | {on}]
 VSyncDriveLine: [{none} | external0 | rtsi0 | rtsi1 | rtsi2 | rtsi3 | rtsi4 | rtsi5 | rtsi6]
 VSyncDrivePolarity: [{activeHigh} | activeLow]

In this case, you want to drive RTSI line 1 high when the acquisition is in progress. This ensures that
the line is driven high as soon as the acquisition begins. To do this, you need to set the acquisition in
progress drive line to 'rtsi1':

% Set to drive RTSI1 high when the acquisition begins.
src.AcquisitionInProgressDriveLine = 'rtsi1';

Looking at the output above, you can see that the polarity for the acquisition in progress event is
already set to 'activeHigh', so you do not need to set it.

Note that the maximum number of lines that you can drive is hardware dependent and will possibly
vary between devices.

At this point you are set to acquire approximately one second of data from each device when the
image acquisition device is started.

Start the Acquisition

You can now start the analog input object, which acquires one second of data by default. See that it is
waiting for a hardware trigger.

start(d)
d.WaitingForDigitalTrigger

ans =

 logical

 1

You can now display a summary of the video input object and see that it is set up to trigger
immediately upon start.

vid

Summary of Video Input Object Using 'PCIe-1430'.

 Acquisition Source(s): Channel 0 is available.

 Acquisition Parameters: 'Channel 0' is the current selected source.
 30 frames per trigger using the selected source.
 'img0_Port0' video data to be logged upon START.

17 Image Acquisition Toolbox Examples

17-94

 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

When you start the video input object, it will immediately be triggered and begin acquiring. At that
moment, the frame grabber will send a signal to the data acquisition card across RTSI line 1, which
will cause the data acquisition to begin nearly synchronously.

start(vid)
% Wait on both objects until you are done acquiring.
wait(vid), wait(d,2)

Display a Summary of Acquisitions

If you now display a summary you will see that both devices have acquired data.

d.NumScansAcquired

ans =

 10000

and:

vid

Summary of Video Input Object Using 'PCIe-1430'.

 Acquisition Source(s): Channel 0 is available.

 Acquisition Parameters: 'Channel 0' is the current selected source.
 30 frames per trigger using the selected source.
 'img0_Port0' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 30 frames acquired since starting.
 30 frames available for GETDATA.

Clean Up the Objects

Once the video input and analog input objects are no longer needed, delete them and clear them and
the reference to the source from the workspace.

 Synchronizing an NI Frame Grabber and Data Acquisition Card

17-95

delete(vid)
clear vid d src

17 Image Acquisition Toolbox Examples

17-96

Using the Kinect for Windows V1 from Image Acquisition
Toolbox

This example shows how to obtain the data available from Kinect® for Windows® V1 sensor using
Image Acquisition Toolbox™:

Utility Functions

In order the keep this example as simple as possible, some utility functions for working with the
Kinect for Windows metadata have been created. These utility functions include the skeletalViewer
function which accepts the skeleton data, color image and number of skeletons as inputs and displays
the skeleton overlaid on the color image

See What Kinect for Windows Devices and Formats are Available

The Kinect for Windows has two sensors, an color sensor and a depth sensor. To enable independent
acquisition from each of these devices, they are treated as two independent devices in the Image
Acquisition Toolbox. This means that separate VIDEOINPUT object needs to be created for each of
the color and depth(IR) devices.

% The Kinect for Windows Sensor shows up as two separate devices in IMAQHWINFO.
hwInfo = imaqhwinfo('kinect')

hwInfo =

 AdaptorDllName: [1x68 char]
 AdaptorDllVersion: '4.5 (R2013a Prerelease)'
 AdaptorName: 'kinect'
 DeviceIDs: {[1] [2]}
 DeviceInfo: [1x2 struct]

hwInfo.DeviceInfo(1)

ans =

 DefaultFormat: 'RGB_640x480'
 DeviceFileSupported: 0
 DeviceName: 'Kinect Color Sensor'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('kinect', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('kinect', 1)'
 SupportedFormats: {1x7 cell}

hwInfo.DeviceInfo(2)

ans =

 DefaultFormat: 'Depth_640x480'
 DeviceFileSupported: 0
 DeviceName: 'Kinect Depth Sensor'
 DeviceID: 2

 Using the Kinect for Windows V1 from Image Acquisition Toolbox

17-97

 VideoInputConstructor: 'videoinput('kinect', 2)'
 VideoDeviceConstructor: 'imaq.VideoDevice('kinect', 2)'
 SupportedFormats: {'Depth_320x240' 'Depth_640x480' 'Depth_80x60'}

Acquire Color and Depth Data

In order to acquire synchronized color and depth data, we must use manual triggering instead of
immediate triggering. The default immediate triggering suffers from a lag between streams while
performing synchronized acquisition. This is due to the overhead in starting of streams sequentially.

% Create the VIDEOINPUT objects for the two streams
colorVid = videoinput('kinect',1)

Summary of Video Input Object Using 'Kinect Color Sensor'.

 Acquisition Source(s): Color Source is available.

 Acquisition Parameters: 'Color Source' is the current selected source.
 10 frames per trigger using the selected source.
 'RGB_640x480' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

depthVid = videoinput('kinect',2)

Summary of Video Input Object Using 'Kinect Depth Sensor'.

 Acquisition Source(s): Depth Source is available.

 Acquisition Parameters: 'Depth Source' is the current selected source.
 10 frames per trigger using the selected source.
 'Depth_640x480' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

% Set the triggering mode to 'manual'
triggerconfig([colorVid depthVid],'manual');

Set the FramesPerTrigger property of the VIDEOINPUT objects to '100' to acquire 100 frames per
trigger. In this example 100 frames are acquired to give the Kinect for Windows sensor sufficient time
to start tracking a skeleton.

17 Image Acquisition Toolbox Examples

17-98

colorVid.FramesPerTrigger = 100;
depthVid.FramesPerTrigger = 100;

% Start the color and depth device. This begins acquisition, but does not
% start logging of acquired data.
start([colorVid depthVid]);

% Trigger the devices to start logging of data.
trigger([colorVid depthVid]);

% Retrieve the acquired data
[colorFrameData,colorTimeData,colorMetaData] = getdata(colorVid);
[depthFrameData,depthTimeData,depthMetaData] = getdata(depthVid);

% Stop the devices
stop([colorVid depthVid]);

Configure Skeletal Tracking

The Kinect for Windows sensor provides different modes to track skeletons. These modes can be
accessed and configured from the VIDEOSOURCE object of the depth device. Let's see how to enable
skeleton tracking.

% Get the VIDEOSOURCE object from the depth device's VIDEOINPUT object.
depthSrc = getselectedsource(depthVid)

 Display Summary for Video Source Object:

 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = Depth Source
 Tag =
 Type = videosource

 Device Specific Properties:
 Accelerometer = [-0.008547 -0.98046 -0.11966]
 BodyPosture = Standing
 CameraElevationAngle = 9
 DepthMode = Default
 FrameRate = 30
 IREmitter = on
 SkeletonsToTrack = [1x0 double]
 TrackingMode = Off

The properties on the depth source object that control the skeletal tracking features are
TrackingMode, SkeletonToTrack and BodyPosture properties on the VIDEOSOURCE.

TrackingMode controls whether or not skeletal tracking is enabled and, if it is enabled, whether all
joints are tracked, ‘Skeleton’, or if just the hip position is tracked, ‘Position’. Setting TrackingMode to
‘off’ (default) disables all tracking and reduces the CPU load.

The ‘BodyPosture’ property determines how many joints are tracked. If ‘BodyPosture’ is set to
‘Standing’, twenty joints are tracked. If it is set to ‘Seated’, then ten joints are tracked.

 Using the Kinect for Windows V1 from Image Acquisition Toolbox

17-99

The SkeletonToTrack property can be used to selectively track one or two skeletons using the
'SkeletonTrackingID'. The currently valid values for 'SkeletonTrackingID' are returned as a part of
the metadata of the depth device.

% Turn on skeletal tracking.
depthSrc.TrackingMode = 'Skeleton';

Access Skeletal Data

The skeleton data that the Kinect for Windows produces is accessible from the depth device as a part
of the metadata returned by GETDATA. The Kinect for Windows can track the position of up to six
people in view and can actively track the joint locations of two of the six skeletons. It also supports
two modes of tracking people based on whether they are standing or seated. In standing mode, the
full 20 joint locations are tracked and returned; in seated mode the 10 upper body joints are
returned. For more details on skeletal data, see the MATLAB documentation on Kinect for Windows
adaptor.

% Acquire 100 frames with tracking turned on.
% Remember to have a person in person in front of the
% Kinect for Windows to see valid tracking data.
colorVid.FramesPerTrigger = 100;
depthVid.FramesPerTrigger = 100;

start([colorVid depthVid]);
trigger([colorVid depthVid]);

% Retrieve the frames and check if any Skeletons are tracked
[frameDataColor] = getdata(colorVid);
[frameDataDepth, timeDataDepth, metaDataDepth] = getdata(depthVid);

% View skeletal data from depth metadata
metaDataDepth

metaDataDepth =

100x1 struct array with fields:

 AbsTime
 FrameNumber
 IsPositionTracked
 IsSkeletonTracked
 JointDepthIndices
 JointImageIndices
 JointTrackingState
 JointWorldCoordinates
 PositionDepthIndices
 PositionImageIndices
 PositionWorldCoordinates
 RelativeFrame
 SegmentationData
 SkeletonTrackingID
 TriggerIndex

We randomly choose the 95th frame to visualize the image and skeleton data.

17 Image Acquisition Toolbox Examples

17-100

% Check for tracked skeletons from depth metadata
anyPositionsTracked = any(metaDataDepth(95).IsPositionTracked ~= 0)
anySkeletonsTracked = any(metaDataDepth(95).IsSkeletonTracked ~= 0)

anyPositionsTracked =

 1

anySkeletonsTracked =

 1

The results above show that at least one skeleton is being tracked. If tracking is enabled but no IDs
are specified with the TrackingID property, the Kinect for Windows software automatically chooses up
to two skeletons to track. Use the IsSkeletonTracked metadata to determine which skeletons are
being tracked.

% See which skeletons were tracked.
trackedSkeletons = find(metaDataDepth(95).IsSkeletonTracked)

trackedSkeletons =

 1

Display skeleton's joint coordinates. Note that if the 'BodyPosture' property is set to 'Seated', the
'JointCoordinates' and 'JointIndices' will still have a length of 20, but indices 2-11(upper-body joints)
alone will be populated.

jointCoordinates = metaDataDepth(95).JointWorldCoordinates(:, :, trackedSkeletons)
% Skeleton's joint indices with respect to the color image
jointIndices = metaDataDepth(95).JointImageIndices(:, :, trackedSkeletons)

jointCoordinates =

 -0.0119 -0.0072 1.9716
 -0.0107 0.0545 2.0376
 -0.0051 0.4413 2.0680
 0.0033 0.6430 2.0740
 -0.1886 0.3048 2.0469
 -0.3130 0.0472 2.0188
 -0.3816 -0.1768 1.9277
 -0.3855 -0.2448 1.8972
 0.1724 0.3022 2.0449
 0.3102 0.0382 2.0304
 0.3740 -0.1929 1.9591
 0.3786 -0.2625 1.9356
 -0.0942 -0.0850 1.9540
 -0.1367 -0.4957 1.9361
 -0.1356 -0.8765 1.9339
 -0.1359 -0.9284 1.8341
 0.0683 -0.0871 1.9504
 0.0706 -0.4822 1.9293

 Using the Kinect for Windows V1 from Image Acquisition Toolbox

17-101

 0.0858 -0.8804 1.9264
 0.0885 -0.9321 1.8266

jointIndices =

 318 256
 317 240
 318 143
 319 92
 271 177
 239 243
 219 303
 216 323
 363 177
 399 243
 421 303
 424 322
 296 277
 286 387
 288 492
 286 520
 340 277
 342 384
 347 493
 350 522

Draw the Skeleton Over the Corresponding Color Image

% Pull out the 95th color frame
image = frameDataColor(:, :, :, 95);

% Find number of Skeletons tracked
nSkeleton = length(trackedSkeletons);

% Plot the skeleton
util_skeletonViewer(jointIndices, image, nSkeleton);

17 Image Acquisition Toolbox Examples

17-102

 Using the Kinect for Windows V1 from Image Acquisition Toolbox

17-103

Creating Time-Lapse Video Using a Noncontiguous Acquisition

This example shows how to create a time-lapse video without using all the frames of the acquisition.

The Image Acquisition Toolbox™ makes it easy to produce time-lapse video. The most efficient way to
do time-lapse acquisition is to use the Image Acquisition Toolbox's built-in ability to log frames
directly to an AVI file, and its ability to perform time decimation by retaining only a fraction of all the
frames acquired by the camera.

Watch a day long time-lapse sequence. (21 seconds)

Create a Video Input Object

Before acquiring images using the Image Acquisition Toolbox, create a video input object.

% When executing the following code, you may need to
% modify it to match your acquisition hardware.
vid = videoinput('winvideo',1,'RGB24_352x288');

Determine the Frame Rate

Most devices do not allow you to control their frame rate. It is best to determine the frame rate
experimentally by acquiring frames and analyzing the time stamps of the frames.

vid.FramesPerTrigger = 100;
start(vid);
wait(vid,Inf);

% Retrieve the frames and timestamps for each frame.
numframes = vid.FramesAvailable;
[frames,time] = getdata(vid,numframes);

% Calculate the frame rate by taking the average difference
% between the timestamps for each frame.
framerate = mean(1./diff(time))

framerate =

 17.5296

Specify the Noncontiguous Acquisition

The FrameGrabInterval property specifies how often frames are stored from the video stream. For
instance, if we set it to 5, then only 1 in 5 frames is kept -- the other 4 frames will be discarded.

% We want to compress 30 seconds into 3 seconds, so
% only acquire every tenth frame.
vid.FrameGrabInterval = 10;

Determine the Number of Frames to Acquire

To determine how many frames to acquire in total, calculate the total number of frames that would be
acquired at the device's frame rate, and then divide by the FrameGrabInterval.

17 Image Acquisition Toolbox Examples

17-104

https://www.mathworks.com/videos/day-long-time-lapse-sequence-101449.html

capturetime = 30;
interval = vid.FrameGrabInterval;
numframes = floor(capturetime * framerate / interval)

numframes =

 52

vid.FramesPerTrigger = numframes;

Configure AVI Disk Logging

Due to the large number of frames that will be acquired, it is more practical to log the images to disk
rather than to memory. Using the Image Acquisition Toolbox, you can log images directly to an AVI
file. We configure this using the LoggingMode property.

vid.LoggingMode = 'disk';

Create a VideoWriter object to log to, using the VideoWriter command. We must specify the
filename to use, and then set frame rate that the AVI file should be played back at. Then, set the
DiskLogger property of the video input object to the VideoWriter object.

vwObj = VideoWriter('timelapsevideo','Uncompressed AVI');
vwObj.FrameRate = framerate;
vid.DiskLogger = vwObj;
vid

Summary of Video Input Object Using 'Logitech QuickCam Fusion'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 91 frames per trigger using the selected source.
 'RGB24_352x288' video data to be logged upon START.
 Grabbing first of every 10 frame(s).
 Log data to 'disk' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 100 frames acquired since starting.
 0 frames available for GETDATA.

Perform the Time-Lapse Acquisition

Start the time-lapse acquisition, and wait for the acquisition to complete. Note that the Image
Acquisition Toolbox does not tie up MATLAB® while it is acquiring. You can start the acquisition and
keep working in MATLAB.

start(vid);

% Wait for the capture to complete before continuing.
wait(vid,Inf);

 Creating Time-Lapse Video Using a Noncontiguous Acquisition

17-105

Close the AVI File

Once the capture is completed, retrieve the AVI file object, and use the close function to release the
resources associated with it.

vwObj = vid.DiskLogger;
close(vwObj);

Play Back the Time-Lapse AVI Sequence

To play back the time-lapse AVI sequence, right-click on the filename in the MATLAB Current Folder
browser, and choose Open Outside MATLAB from the context menu.

Clean Up

When you are done with the video input object, you should use the delete function to free the
hardware resources associated with it, and remove it from the workspace using the clear function.

delete(vid);
clear vid;

17 Image Acquisition Toolbox Examples

17-106

Creating Time-Lapse Video Using Timer Events

This example shows how to create a time-lapse video using timer events to prequalify frames.

The Image Acquisition Toolbox™ makes it easy to produce time-lapse video. In this example, we will
use timer events to acquire frames to an AVI file. This technique of time decimation has the
advantage that it allows you to make a decision about each frame before storing it. An application of
this would be to only store frames that meet certain illumination levels, have motion relative to the
previous frame, etc.

Watch a day long time-lapse sequence. (21 seconds)

Create a Video Input Object

Before acquiring images using the Image Acquisition Toolbox, create a video input object.

% When executing the following code, you may need to
% modify it to match your acquisition hardware.
vid = videoinput('winvideo',1,'RGB24_352x288');

Configure the Timer

To generate timer events, we specify two things: what happens when it occurs, and how often it
should occur. The TimerFcn property specifies the callback function to execute when a timer event
occurs. A timer event occurs when the time period specified by the TimerPeriod property expires.

The callback function is responsible for triggering the acquisition and storing the frame into the AVI
file. More details on how to use this callback can be found in the documentation. This callback
function itself is defined in the file timelapse_timer.m

The configuration we will use is

• timelapse_timer will execute each time the timer elapses
• The timer function will execute every one second

set(vid,'TimerPeriod',1);
vid.TimerFcn = @timelapse_timer;

Store the VideoWriter Object

Store the VideoWriter object in the UserData property of the video input object so that it will be
available inside the callback.

vwObj = VideoWriter('timelapsevideo', 'Uncompressed AVI');
vwObj.FrameRate = 15;
open(vwObj);

Configure the Video Input Object to Use Manual Triggering

Each time the timer event occurs

• Manually trigger the acquisition using the triggerconfig command
• Acquire one frame
• Acquire 9 additional triggers worth of data, for a total of 10 frames

 Creating Time-Lapse Video Using Timer Events

17-107

https://www.mathworks.com/videos/day-long-time-lapse-sequence-101449.html

triggerconfig(vid, 'manual');
vid.FramesPerTrigger = 1;
vid.TriggerRepeat = 9;
vid

Summary of Video Input Object Using 'Logitech QuickCam Fusion'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 1 frames per trigger using the selected source.
 'RGB24_352x288' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 10 'manual' trigger(s) upon TRIGGER.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

Perform the Time-Lapse Acquisition

Now, start the time lapse acquisition, and wait for up to 20 seconds for the acquisition to complete.

start(vid);
wait(vid,20);

Close the AVI File

Once the capture is completed, retrieve the VideoWriter object stored in the UserData property, and
use the close function to release the resources associated with it.

avi = vid.UserData;
avi = close(avi);

Play Back the Time-Lapse AVI Sequence

To play back the time-lapse AVI sequence, right-click on the filename in the MATLAB® Current Folder
browser, and choose Open Outside MATLAB from the context menu.

Clean Up

When you are done with the video input object, you should use the delete function to free the
hardware resources associated with it, and remove it from the workspace using the clear function.

delete(vid);
clear vid;

The Timer Callback Function

The following is a description of the callback function executed for each timer event

• Trigger the toolbox to acquire a single frame
• Retrieve the frame

17 Image Acquisition Toolbox Examples

17-108

• Determine whether to keep the frame
• Use the writeVideo function to add the frame to the AVI file

The VideoWriter object is stored in the UserData property of the object.

type timelapse_timer

function timelapse_timer(vid,~)
% This callback function triggers the acquisition and saves frames to an AVI file.

% trigger the acquisition and get the frame
trigger(vid);
frame = getdata(vid,1);

% Retrieve the total number of frames acquired
numframes_acquired = vid.FramesAcquired;

% Drop every other frame: If the frame is odd,
% keep it. If it is an even frame, do not keep it.
keepframe = (mod(numframes_acquired,2) == 1);

% Insert your processing code here

if(~keepframe)
 return;
end

% Retrieve the VideoWriter object stored in the UserData
% property.
vwObj = vid.UserData;

% Add the frame to the AVI
writeVideo(vwObj, frame);

end

 Creating Time-Lapse Video Using Timer Events

17-109

Creating Time-Lapse Video Using Postprocessed Data

This example shows how to create a time-lapse video by deleting unnecessary frames during
postprocessing.

The Image Acquisition Toolbox™ makes it easy to produce time-lapse photography. In this example,
we will use postprocessing to delete frames from an acquired sequence of images. This is ideal for
situations where you are not sure which frames are relevant during capture, or where your
processing would take too long to occur during the acquisition. A possible application would be to
delete frames that have no motion relative to the previous frame. The primary disadvantage of this
method of time decimation is that it requires large amounts of memory to store all the frames. This
example acquires to memory, but you would likely acquire to an AVI file, and then use the
VideoReader command to postprocess the frames.

Watch a day long time-lapse sequence.

Create a Video Input Object

Before acquiring images using the Image Acquisition Toolbox, create a video input object.

% When executing the following code, you may need to
% modify it to match your acquisition hardware.
vid = videoinput('winvideo',1,'RGB24_352x288');

Configure the Video Input Object

The configuration we will use is

• Acquire 100 frames

vid.FramesPerTrigger = 100;
vid

Summary of Video Input Object Using 'Logitech QuickCam Fusion'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 100 frames per trigger using the selected source.
 'RGB24_352x288' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

Acquire and Retrieve the Frames

start(vid);
wait(vid);
framesavailable = vid.FramesAvailable;

17 Image Acquisition Toolbox Examples

17-110

https://www.mathworks.com/videos/day-long-time-lapse-sequence-101449.html

framesavailable =

 100

frames = getdata(vid,framesavailable);

Postprocess the Acquired Frames

Here, simply remove every other frame. However, you could do processing that is much more
complex.

toberemoved_index = [2:2:framesavailable];
frames(:,:,:,toberemoved_index) = [];
numframes = size(frames,4)

numframes =

 50

Render the Frames to an AVI File

Render the frames to an AVI file. To do this, create a VideoWriter object, call the writeVideo
function to add all the frames to the AVI file, and then use the close function to release the
resources associated with the AVI file.

vwObj = VideoWriter('timelapsevideo', 'Uncompressed AVI');
vwObj.FrameRate = 15;
open(vwObj);
writeVideo(vwObj, frames);
close(vwObj);

Play Back the Time-Lapse AVI Sequence

To play back the time-lapse AVI sequence, right-click on the filename in the MATLAB® Current Folder
browser, and choose Open Outside MATLAB from the context menu.

Clean Up

When you are done with the video input object, you should use the delete function to free the
hardware resources associated with it, and remove it from the workspace using the clear function.
Also delete and clear the VideoWriter object.

delete(vid);
delete(vwObj);
clear vid vwObj;

 Creating Time-Lapse Video Using Postprocessed Data

17-111

Barcode Recognition Using Live Video Acquisition

This example shows how to use the From Video Device block to recognize a barcode.

Image Acquisition Toolbox™ provides a Simulink® block to acquire live image data from image
acquisition devices into Simulink models.

This example uses the From Video Device block to acquire live image data from the Point Grey Flea®
2 camera into Simulink. The example uses the Computer Vision Toolbox™ to create an image
processing system which can recognize and interpret a GTIN-13 barcode. The GTIN-13 barcode,
formally known as EAN-13, is an international barcode standard. It is a superset of the widely used
UPC standard.

This example requires Simulink, Computer Vision Toolbox and the Point Grey Flea® 2 camera to open
and run the model.

Watch barcode recognition on live video stream. (11 seconds)

Example Model

The following figure shows the example model using the From Video Device block.

Live Video Input

The input video is acquired live from a DCAM image acquisition device (Point Grey Flea® 2). In this
example, the block acquires RGB frames from the camera and outputs them into the Simulink model
at every simulation time step.

Algorithm

The barcode recognition example performs a search on some selected rows of the input image, called
scan lines. The scan lines are analyzed per pixel and marked by feature. Once all pixels are marked
with a feature value, the sequences of patterns are analyzed. The example identifies the guard
patterns and symbols by sequence and location. The symbols are up sampled and compared with the
codebook to determine a corresponding code.

17 Image Acquisition Toolbox Examples

17-112

https://www.mathworks.com/videos/barcode-recognition-using-live-video-acquisition-101414.html

To compensate for various barcode orientations, the example analyzes from left to right and from
right to left and chooses the better match. If the check sum is correct and a matching score against
the codebook is higher than a set threshold, the code is considered valid and is displayed.

You can change the number and location of the scan lines by changing the value of the "Row Positions
Of Scan Lines" parameter.

Results

The scan lines that have been used to detect barcodes are displayed in red. When a GTIN-13 is
correctly recognized and verified, the code is displayed in yellow.

Even though a Flea® 2 camera was used for this example, this model can be easily updated to
connect your models to other supported image acquisition devices. This provides you the flexibility to
use the same Simulink model with different image acquisition hardware.

 Barcode Recognition Using Live Video Acquisition

17-113

Live Image Acquisition and Histogram Display

This example shows how to use Simulink® blocks to display live video stream and a histogram of its
RGB values side by side.

Image Acquisition Toolbox™ provides a Simulink block to acquire live image data from image
acquisition devices into Simulink models. This example uses the From Video Device block to acquire
live image data from the Logitech® Quickcam® Zoom webcam into Simulink. This example uses the
Histogram block in DSP System Toolbox™ to calculate the histograms of R, G, and B values in each
video frame.

This example requires Simulink, DSP System Toolbox and Computer Vision Toolbox™ to open and run
the model.

Watch histogram display on live video stream. (10 seconds)

Example Model

The following figure shows the example model using the From Video Device block.

open_system('demoimaqsl_rgbhistogram_win');

close_system('demoimaqsl_rgbhistogram_win');

Live Video Input

The input video is acquired live from a winvideo image acquisition device (Logitech Quickcam Zoom).
In this example, the block acquires RGB frames from the Logitech camera and outputs them into the
Simulink model at every simulation time step. The data type output from the block is uint8.

Histogram Display Results

The example displays the histograms of R, G, and B values in the RGB Histogram window and
displays the original RGB video in the viewer window.

17 Image Acquisition Toolbox Examples

17-114

Even though a winvideo Logitech webcam was used for this example, this model can be easily
updated to connect your models to other supported image acquisition devices. This provides you the
flexibility to use the same Simulink model with different image acquisition hardware.

Available Example Versions

Windows® only: demoimaqsl_rgbhistogram_win.slx

Platform independent: demoimaqsl_rgbhistogram_all.slx

Windows-only example model contains the To Video Display block (supported only on Windows) from
Computer Vision Toolbox and supports code generation. The platform independent version consists of
Video Viewer block and does not support code generation.

 Live Image Acquisition and Histogram Display

17-115

Edge Detection on Live Video Stream

This example shows how to use the From Video Device block to detect the edges of objects in a live
video stream.

Image Acquisition Toolbox™ provides a Simulink® block to acquire live image data from image
acquisition devices into Simulink models.

This example uses the From Video Device block to acquire live image data from a Hamamatsu C8484
camera into Simulink. The Prewitt method is applied to find the edges of objects in the input video
stream.

This example requires Simulink, and Computer Vision Toolbox™ to open and run the model.

Watch edge detection on live video. (9 seconds)

Example Model

The following figure shows the example model using the From Video Device block.

open_system('demoimaqsl_edgedetection_win');

close_system('demoimaqsl_edgedetection_win');

Live Video Input

The input video is acquired live from a Hamamatsu image acquisition device (C8484). In this
example, the block acquires intensity data from the camera and outputs it into the Simulink model at
every simulation time step. The data type output from the block is single.

17 Image Acquisition Toolbox Examples

17-116

https://www.mathworks.com/videos/edge-detection-on-live-video-stream-101453.html

Edge Detection Analysis

This example uses Computer Vision Toolbox to find the edges of objects in the video input. When you
run the model, you can double-click the Edge Detection block and adjust the threshold parameter
while the simulation is running. The higher you make the threshold, the smaller the amount of edges
the example finds in the video stream.

Even though a Hamamatsu camera was used for this example, this model can be easily updated to
connect your models to other supported image acquisition devices. This provides you the flexibility to
use the same Simulink model with different image acquisition hardware.

Available Example Versions

Windows® only: demoimaqsl_edgedetection_win.slx

Platform independent: demoimaqsl_edgedetection_all.slx

 Edge Detection on Live Video Stream

17-117

Windows-only example model contains the To Video Display block (supported only on Windows) from
Computer Vision Toolbox and supports code generation. The platform independent version consists of
Video Viewer block and does not support code generation.

17 Image Acquisition Toolbox Examples

17-118

Acquire Images Using Parallel Workers

This example shows how to use the Parallel Computing Toolbox™ together with the Image Acquisiton
Toolbox™ to acquire and save images in a separate MATLAB® worker.

Doing so allows you to perform other operations in the main MATLAB worker with minimal impact on
the image acquisition. As a result, your image acquisition is more consistent and you can run more
CPU-intensive operations in parallel on multicore CPUs.

Set Up Image Acquistion

This example uses the parfeval function from the Parallel Computing Toolbox to asynchronously
execute a specified function. You can run the specified function in the background of your main
MATLAB worker without waiting for it to complete. For more information about this function, see
parfeval (Parallel Computing Toolbox).

Create a function called captureVideo to execute on the parallel MATLAB worker. This function
creates a new videoinput object and sets the FramesAcquiredFcn property. It then configures the
frames to acquire and starts the acquisition. See the captureVideo function at the end of this
example. You can modify captureVideo to fit your image acquisition needs and setup.

The captureVideo function sets the FramesAcquiredFcn property to a handle to the saveImages
callback function. The saveImages function saves acquired images to a folder in your current
working directory. See the saveImages function at the end of this example.

Before you start the image acquisition, create a folder called data, where the parallel worker saves
your acquired images.

mkdir("data\")

Start Image Acquisition on Parallel Worker

Create a parallel pool with one worker on your local machine using parpool.

parpool('local',1);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 1).

Run the captureVideo function in your parallel worker using parfeval. Since captureVideo
does not have any output, specify the number of output arguments as 0.

f = parfeval(@captureVideo,0)

f =
 FevalFuture with properties:

 ID: 4
 Function: @captureVideo
 CreateDateTime: 13-Jan-2021 11:58:35
 StartDateTime: 13-Jan-2021 11:58:35
 Running Duration: 0 days 0h 0m 0s
 State: running
 Error: none

 Acquire Images Using Parallel Workers

17-119

The output shows that the status of the parfeval future is running.

If you want to block MATLAB until parfeval completes, you can use the wait function on the future
f. Using the wait function is useful when subsequent code depends on the completion of parfeval.

wait(f);

Display the parfeval future to confirm that its status is finished.

disp(f);

 FevalFuture with properties:

 ID: 4
 Function: @captureVideo
 CreateDateTime: 13-Jan-2021 11:58:35
 StartDateTime: 13-Jan-2021 11:58:35
 Running Duration: 0 days 0h 0m 15s
 State: finished (unread)
 Error: none

Your images are acquired and saved to the data folder in your current working directory.

Shut Down Parallel Pool

When you finish working with the parallel pool, clear the future and shut down the parallel pool.

clear f
delete(gcp("nocreate"))

Helper Functions

Function to Capture Video

The parallel worker executes the captureVideo function. This function creates a videoinput
object and sets the appropriate properties. You can modify it to fit your image acquisition needs.

function captureVideo()
 % Create videoinput object.
 v = videoinput('winvideo');

 % Specify a custom callback to save images.
 v.FramesAcquiredFcn = @saveImages;

 % Specify the number of frames to acquire before calling the callback.
 v.FramesAcquiredFcnCount = 60;

 % Specify the total number of frames to acquire.
 v.FramesPerTrigger = 120;

 % Start recording.
 start(v);

 % Wait for the acquision to finish.
 wait(v);
end

17 Image Acquisition Toolbox Examples

17-120

Callback Function to Save Images

The captureVideo function sets the saveImages callback as the FramesAcquiredFcn for the
videoinput object. This function reads the number of frames specified by the
FramesAcquiredFcnCount from the buffer and saves them to the data folder. You can modify this
callback to fit your needs.

function saveImages(src,obj)
 % Calculate the total frame number for each frame,
 % in order to save the files in order.
 currframes = src.FramesAcquired - src.FramesAcquiredFcnCount;

 % Read images from the videoinput buffer.
 imgs = getdata(src,src.FramesAvailable);

 % Save each image to a file in order.
 for i = 1:src.FramesAcquiredFcnCount
 imname = "data\img_" + (currframes + i) + ".TIFF";
 imwrite(imgs(:,:,:,i),imname);
 end
end

 Acquire Images Using Parallel Workers

17-121

Functions

18

Image Acquisition Explorer
Acquire images and video from hardware

Description
The Image Acquisition Explorer app provides a user interface to acquire images and video from
cameras and frame grabbers.

Using this app, you can:

• Preview live video data from your image acquisition hardware.
• Configure device-specific properties and acquisition settings such as video format, region of

interest, and hardware trigger.
• Save image snapshot and video recording data to a file or to the MATLAB workspace.
• Visualize and analyze saved data by launching Image Processing Toolbox apps.
• Generate a MATLAB live script for app interactions that uses the videoinput interface.

18 Functions

18-2

Open the Image Acquisition Explorer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter imageAcquisitionExplorer.

Examples
• “Get Started with Image Acquisition Explorer” on page 3-5
• “Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
• “Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
• “Log Data in Image Acquisition Explorer” on page 3-18
• “Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
• “Export Code from Image Acquisition Explorer” on page 3-27

Parameters
Configure Format

Select Camera File — Specify device configuration file
button

Click this button to select a device configuration file, also known as a camera file or
digitizer configuration format file, from your computer. Some image acquisition devices use these
files to store device configuration information. The app uses this file to determine the video format
and other configuration information.

When you open the app, the rest of the app toolstrip is disabled until you select a camera file. You can
change the camera file at any time.

Note The camera file is provided by the device manufacturer. See your device documentation for
more information.

Dependencies

This button is available only for devices that support camera files.

Camera File — Name of camera file
selected camera file

This property is read-only.

This is the name of the camera file that you selected using the Select Camera File button. You can
view the full file path by hovering your cursor over the file name.

 Image Acquisition Explorer

18-3

Dependencies

This parameter is available only for devices that support camera files.

Video Format — Video format
supported video formats

Select the video format used by the device to capture images and video. The list of values for this
parameter depends on the video formats supported by your device. The format selected when you
open the app is the device's default format.

Dependencies

This parameter is available only for devices that support video format.

Color Space — Color space used in MATLAB
grayscale | rgb | YCbCr | bayer

Select the color space that the app uses when it returns image data. The list of values for this
parameter depends on the Video Format selected.

If you select grayscale, you can set the Colormap and Color Limits parameters.

• Color Limit — Toggle this switch to Manual to set the minimum and maximum values on the
specified colormap. The default values are 0 and 255. All values in the preview that are less than
or equal to the minimum value map to the lowest value of the colormap. All values in the preview
that are greater than or equal to the maximum value map to the highest value of the colormap.

• Colormap — Colormap applied to the preview. For a full list of options, see map.

If you select bayer, you can set the Sensor Alignment parameter.

Sensor Alignment — Sensor alignment for Bayer demosaicing
grbg (default) | gbrg | rggb | bggr

Select the 2-by-2 pixel Bayer color filter array pattern of the Bayer color filter array. The specified
pattern is used to convert the Bayer pattern image to RGB. There are four possible sensor
alignments. For more information about which one to select, refer to your device documentation.

Value Description
gbrg The 2-by-2 sensor alignment is

green blue
red green

grbg The 2-by-2 sensor alignment is

green red
blue green

bggr The 2-by-2 sensor alignment is

blue green
green red

18 Functions

18-4

Value Description
rggb The 2-by-2 sensor alignment is

red green
green blue

Dependencies

This parameter is enabled only if your device supports Bayer sensor alignment and Color Space is
set to bayer.

Logging

Image — Specify image file or workspace variable name to log snapshot data
valid file name | valid variable name

Edit the name of the image file or name of the workspace variable to save snapshot image data as.

• If you select the File option, this parameter defines the image file name. You can click the
configuration icon next to this parameter for additional settings, including the file location to save
to and file format to save as.

• If you select the Workspace Variable option, this parameter defines the workspace variable
name.

When you click the Capture button, the snapshot image data is saved as the specified file or
workspace variable.

For more information, see “Log Data in Image Acquisition Explorer” on page 3-18.

Video — Specify video file or workspace variable name to log recorded data
valid file name | valid variable name

Edit the name of the video file or name of the workspace variable to save recorded data as.

• If you select the File option, this parameter defines the video file name. You can click the
configuration icon next to this parameter for additional settings, including the file location to save
to and file format to save as.

• If you select the Workspace Variable option, this parameter defines the workspace variable
name.

When you click the Record button, the recorded data is saved as the specified file or workspace
variable.

For more information, see “Log Data in Image Acquisition Explorer” on page 3-18.

Snapshot

Capture — Take image snapshot
button

Click this button to immediately capture a single image frame and save it as an image file or
as a workspace variable, depending on your selection of File or Workspace Variable in the Logging
section. For more information, see “Capture Image Snapshot” on page 3-23.

 Image Acquisition Explorer

18-5

Record

Finite — Select finite recording option
button

Set the recording mode as finite and specify the number of frames or seconds to save when you click
the Record button. When you select this option, you have two options for finite recording.

• Specify the number of frame(s) to record. For more information, see “Record Finite Number of
Frames” on page 3-24.

• Specify the number of second(s) to record. For more information, see “Record for Finite
Duration” on page 3-24.

Continuous — Select continuous recording option
button

Set the recording mode as continuous to start saving frames when you click the Record button. For
more information, see “Record Continuously” on page 3-25.

Hardware Trigger — Select hardware triggered recording option
button

Set the recording mode as hardware trigger. Hardware triggered acquisition is supported for GigE
Vision and GenICam GenTL devices. When you select this option, the app opens a Hardware Trigger
tab. You can define the following hardware trigger parameters.

• Number of Triggers
• Frames per Trigger
• Trigger Source
• Trigger Condition

If you are using this recording mode, make sure you also enable hardware triggered acquisition in
the Device Properties by setting Trigger Mode to On and specifying other Trigger Selector
parameters for your setup.

For more information, see “Set Up Hardware Triggering” on page 3-16 and “Record with Hardware
Trigger” on page 3-25.
Dependencies

This parameter is enabled only if your device supports hardware triggered acquisition.

Record — Record video
button

Click this button to acquire multiple frames and save them as a video file or as a workspace
variable, depending on your selection of File or Workspace Variable in the Logging section. This
button becomes a Stop button after you click it. End recording at any time and save the recorded
data by clicking Stop.

While you are recording, the app toolstrip and all property tabs are disabled. You can not change the
value of any parameters during recording.

18 Functions

18-6

For more information, see “Record Video” on page 3-24.

Visualize and Analyze

Image Viewer — View captured snapshot in Image Viewer app
button

Click this button to launch the Image Viewer app and send it the most recent image data
captured in this app session.

You must have Image Processing Toolbox installed to use the Image Viewer app.

Video Viewer — View recorded video in Video Viewer app
button

Click this button to launch the Video Viewer app and send it the most recent video data
recorded in this app session.

You must have Image Processing Toolbox installed to use the Video Viewer app.

Color Thresholder — View captured snapshot in Color Thresholder app
button

Click this button to launch the Color Thresholder app and send it the most recent
image data captured in this app session.

You must have Image Processing Toolbox installed to use the Color Thresholder app.

Export

Export — Export MATLAB code
Generate Snapshot Script | Generate Record Script

Click this button to select an option to generate a MATLAB live script for capturing a snapshot
or recording a video and open it in the Live Editor. The live script contains code for the current device
configuration, as specified in the Configure Format section, and code for saving data as a file or
workspace variable, as specified in the Logging section.

For more information, see “Export Code from Image Acquisition Explorer” on page 3-27.

Version History
Introduced in R2022a

 Image Acquisition Explorer

18-7

See Also
Functions
videoinput

Topics
“Get Started with Image Acquisition Explorer” on page 3-5
“Select Your Device and Configure Format in Image Acquisition Explorer” on page 3-10
“Set Acquisition Parameters in Image Acquisition Explorer” on page 3-13
“Log Data in Image Acquisition Explorer” on page 3-18
“Preview and Acquire Data in Image Acquisition Explorer” on page 3-22
“Export Code from Image Acquisition Explorer” on page 3-27

18 Functions

18-8

Image Acquisition Tool
(Removed) Acquire images and video from hardware

Note The Image Acquisition Tool app has been removed. Use the Image Acquisition Explorer
app instead.

Description
The Image Acquisition Tool enables you to explore, configure, and acquire data from your installed
and supported image acquisition devices. You connect directly to your hardware and can preview and
acquire image data.

Using this app, you can log the acquired image data to MATLAB in several formats, and also generate
a VideoWriter file. The Image Acquisition Tool provides a desktop environment that integrates a
preview and acquisition area with acquisition parameters so that you can change settings and see the
changes dynamically applied to your image data.

Open the Image Acquisition Tool App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter imaqtool.

Programmatic Use
imaqtool opens the Image Acquisition Tool, which enables you to explore, configure, and acquire
data from image acquisition devices.

imaqtool(file) starts the tool and then immediately reads an Image Acquisition Tool configuration
file, where file is the name of an IAT-file that you previously saved.

 Image Acquisition Tool

18-9

Version History
Introduced in R2007b

Removed
Errors starting in R2022b

The Image Acquisition Tool app (imaqtool) has been removed. Use Image Acquisition Explorer
(imageAcquisitionExplorer) instead. The new Image Acquisition Explorer app has expanded
workflows.

To be removed
Warns starting in R2022a

The Image Acquisition Tool app (imaqtool) will be removed in a future release.

See Also
Image Acquisition Explorer

18 Functions

18-10

clear
Clear image acquisition object from MATLAB workspace

Syntax
clear obj

Description
clear obj removes the image acquisition object obj from the MATLAB workspace. obj can be
either a video input object or a video source object.

It is important to note that if you clear a video input object that is running (the Running property is
set to 'on'), the object continues executing.

You can restore cleared objects to the MATLAB workspace with the imaqfind function.

To remove an image acquisition object from memory, use the delete function.

Version History
Introduced before R2006a

See Also
delete | imaqfind | isvalid

 clear

18-11

closepreview
Close Video Preview window

Syntax
closepreview(obj)
closepreview

Description
closepreview(obj) stops the image acquisition object obj from previewing and, if the default
Video Preview window was used, closes the window.

closepreview stops all image acquisition objects from previewing and, for all image acquisition
objects that used the default Video Preview window, closes the windows.

Note that if the preview window was created with a user-specified image object handle as the target,
closepreview does not close the figure window.

Version History
Introduced before R2006a

See Also
preview | stoppreview

18 Functions

18-12

commands
List of commands available for GigE Vision camera

Syntax
commands(g)

Description
commands(g) lists the available commands for the GigE Vision camera g, where g is the object
created using the gigecam function. The output depends on the commands that are supported by
your specific hardware.

Examples

List Commands Available for GigE Vision

The commands function tells you what commands are available for your camera to use.

Use the gigecamlist function to ensure that MATLAB is discovering your cameras.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'

Use the gigecam function to create the object and connect it to the camera.

g = gigecam

 commands

18-13

Get the list of supported commands from the camera. You can click Show Commands in the property
list that is displayed when you create the object, or you can use the function:

commands(g)

The list shows the commands that the camera supports. You can then use the executeCommand
function to execute any of these commands.

Version History
Introduced in R2014b

See Also
gigecamlist | gigecam | snapshot | executeCommand

18 Functions

18-14

delete
Remove image acquisition object from memory

Syntax
delete(obj)

Description
delete(obj) removes obj, an image acquisition object or array of image acquisition objects, from
memory. Use delete to free memory at the end of an image acquisition session.

If obj is an array of image acquisition objects and one of the objects cannot be deleted, the delete
function deletes the objects that can be deleted and returns a warning.

When obj is deleted, it becomes invalid and cannot be reused. Use the clear command to remove
invalid image acquisition objects from the MATLAB workspace.

If multiple references to an image acquisition object exist in the workspace, deleting the image
acquisition object invalidates the remaining references. Use the clear command to delete the
remaining references to the object from the workspace.

If the image acquisition object obj is running or being previewed, the delete function stops the
object and closes the preview window before deleting it.

Examples
Create a video object, preview the object, then delete the object:

vid = videoinput('winvideo', 1);
preview(vid);
delete(vid);

Version History
Introduced before R2006a

See Also
imaqfind | isvalid | videoinput

 delete

18-15

disp
Display method for image acquisition objects

Syntax
obj
disp(obj)

Description
obj displays summary information for image acquisition object obj.

disp(obj) displays summary information for image acquisition object obj.

If obj is an array of image acquisition objects, disp outputs a table of summary information about
the image acquisition objects in the array.

In addition to the syntax shown above, you can display summary information for obj by excluding the
semicolon when:

• Creating an image acquisition object, using the videoinput function
• Configuring property values using the dot notation

Examples
This example illustrates the summary display of a video input object.

vid = videoinput('winvideo')

This example shows the summary information displayed for an array of video input objects.

vid2 = videoinput('winvideo');

[vid vid2]

18 Functions

18-16

 Video Input Object Array:

 Index: Type: Name:
 1 videoinput RGB555_128x96-winvideo-1
 2 videoinput RGB555_128x96-winvideo-1

Version History
Introduced before R2006a

See Also
videoinput

 disp

18-17

executeCommand
Execute command on GigE Vision camera

Syntax
executeCommand(g, 'commandname')

Description
executeCommand(g, 'commandname') executes the specified command for the GigE Vision
camera g, where g is the object created using the gigecam function, and 'commandname' is the
name of the command to execute.

Use the commands function to get the list of available commands for your camera.

Examples

Execute a Command to Set the Calibration on GigE Vision Camera

Use executeCommand to execute any of the commands found by the commands function, which tells
you what commands are available for your camera to use.

Use the gigecamlist function to ensure that MATLAB is discovering your camera.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'

Use the gigecam function to create the object and connect it to the camera.

g = gigecam

18 Functions

18-18

Get the list of supported commands from the camera. You can click Show Commands in the property
list that is displayed when you create the object, or you can use the function:

commands(g)

Execute a command, such as setting a calibration correction.

 executeCommand

18-19

executeCommand(g, 'Correction_CalibrateGrey');

Input Arguments
commandname — Name of GigE Vision camera command to execute
character vector

Name of command you want to execute on your GigE Vision camera, specified as a character vector.
Use the commands function to get the list of available commands for your camera. Then use
executeCommand to execute any of the available commands.
Example: executeCommand(g, 'AutoFocus')
Data Types: char | string

Version History
Introduced in R2014b

See Also
gigecamlist | gigecam | snapshot | commands

18 Functions

18-20

flushdata
Remove data from memory buffer used to store acquired image frames

Syntax
flushdata(obj)
flushdata(obj,mode)

Description
flushdata(obj) removes all the data from the memory buffer used to store acquired image frames.
obj can be a single video input object or an array of video input objects.

flushdata(obj,mode) removes all the data from the memory buffer used to store acquired image
frames, where mode can have either of the following values:

Mode Description
'all' Removes all the data from the memory buffer and sets the FramesAvailable

property to 0 for the video input object obj. This is the default mode when
none is specified, flushdata(obj).

'triggers' Removes data from the memory buffer that was acquired during the oldest
trigger executed. TriggerRepeat must be greater than 0 and
FramesPerTrigger must not be set to inf.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Version History
Introduced before R2006a

See Also
getdata | imaqhelp | peekdata | propinfo | videoinput

 flushdata

18-21

get
Return image acquisition object properties

Syntax
get(obj)
V = get(obj)
V = get(obj,PropertyName)

Description
get(obj) displays all property names and their current values for image acquisition object obj.

V = get(obj) returns a structure, V, in which each field name is the name of a property of obj and
each field contains the value of that property.

V = get(obj,PropertyName) returns the value of the property specified by PropertyName for
image acquisition object obj. Use the get(obj) syntax to view a list of all the properties supported
by a particular image acquisition object.

If PropertyName is a 1-by-N or N-by-1 cell array of character vectors containing property names, V
is a 1-by-N cell array of values. If obj is a vector of image acquisition objects, V is an M-by-N cell
array of property values where M is equal to the length of obj and N is equal to the number of
properties specified.

Examples
Create video object, then get values of two frame-related properties, then display all properties of the
object:

vid = videoinput('matrox', 1);
get(vid, {'FramesPerTrigger','FramesAcquired'})
out = get(vid, 'LoggingMode')
get(vid);

Instead of using get to query individual property values, you should use dot notation. So for example,
instead of this:

get(vid, 'FramesPerTrigger')

You should use this syntax:

vid.FramesPerTrigger

Version History
Introduced before R2006a

18 Functions

18-22

See Also
set | videoinput

 get

18-23

getdata
Acquired image frames to MATLAB workspace

Syntax
data = getdata(obj)
data = getdata(obj,n)
data = getdata(obj,n,type)
data = getdata(obj,n,type,format)
[data,time] = getdata(...)
[data, time, metadata] = getdata(...)

Description
data = getdata(obj) returns data, which contains the number of frames specified in the
FramesPerTrigger property of the video input object obj. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object's ROIPosition property
W Image width, as specified in the object's ROIPosition property
B Number of color bands, as specified in the NumberOfBands property
F The number of frames returned

data is returned to the MATLAB workspace in its native data type using the color space specified by
the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the returned data. Use imaqmontage
to view multiple frames at once.

data = getdata(obj,n) returns n frames of data associated with the video input object obj.

data = getdata(obj,n,type) returns n frames of data associated with the video input object
obj, where type is one of the character vectors in the following table that specify the data type used
to store the returned data.

Type Character
Vector

Data Type

'uint8' Unsigned 8-bit integer
'uint16' Unsigned 16-bit integer
'uint32' Unsigned 32-bit integer
'single' Single precision
'double' Double precision
'native' Uses native data type. This is the default.

If type is not specified, 'native' is used as the default. If there is no MATLAB data type that
matches the object's native data type, getdata chooses a MATLAB data type that preserves

18 Functions

18-24

numerical accuracy. For example, the components of 12-bit RGB color data would each be returned as
uint8 data.

data = getdata(obj,n,type,format) returns n frames of data associated with the video input
object obj, where format is one of the character vectors in the following table that specify the
MATLAB format of data.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Format Character
Vector

Description

'numeric' Returns data as an H-by-W-by-B-by-F array. This is the default format if none
is specified.

'cell' Returns data as an F-by-1 cell array of H-by-W-by-B matrices

[data,time] = getdata(...) returns time, an F-by-1 matrix, where F is the number of frames
returned in data. Each element of time indicates the relative time, in seconds, of the corresponding
frame in data, relative to the first trigger.

time = 0 is defined as the point at which data logging begins. When data logging begins, the
object's Logging property is set to 'On'. time is measured continuously with respect to 0 until the
acquisition stops. When the acquisition stops, the object's Running property is set to 'Off'.

[data, time, metadata] = getdata(...) returns metadata, an F-by-1 array of structures,
where F is the number of frames returned in data. Each structure contains information about the
corresponding frame in data. The metadata structure contains these fields:

Metadata Field Description
'AbsTime' Absolute time the frame was acquired, expressed as a time vector
'FrameNumber' Number identifying the nth frame since the start command was

issued
'RelativeFrame' Number identifying the nth frame relative to the start of a trigger
'TriggerIndex' Number of the trigger in which this frame was acquired

In addition to the fields in the above table, some adaptors may choose to add other adaptor-specific
metadata as well.

getdata is a blocking function that returns execution control to the MATLAB workspace after the
requested number of frames becomes available within the time period specified by the object's
Timeout property. The object's FramesAvailable property is automatically reduced by the number
of frames returned by getdata. If the requested number of frames is greater than the frames to be
acquired, getdata returns an error.

It is possible to issue a Ctrl+C while getdata is blocking. This does not stop the acquisition but does
return control to MATLAB.

 getdata

18-25

Examples
Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

Display each image frame acquired.

imaqmontage(data);

Remove the video input object from memory.

delete(obj);

Version History
Introduced before R2006a

See Also
getsnapshot | imaqhelp | imaqmontage | peekdata | propinfo

18 Functions

18-26

getselectedsource
Return currently selected video source object

Syntax
src = getselectedsource(obj)

Description
src = getselectedsource(obj) searches all the video source objects associated with the video
input object obj and returns the video source object, src, that has the Selected property value set
to 'on'.

To select a source for acquisition, use the SelectedSourceName property of the video input object.

obj must be a 1-by-1 video input object.

Version History
Introduced before R2006a

See Also
imaqhelp | get | videoinput

 getselectedsource

18-27

getsnapshot
Immediately return single image frame

Syntax
frame = getsnapshot(obj)
[frame, metadata] = getsnapshot(obj)

Description
frame = getsnapshot(obj) immediately returns one single image frame, frame, from the video
input object obj. The frame of data returned is independent of the video input object
FramesPerTrigger property and has no effect on the value of the FramesAvailable or
FramesAcquired property.

The object obj must be a 1-by-1 video input object.

frame is returned as an H-by-W-by-B matrix where

H Image height, as specified in the ROIPosition property
W Image width, as specified in the ROIPosition property
B Number of bands associated with obj, as specified in the NumberOfBands property

frame is returned to the MATLAB workspace in its native data type using the color space specified by
the ReturnedColorSpace property.

You can use the MATLAB image or imagesc function to view the returned data.

[frame, metadata] = getsnapshot(obj) returns metadata, a 1-by-1 array of structures. This
structure contains information about the corresponding frame. The metadata structure contains the
field AbsTime, which is the absolute time the frame was acquired, expressed as a time vector. In
addition to that field, some adaptors may choose to add other adaptor-specific metadata as well.

Note If obj is running but not logging, and has been configured with a hardware trigger, a timeout
error will occur.

To interrupt the getsnapshot function and return control to the MATLAB command line, issue the
^C (Ctrl+C) command.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

18 Functions

18-28

Examples
Create a video input object.

obj = videoinput('matrox', 1);

Acquire and display a single frame of data.

frame = getsnapshot(obj);
image(frame);

Remove the video input object from memory.

delete(obj);

For an example of using getsnapshot, see the Image Acquisition Toolbox example Acquiring a
Single Image in a Loop in the Examples list at the top of the Image Acquisition Toolbox main
Documentation Center page, or open the file demoimaq_GetSnapshot.m in the MATLAB Editor.

Version History
Introduced before R2006a

See Also
getdata | imaqhelp | peekdata

 getsnapshot

18-29

gigecam
Create gigecam object to acquire images from GigE Vision cameras

Syntax
g = gigecam
g = gigecam('IPAddress')
g = gigecam(devicenumber)
g = gigecam('serialnumber')

Description
g = gigecam creates the gigecam object g and connects to the single GigE Vision camera on your
system. If you have multiple cameras and you use the gigecam function with no input argument, then
it creates the object and connects it to the first camera it finds listed in the output of the
gigecamlist function.

When the gigecam object is created, it connects to the camera and establishes exclusive access. You
can then preview the data and acquire images using the snapshot function.

g = gigecam('IPAddress') creates a gigecam object g where IPAddress is a character vector
value that identifies a particular camera by its IP address and connects it to the camera with that
address.

g = gigecam(devicenumber) creates a gigecam object g, where devicenumber is a numeric
scalar value that identifies a particular camera by its index number, and connects it to that camera.

g = gigecam('serialnumber') creates a gigecam object g where serialnumber is a character
vector value that identifies a particular camera by its serial number.

Examples

Create a gigecam Object Using No Arguments

Use the gigecam function with no input arguments to connect to the single GigE Vision camera on
your system. If you have multiple cameras and you use the gigecam function with no input argument,
it creates the object and connects it to the first camera it finds listed in the output of the
gigecamlist function.

Use the gigecamlist function to ensure that MATLAB is discovering your camera.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'

18 Functions

18-30

Create an object, g.

g = gigecam

It creates the object and connects it to the Photonofocus AG camera.

Create a gigecam Object Using IP Address or Serial Number

Use the gigecam function with the IP address or serial number of the camera as the input argument
to create the object and connect it to the camera with that address or number.

Use the gigecamlist function to ensure that MATLAB is discovering your cameras.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
 'mvBlueCOUGER-X120aG' 'MATRIX VISION GmbH' '169.254.242.122' 'GX000818'

Create an object, g, using the IP address of the camera. You can also create the object in this same
way using the serial number. You use the same syntax, but use a serial number instead of the IP
address, also as a character vector.

g = gigecam('169.254.242.122')

g =

Display Summary for gigecam:

 DeviceModelName: 'mvBlueCOUGER-X120aG'
 SerialNumber: 'GX000818'
 IPAddress: '169.254.242.122'
 PixelFormat: 'Mono8'

 gigecam

18-31

 AvailablePixelFormats: {'Mono8' 'Mono12' 'Mono14' 'Mono16' 'Mono12Packed'
 'BayerGR8' 'BayerGR10' 'BayerGR12' 'BayerGR16' 'BayerGR12Packed'
 'YUV422Packed' 'YUV422_YUYVPacked' 'YUV444Packed'}
 Height: 1082
 Width: 1312

Show Beginner, Expert, Guru properties.
Show Commands.

It creates the object and connects it to the Matrix Vision camera with that IP address.

Create a gigecam Object Using Device Number as an Index

Use the gigecam function with an index as the input argument to create the object corresponding to
that index and connect it to that camera. The index corresponds to the order of cameras in the table
returned by gigecamlist when you have multiple cameras connected.

Use the gigecamlist function to ensure that MATLAB is discovering your cameras.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
 'mvBlueCOUGER-X120aG' 'MATRIX VISION GmbH' '169.254.242.122' 'GX000818'

Create an object, g, using the index number.

g = gigecam(2)

g =

Display Summary for gigecam:

 DeviceModelName: 'mvBlueCOUGER-X120aG'
 SerialNumber: 'GX000818'
 IPAddress: '169.254.242.122'
 PixelFormat: 'Mono8'
 AvailablePixelFormats: {'Mono8' 'Mono12' 'Mono14' 'Mono16' 'Mono12Packed'
 'BayerGR8' 'BayerGR10' 'BayerGR12' 'BayerGR16' 'BayerGR12Packed'
 'YUV422Packed' 'YUV422_YUYVPacked' 'YUV444Packed'}
 Height: 1082
 Width: 1312

Show Beginner, Expert, Guru properties.
Show Commands.

18 Functions

18-32

It creates the object and connects it to the Matrix Vision camera with that index number, in this case,
the second one displayed by gigecamlist. If you only have one camera, you do not need to use the
index.

Input Arguments
IPAddress — IP address of your camera
character vector

IP address of your camera, specified as a character vector. This argument creates a gigecam object g
where IPAddress is a character vector value that identifies a particular camera by its IP address.
When you use the gigecam function with the IP address of the camera as the input argument, it
creates the object and connects it to the camera with that address. You can see the IP address for
your camera in the list returned by the gigecamlist function.
Example: g = gigecam('169.254.192.165')
Data Types: char | string

devicenumber — Device number of your camera
numeric scalar

Device number of your camera, specified as a numeric scalar. This number identifies a particular
camera by its index order. It creates the object corresponding to that index and connects it to that
camera. The index corresponds to the order of cameras in the table returned by gigecamlist when
you have multiple cameras connected.
Example: g = gigecam(2)
Data Types: double

serialnumber — Serial number of your camera
character vector

Serial number of your camera, specified as a character vector. This argument creates a gigecam
object g where serialnumber is a character vector value that identifies a particular camera by its
serial number. When you use the gigecam function with the serial number of the camera as the input
argument, it creates the object and connects it to the camera with that number. You can see the serial
number for your camera in the list returned by the gigecamlist function.
Example: g = gigecam('022600017445')
Data Types: char | string

Tips
• When the gigecam object is created, it connects to the camera and establishes exclusive access.

You can then preview the data and acquire images using the snapshot function.
• You cannot create more than one object connected to the same device, and trying to do that

generates an error.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

 gigecam

18-33

Version History
Introduced in R2014b

See Also
gigecamlist | snapshot | commands | executeCommand

18 Functions

18-34

gigecamlist
List of GigE Vision cameras connected to your system

Syntax
gigecamlist

Description
gigecamlist returns a list of available GigE Vision Compliant cameras connected to your system,
with model, manufacturer, IP address, and serial number. If the camera has a user-defined name, that
name is displayed. If you plug in different cameras during the same MATLAB session, then the
gigecamlist function returns an updated list of cameras.

Examples

Display List of GigE Vision Compliant Cameras

The output of gigecamlist shows any GigE Vision cameras connected to your system.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'
 'mvBlueCOUGER-X120aG' 'MATRIX VISION GmbH' '169.254.242.122' 'GX000818'

Version History
Introduced in R2014b

See Also
gigecam | snapshot | commands | executeCommand

 gigecamlist

18-35

imaqfind
Find image acquisition objects

Syntax
imaqfind
out = imaqfind
out = imaqfind(PropertyName, Value, PropertyName2, Value2,...)
out = imaqfind(S)
out = imaqfind(obj, PropertyName, Value, PropertyName2, Value2,...)

Description
imaqfind returns an array containing all the video input objects that exist in memory. If only a single
video input object exists in memory, imaqfind displays a detailed summary of that object.

out = imaqfind returns an array, out, of all the video input objects that exist in memory.

out = imaqfind(PropertyName, Value, PropertyName2, Value2,...) returns a cell array,
out, of image acquisition objects whose property names and property values match those passed as
arguments. You can specify the property name/property value pairs in a cell array. You can use a
mixture of character vectors, structures, and cell arrays. Use the get function to determine the list of
properties supported by an image acquisition object.

out = imaqfind(S) returns a cell array, out, of image acquisition objects whose property values
match those defined in the structure S. The field names of S are image acquisition object property
names and the field values are the requested property values.

out = imaqfind(obj, PropertyName, Value, PropertyName2, Value2,...) restricts the
search for matching parameter/value pairs to the image acquisition objects listed in obj. obj can be
an array of image acquisition objects.

Note When searching for properties with specific values, imaqfind performs case-sensitive
searches. For example, if the value of an object's Name property is 'MyObject', imaqfind does not
find a match if you specify 'myobject'. Note, however, that searches for properties that have an
enumerated list of possible values are not case sensitive. For example, imaqfind will find an object
with a Running property value of 'Off' or 'off'. Use the get function to determine the exact
spelling of a property value.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Examples
To illustrate various imaqfind syntaxes, first create two video input objects.

18 Functions

18-36

obj1 = videoinput('matrox',1,'M_RS170','Tag','FrameGrabber');
obj2 = videoinput('winvideo',1,'RGB24_320x240','Tag','Webcam');

Now use imaqfind to find these objects by type and tag.

out1 = imaqfind('Type', 'videoinput')
out2 = imaqfind('Tag', 'FrameGrabber')
out3 = imaqfind({'Type', 'Tag'}, {'videoinput', 'Webcam'})

Version History
Introduced before R2006a

See Also
get | videoinput

 imaqfind

18-37

imaqhelp
Image acquisition object function and property help

Syntax
imaqhelp
imaqhelp(Name)
imaqhelp(obj)
imaqhelp(obj,Name)
out = imaqhelp(...)

Description
imaqhelp provides a complete listing of image acquisition object functions.

imaqhelp(Name) provides online help for the function or property specified by the character vector
Name.

imaqhelp(obj) displays a listing of functions and properties for the image acquisition object obj
along with the online help for the object's constructor. obj must be a 1-by-1 image acquisition object.

imaqhelp(obj,Name) displays the help for the function or property specified by the character
vector Name for the image acquisition object obj.

If Name is a device-specific property name, obj must be provided.

out = imaqhelp(...) returns the help text in character vector out.

When property help is displayed, the names in the “See Also” section that contain all uppercase
letters are function names. The names that contain a mixture of upper- and lowercase letters are
property names.

When function help is displayed, the “See Also” section contains only function names.

Examples
Getting general function and property help.

imaqhelp('videoinput')
out = imaqhelp('videoinput');
imaqhelp getsnapshot
imaqhelp LoggingMode

Getting property help with device-specific information.

vid = videoinput('dt', 1);
src = getselectedsource(vid);
imaqhelp(vid, 'TriggerType')
imaqhelp(src, 'FrameRate')

18 Functions

18-38

Version History
Introduced before R2006a

See Also
propinfo

 imaqhelp

18-39

imaqhwinfo
Information about available image acquisition hardware

Syntax
out = imaqhwinfo
out = imaqhwinfo(adaptorname)
out = imaqhwinfo(adaptorname,field)
out = imaqhwinfo(adaptorname, deviceID)
out = imaqhwinfo(obj)
out = imaqhwinfo(obj,field)

Description
out = imaqhwinfo returns out, a structure that contains information about the image acquisition
adaptors available on the system. An adaptor is the interface between MATLAB and the image
acquisition devices connected to the system. The adaptor's main purpose is to pass information
between MATLAB and an image acquisition device via its driver.

out = imaqhwinfo(adaptorname) returns out, a structure that contains information about the
adaptor specified by the character vector adaptorname. The information returned includes adaptor
version and available hardware for the specified adaptor. To get a list of valid adaptor names, use the
imaqhwinfo syntax.

out = imaqhwinfo(adaptorname,field) returns the value of the field specified by the character
vector field for the adaptor specified by the character vector adaptorname. The argument can be a
single character vector or a cell array of character vectors. If field is a cell array, out is a 1-by-n
cell array where n is the length of field. To get a list of valid field names, use the
imaqhwinfo('adaptorname') syntax.

out = imaqhwinfo(adaptorname, deviceID) returns out, a structure containing information
about the device specified by the numeric device ID deviceID. The deviceID can be a scalar or a
vector. If deviceID is a vector, out is a 1-by-n structure array where n is the length of deviceID.

out = imaqhwinfo(obj) returns out, a structure that contains information about the specified
image acquisition object obj. The information returned includes the adaptor name, device name,
video resolution, native data type, and device driver name and version. If obj is an array of device
objects, then out is a 1-by-n cell array of structures where n is the length of obj.

out = imaqhwinfo(obj,field) returns the information in the field specified by field for the
device object obj. field can be a single field name or a cell array of field names. out is an m-by-n
cell array where m is the length of obj and n is the length of field. You can return a list of valid field
names with the imaqhwinfo(obj) syntax.

Note After you call imaqhwinfo once, hardware information is cached by the toolbox. To force the
toolbox to search for new hardware that might have been installed while MATLAB was running, use
imaqreset.

18 Functions

18-40

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Examples
This example returns information about all the adaptors available on the system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '7.4 (R2007a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '2.1 (R2007a)'

This example returns information about all the devices accessible through a particular adaptor.

info = imaqhwinfo('winvideo')
info =

 AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '2.1 (R2007a)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

This example returns information about a specific device accessible through a particular adaptor. You
identify the device by its device ID.

dev_info = imaqhwinfo('winvideo', 1)

dev_info =

 DefaultFormat: 'RGB555_128x96'
 DeviceFileSupported: 0
 DeviceName: 'IBM PC Camera'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('winvideo', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('winvideo', 1)'
 SupportedFormats: {1x34 cell}

This example gets information about the device associated with a particular video input object.

obj = videoinput('winvideo', 1);

obj_info = imaqhwinfo(obj)

obj_info =

 AdaptorName: 'winvideo'
 DeviceName: 'IBM PC Camera'
 MaxHeight: 96
 MaxWidth: 128
 NativeDataType: 'uint8'

 imaqhwinfo

18-41

 TotalSources: 1
 VendorDriverDescription: 'Windows WDM Compatible Driver'
 VendorDriverVersion: 'DirectX 9.0'

This example returns the value of a particular field in the device information associated with a
particular video input object.

field_info = imaqhwinfo(vid,'adaptorname')
field_info =

winvideo

Version History
Introduced before R2006a

See Also
imaqhelp | imaqreset

18 Functions

18-42

imaqmontage
Sequence of image frames as montage

Syntax
imaqmontage(frames)
imaqmontage(obj)
imaqmontage(...,CLIM)
imaqmontage(..., 'CLim', CLIM, 'Parent', PARENT)
h = imaqmontage(...)

Description
imaqmontage(frames) displays a montage of image frames in a MATLAB figure window using the
imagesc function.

frames can be any data set returned by getdata, peekdata, or getsnapshot.

imaqmontage(obj) calls the getsnapshot function on video input object obj and displays a single
image frame in a MATLAB figure window using the imagesc function. obj must be a 1-by-1 video
input object.

imaqmontage(...,CLIM) displays a montage of image frames, where CLIM is a two-element vector,
[CLOW CHIGH], specifying the image scaling. Use CLIM to specify a scaling value when overscaling
the image data is a risk, for example, when you are working with devices that provide data in a 12-bit
format.

imaqmontage(..., 'CLim', CLIM, 'Parent', PARENT) where CLIM is as noted previously,
and PARENT is a valid AXES object that allows you to specify where the montage is displayed. One or
both property/value pairs can be specified. See the example below.

h = imaqmontage(...) returns a handle to an image object.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Examples
Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

Create an axes object.

 imaqmontage

18-43

a = axes;

Display each image frame acquired on axes a.

imaqmontage(data, 'Parent', a);

Remove the video input object from memory.

delete(obj);

Version History
Introduced before R2006a

See Also
getdata | getsnapshot | imaqhelp | peekdata

18 Functions

18-44

imaqregister
Register third-party custom adaptor

Syntax
adaptors = imaqregister
adaptors = imaqregister(adaptorpath)
adaptors = imaqregister(adaptorpath,action)

Description
adaptors = imaqregister returns a list of registered third-party adaptors with their full paths. If
there are no registered adaptors, imaqregister returns an empty cell array.

Note The imaqhwinfo and videoinput functions use the adaptor base name, not the full path. For
example, if the adaptor full path is "c:\adaptor.dll" (Windows), "/local/adaptors/
adaptor.so" (Linux), or "/local/adaptors/adaptor.dylib" (macOS), the adaptor base name
is "adaptor".

adaptors = imaqregister(adaptorpath) registers the specified third-party adaptor library and
returns a list of all registered adaptors.

Registering an adaptor informs Image Acquisition Toolbox of the location of a third-party adaptor
library. If you query the system for available image acquisition hardware by using imaqhwinfo, the
toolbox makes available any previously registered adaptor libraries. The imaqregister function
saves the name of the registered adaptor in the MATLAB preferences directory so that the location
persists across MATLAB sessions. Because imaqhwinfo caches the list of available adaptors, you
might need to call imaqreset after calling imaqregister to make the newly registered adaptor
available.

Note The adaptor shared library (a DLL on Windows) is not the same as the driver shared library
supplied by a hardware vendor (also a DLL on Windows). The adaptor shared library is specific to
Image Acquisition Toolbox and is specified as such by the hardware vendor.

adaptors = imaqregister(adaptorpath,action) adds or removes the third-party adaptor
from the list of available adaptors, as specified by action.

Examples

Register a Third-Party Adaptor

Register a third-party adaptor in Image Acquisition Toolbox on a Windows system and preview its
data. This example uses the demo adaptor included with Image Acquisition Toolbox, but you can
follow these steps to register any custom third-party adaptor. To view the demo adaptor source files,
navigate to the directory on your system. The exact file path might differ on your computer.

 imaqregister

18-45

cd('C:\Program Files\MATLAB\R2019b\toolbox\imaq\imaqadaptors\kit\demo\')

Use imaqregister to inform Image Acquisition Toolbox of your third-party adaptor. For this
example, consider a prebuilt version of the demo adaptor for Windows in the \toolbox\imaq
\imaqadaptors\kit\demo\win64 folder.

imaqregister('C:\Program Files\MATLAB\R2019b\toolbox\imaq\imaqadaptors\kit\demo\win64\mwdemoimaq.dll')

ans = 1×1 cell array
 {'C:\Program Files\MATLAB\R2019b\toolbox\imaq\imaqadaptors\kit\demo\win64\mwdemoimaq.dll'}

The toolbox caches adaptor information, so you must reload the adaptor libraries registered with the
toolbox for your third-party adaptor to appear.

imaqreset

View a list of installed adaptors in the InstalledAdaptors field. The newly registered third-party
adaptor appears as mwdemoimaq.

imaqhwinfo

ans = struct with fields:
 InstalledAdaptors: {'demo' 'gentl' 'gige' 'kinect' 'matrox' 'mwdemoimaq' 'spinnaker' 'winvideo'}
 MATLABVersion: '9.7 (R2019b)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '6.1 (R2019b)'

Create a video input object with this adaptor.

vid = videoinput('mwdemoimaq')

Summary of Video Input Object Using 'Color Device'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 10 frames per trigger using the selected source.
 'RGB_NTSC' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

Get a preview of the data returned by the adaptor.

preview(vid)

18 Functions

18-46

After you finish working with the preview, close the window.

closepreview(vid)

Input Arguments
adaptorpath — Adaptor path
character vector | string array

Adaptor path, specified as a character vector or string array. You must specify the full absolute path
of the adaptor library file.
Example: imaqregister('c:\temp\thirdpartyadaptor.dll') registers the adaptor
thirdpartyadaptor.
Data Types: char | string

action — Adaptor registration
'register' (default) | 'unregister'

 imaqregister

18-47

Adaptor registration, specified as 'register' or 'unregister'. Using 'register' adds the
third-party adaptor to the list of available adaptors. Using 'unregister' removes the third-party
adaptor from the list.
Example: imaqregister('c:\temp\thirdpartyadaptor.dll','unregister') removes the
adaptor thirdpartyadaptor.
Data Types: char | string

Tips
• Follow these suggestions when you deploy a custom adaptor to a standalone application using

MATLAB Compiler.

• Call imaqregister in the MATLAB code that you are deploying. This ensures that the
deployed application registers the custom adaptor library for the user running the application.
For more information, see “Creating Custom Adaptors”.

• Package the custom adaptor library with the standalone application. To do this, add the
adaptor DLL file in the Files installed for your end user section of the Application
Compiler app. For more information about creating a standalone application, see “Create
Standalone Application from MATLAB” (MATLAB Compiler).

• The first time you run a deployed application that calls imaqregister, you might need to
execute the application in Run as administrator mode.

Version History
Introduced before R2006a

See Also
imaqhwinfo

Topics
“Looking at the Demo Adaptor”

18 Functions

18-48

imaqreset
Disconnect and delete all image acquisition objects

Syntax
imaqreset

Description
imaqreset deletes any image acquisition objects that exist in memory and unloads all adaptors
loaded by the toolbox. As a result, the image acquisition hardware is reset.

imaqreset is the image acquisition command that returns MATLAB to the known state of having no
image acquisition objects and no loaded image acquisition adaptors.

You can use imaqreset to force the toolbox to search for new hardware that might have been
installed while MATLAB was running.

Note that imaqreset should not be called from any of the callbacks of a videoinput object, such as
the StartFcn or FramesAcquiredFcn.

Version History
Introduced before R2006a

See Also
delete | videoinput

 imaqreset

18-49

imaq.VideoDevice
Acquire one frame at a time from video device

Syntax
obj = imaq.VideoDevice
obj = imaq.VideoDevice(adaptorname)
obj = imaq.VideoDevice(adaptorname, deviceid)
obj = imaq.VideoDevice(adaptorname, deviceid, format)
obj = imaq.VideoDevice(adaptorname, deviceid, format, P1, V1, ...)
frame = step(obj)
[frame metadata] = step(obj)

Description
The VideoDevice System object allows single-frame image acquisition and code generation from
MATLAB. You use the imaq.VideoDevice function to create the System object. It supports the same
adaptors and hardware that the videoinput object supports; however, it has different functions and
properties associated with it. For example, the System object uses the step function to acquire single
frames.

obj = imaq.VideoDevice creates a VideoDevice System object, obj, that acquires images from a
specified image acquisition device. When you specify no parameters, by default, it selects the first
available device for the first adaptor returned by imaqhwinfo.

obj = imaq.VideoDevice(adaptorname) creates a VideoDevice System object, obj, using the
first device of the specified adaptorname. adaptorname is a character vector that specifies the
name of the adaptor used to communicate with the device. Use the imaqhwinfo function to
determine the adaptors available on your system.

obj = imaq.VideoDevice(adaptorname, deviceid) creates a VideoDevice System object,
obj, with the default format for specified adaptorname and deviceid. deviceid is a numeric
scalar value that identifies a particular device available through the specified adaptorname. Use the
imaqhwinfo(adaptorname) syntax to determine the devices available and corresponding values for
deviceid.

obj = imaq.VideoDevice(adaptorname, deviceid, format) creates a VideoDevice System
object, obj, where format is a character vector that specifies a particular video format supported by
the device or a device configuration file (also known as a camera file).

obj = imaq.VideoDevice(adaptorname, deviceid, format, P1, V1, ...) Creates a
VideoDevice System object, obj, with the specified property values. If an invalid property name or
property value is specified, the object is not created.

Specifying properties at the time of object creation is optional. They can also be specified after the
object is created. See the table below for a list of applicable properties.

frame = step(obj) acquires a single frame from the VideoDevice System object, obj.

[frame metadata] = step(obj) acquires a single image frame from the VideoDevice System
object, obj, plus metadata from the Kinect for Windows Depth sensor. You can return Kinect for

18 Functions

18-50

Windows skeleton data using the VideoDevice System object on the Kinect Depth sensor. For
information on how to do this, see “Kinect for Windows Metadata” on page 14-5.

Properties
You can specify properties at the time of object creation, or they can be specified and changed after
the object is created. Properties that can be used with the VideoDevice System object include:

Property Description
Device Device from which to acquire images.

Specify the image acquisition device to use to acquire a frame.
It consists of the device name, adaptor, and device ID. The
default device is the first device returned by imaqhwinfo.

VideoFormat Video format to be used by the image acquisition device.

Specify the video format to use while acquiring the frame. The
default value of VideoFormat is the default format returned by
imaqhwinfo for the selected device. To specify a Video Format
using a device file, set the VideoFormat property to 'From
device file' This option exists only if your device supports
device configuration files.

DeviceFile Name of file specifying video format. This property is only
visible when VideoFormat is set to 'From device file'.

DeviceProperties Object containing properties specific to the image acquisition
device.

ROI Region-of-interest for acquisition. This is set to the default ROI
value for the specified device, which is the maximum resolution
possible for the specified format. You can change the value to
change the size of the captured image. The format is 1-based,
that is, it is specified in pixels in a 1-by-4 element vector [x y
width height].

Note that this differs from the videoinput object and the
From Video Device block, which are 0-based.

HardwareTriggering Turn hardware triggering on/off. Set this property to 'on' to
enable hardware triggering to acquire images. The property is
visible only when the device supports hardware triggering.

TriggerConfiguration Specifies the trigger source and trigger condition before
acquisition. The triggering condition must be met via the
trigger source before a frame is acquired. This property is
visible only when HardwareTriggering is set to 'on'.

ReturnedColorSpace Specify the color space of the returned image. The default value
of the property depends on the device and the video format
selected. Possible values are {rgb|grayscale|YCbCr} when
the default returned color space for the device is not
grayscale. Possible values are {rgb|grayscale|YCbCr|
bayer} when the default returned color space for the device is
grayscale

 imaq.VideoDevice

18-51

Property Description
BayerSensorAlignment Character vector indicating the 2x2 sensor alignment. Specifies

Bayer patterns returned by hardware. Specify the sensor
alignment for Bayer demosaicing. The default value of this
property is 'grbg'. Possible values are {grbg|gbrg|rggb|
bggr}. Visible only if ReturnedColorSpace is set to 'bayer'.

ReturnedDataType The returned data type of the acquired frame. The default
ReturnedDataType is single.

ReadAllFrames Specify whether to read one image frame or all available
frames. Set to 'on' to capture all available image frames.
When set to the default of 'off', the system object takes a
snapshot of one frame, which is the equivalent of the
getsnapshot function in the toolbox. When the option is on, all
available image frames are captured, which is the equivalent of
the getdata function in the toolbox.

The setting of properties for the System object supports tab completion for enumerated properties
while coding in MATLAB. Using the tab completion is an easy way to see available property values.
After you type the property name, type a comma, then a space, then the first quote mark for the
value, then hit tab to see the possible values.

You can also use the set function with the object name and property name to get a list of available
values for that property. For example:

set(obj, 'ReturnedColorSpace')

gets the list of available color space settings for the VideoDevice System object, obj.

Note that once you have done a step, in order to change a property or set a new one, you need to
release the object using the release function, before setting the new property.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Functions
You can use these functions with the VideoDevice System object.

Function Purpose

18 Functions

18-52

Function Purpose
step Acquire a single frame from the image acquisition device.

frame = step(obj);

acquires a single frame from the VideoDevice System object, obj.

Note that the first time you call step, it acquires exclusive use of the
hardware and will start streaming data.

release Release VideoDevice resources and allow property value changes.

release(obj)

releases system resources (such as memory, file handles, or hardware
connections) of System object, obj, and allows all its properties and input
characteristics to be changed.

isLocked Returns a value that indicates if the VideoDevice resource is locked. (Use
release to unlock.)

L = isLocked(obj)

returns a logical value, L, which indicates whether properties are locked
for the System object, obj. The object performs an internal initialization
the first time the step function is executed. This initialization locks
properties and input specifications. Once this occurs, the isLocked
function returns a value of true.

preview Activate a live image preview window.

preview(obj)

creates a Video Preview window that displays live video data for the
VideoDevice System object, obj. The Video Preview window displays the
video data at 100% magnification. The size of the preview image is
determined by the value of the VideoDevice System object ROI property. If
not specified, it uses the default resolution for the device.

closepreview Close live image preview window.

closepreview(obj)

closes the live preview window for VideoDevice System object, obj.
imaqhwinfo Returns information about the object.

imaqhwinfo(obj)

displays information about the VideoDevice System object, obj.

Examples
Construct a VideoDevice System object associated with the Winvideo adaptor with device ID of 1.

vidobj = imaq.VideoDevice('winvideo', 1);

 imaq.VideoDevice

18-53

Set an object-level property, such as ReturnedColorSpace. The syntax for an object-level property
uses the object name, property name, and property value.

vidobj.ReturnedColorSpace = 'grayscale';

Set a device-specific property, such as Brightness. The syntax for a device-specific property uses
the DeviceProperties object, the property name, and property value.

vidobj.DeviceProperties.Brightness = 150;

Preview the image.

preview(vidobj)

Acquire a single frame.

frame = step(vidobj);

Display the acquired frame.

imshow(frame)

Release the hardware resource.

release(vidobj);

Clear the VideoDevice System object.

clear vidobj;

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Code Generation with VideoDevice System Object” on page 14-11.

18 Functions

18-54

islogging
Determine whether video input object is logging

Syntax
bool = islogging(obj)

Description
bool = islogging(obj) returns true if the video input object obj is logging data, otherwise
false. A video input object is logging if the value of its Logging property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where each element in bool
represents the corresponding element in obj. If an object in obj is logging data, islogging sets the
corresponding element in bool to true, otherwise false. If any of the video input objects in obj is
invalid, islogging returns an error.

Examples
Create a video input object.

vid = videoinput('winvideo');

To put the video input object in a logging state, start acquiring data. The example acquires 50 frames
to increase the amount of time that the object remains in logging state.

vid.FramesPerTrigger = 50
start(vid)

When the call to the start function returns, and the object is still acquiring data, use islogging to
check the state of the object.

bool = islogging(vid)
bool =

 1

Create a second video input object.

vid2 = videoinput('winvideo');

Start one of the video input objects again, such as vid, and use islogging to determine which of
the two objects is logging.

start(vid)
bool = islogging([vid vid2])

bool =

 1 0

 islogging

18-55

Version History
Introduced before R2006a

See Also
isrunning | isvalid | videoinput

18 Functions

18-56

isrunning
Determine whether video input object is running

Syntax
bool = isrunning(obj)

Description
bool = isrunning(obj) returns true if the video input object obj is running, otherwise false. A
video input object is running if the value of its Running property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where each element in bool
represents the corresponding element in obj. If an object in obj is running, the isrunning function
sets the corresponding element in bool to true, otherwise false. If the video input objects in obj is
invalid, isrunning returns an error.

Examples
Create a video input object, configure a manual trigger, and then start the object. This puts the object
in running state.

vid = videoinput('winvideo');
triggerconfig(vid,'manual')
start(vid)

Use isrunning to check the state of the object.

bool = isrunning(vid)
bool =
 1

Create a second video input object.

vid2 = videoinput('winvideo');

Use isrunning to determine which of the two objects is running.

bool = isrunning([vid vid2])
bool =
 1 0

Version History
Introduced before R2006a

See Also
islogging | isvalid | start | stop | videoinput | Running

 isrunning

18-57

isvalid
Determine whether image acquisition object is associated with image acquisition device

Syntax
bool = isvalid(obj)

Description
bool = isvalid(obj) returns true if the video input object obj is valid, otherwise false. An
object is an invalid image acquisition object if it is no longer associated with any hardware; that is,
the object was deleted using the delete function. If this is the case, obj should be cleared from the
workspace.

If obj is an array of video input objects, bool is a logical array where each element in bool
represents the corresponding element in obj. If an object in obj is valid, the isvalid function sets
the corresponding element in bool to true, otherwise false.

Version History
Introduced before R2006a

See Also
delete | imaqfind | videoinput

18 Functions

18-58

load
Load image acquisition object into MATLAB workspace

Syntax
load filename
load filename obj1 obj2 ...
S = load(filename,obj1,obj2,...)

Description
load filename returns all variables from the MAT-file filename to the MATLAB workspace.

load filename obj1 obj2 ... returns the specified image acquisition objects (obj1, obj2, etc.)
from the MAT-file specified by filename to the MATLAB workspace.

S = load(filename,obj1,obj2,...) returns the structure S with the specified image
acquisition objects (obj1, obj2, etc.) from the MAT-file filename. The field names in S match the
names of the image acquisition objects that were retrieved. If no objects are specified, then all
variables existing in the MAT-file are loaded.

Values for read-only properties are restored to their default values when loaded. For example, the
Running property is restored to 'off'. Use propinfo to determine if a property is read only.

Examples
obj = videoinput('winvideo', 1);
obj.SelectedSourceName = 'input1'
save fname obj
load fname
load('fname', 'obj');

Version History
Introduced before R2006a

See Also
imaqhelp | propinfo | save

 load

18-59

matroxcam
Create matroxcam object to acquire images from Matrox frame grabbers

Syntax
m = matroxcam(devicenumber, 'DCFfilename')

Description
m = matroxcam(devicenumber, 'DCFfilename') creates a matroxcam object m, where
devicenumber is a numeric scalar value that identifies a particular device by its index number and
DCFfilename is the name and fully qualified path of your Matrox DCF file, and connects it to that
frame grabber.

Examples

Create a matroxcam object

Use the matroxcam function with an index as the first input argument to create the object
corresponding to that index and connect it to that frame grabber. The index corresponds to the order
of boards in the cell array returned by matroxlist when you have multiple frame grabbers
connected. If you only have one frame grabber, you must use a 1 as the input argument. The second
argument must be the name and path of your DCF file, entered as a character vector.

Use the matroxlist function to ensure that MATLAB is discovering your frame grabbers.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

Create an object, m, using the index number. In this example, for the Solios XCL at digitizer 1, use a 2
as the index number, since it is the second device on the list. The second argument must be the name
of your DCF file, entered as a character vector. It must contain the fully qualified path to the file as
well. In this example, the DCF file is named mycam.dcf.

m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf')

m =

Display Summary for matroxcam:

 DeviceName: 'Solios XCL (digitizer 1)'
 DCFName: 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf'

18 Functions

18-60

 FrameResolution: '1300 x 1080'
 Timeout: 10

Input Arguments
devicenumber — Device number of your frame grabber
numeric scalar

Device number of your frame grabber, specified as a numeric scalar. This number identifies a
particular board by its index order. It creates the object corresponding to that index and connects it
to that frame grabber. The index corresponds to the order of frame grabbers in the table returned by
matroxlist when you have multiple boards connected.

If you only have one frame grabber, you must use a 1 as the input argument.
Example: m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf')
Data Types: double

DCFfilename — Name of your DCF file
character vector

Name of your DCF file, specified as a character vector. The Digitizer Configuration File (DCF) is used
to set acquisition properties and is configured using the Matrox Intellicam software. The DCF file
contains properties relating to exposure signal, grab mode, sync signal, camera, video signal, video
timing, and pixel clock. Once you have configured these properties in your DCF file, you create the
matroxcam object using that file as an input argument. It must contain the fully qualified path to the
file as well. In this example, the DCF file is named mycam.dcf.
Example: m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf')
Data Types: char | string

Version History
Introduced in R2014b

See Also
matroxlist | snapshot | preview | closepreview

Topics
“Connect to Matrox Frame Grabbers” on page 13-3
“Set Properties for Matrox Acquisition” on page 13-4
“Acquire Images from Matrox Frame Grabbers” on page 13-6
“Matrox Acquisition – matroxcam Object vs videoinput Object” on page 13-2

 matroxcam

18-61

matroxlist
List of Matrox frame grabbers connected to your system

Syntax
matroxlist

Description
matroxlist returns a list of available Matrox frame grabbers connected to your system, with model
name and digitizer number.

If no boards are detected, it returns an empty cell array.

Examples

Display List of Matrox Frame Grabbers

The output of matroxlist shows any Matrox frame grabbers connected to your system.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

Version History
Introduced in R2014b

See Also
matroxcam | snapshot | preview | closepreview

Topics
“Connect to Matrox Frame Grabbers” on page 13-3
“Set Properties for Matrox Acquisition” on page 13-4
“Acquire Images from Matrox Frame Grabbers” on page 13-6
“Matrox Acquisition – matroxcam Object vs videoinput Object” on page 13-2

18 Functions

18-62

obj2mfile
Convert video input objects to MATLAB code

Syntax
obj2mfile(obj,filename)
obj2mfile(obj,filename,syntax)
obj2mfile(obj,filename,syntax,mode)
obj2mfile(obj,filename,syntax,mode,reuse)

Description
obj2mfile(obj,filename) converts the video input object obj into an M-file with the name
specified by filename. The M-file contains the MATLAB code required to create the object and set
its properties. obj can be a single video input object or an array of objects.

The obj2mfile function simplifies the process of restoring an object with specific property settings
and can be used to create video input objects. obj2mfile also creates and configures the video
source object associated with the video input object.

If filename does not specify an extension or if it has an extension other than the MATLAB M-file
extension (.m), obj2mfile appends .m to the end of filename. To recreate obj, execute the M-file
by calling filename.

If the UserData property of the object is set, or if any of the callback properties is set to a cell array
or to a function handle, obj2mfile writes the data stored in those properties to a MAT-file.
obj2mfile gives the MAT-file the same name as the M-file, but uses the .mat filename extension.
obj2mfile creates the MAT-file in the same directory as the M-file.

Note obj2mfile does not restore the values of read-only properties. For example, if an object is
saved with a Logging property set to 'on', the object is recreated with a Logging property set to
'off' (the default value). Use the propinfo function to determine if a property is read only.

obj2mfile(obj,filename,syntax) converts obj to the equivalent MATLAB code where syntax
specifies how obj2mfile assigns values to properties of the object. syntax can be either of the
following character vectors. The default value is enclosed in braces ({}).

Character Vector Description
{'set'} obj2mfile uses the set function when specifying property values.
'dot' obj2mfile uses subscripted assignment (dot notation) when specifying

property values.

obj2mfile(obj,filename,syntax,mode) converts obj to the equivalent MATLAB code where
mode specifies which properties are configured. mode can be either of the following character
vectors. The default value is enclosed in braces ({}).

 obj2mfile

18-63

Character Vector Description
{'modified'} Configure writable properties that are not set to their default values.
'all' Configure all writable properties. obj2mfile does not restore the values of

read-only properties.

Note that obj2mfile(obj,filename,mode) is a valid syntax. If the syntax argument is not
specified, obj2mfile uses the default value.

obj2mfile(obj,filename,syntax,mode,reuse) converts obj to the equivalent MATLAB code
where reuse specifies whether obj2mfile searches for a reusable video input object or creates a
new one. reuse can be either of the following character vectors. The default value is enclosed in
braces ({}).

Character Vector Description
{'reuse'} Find and modify an existing object, if the existing object is associated with

the same adaptor and the values of the DeviceID, VideoFormat, and Tag
properties match the object being created. If no matching object can be
found, obj2mfile creates a new object.

'create' Create a new object regardless of whether there are reusable objects.

Note that obj2mfile(obj,filename,reuse) is a valid syntax. If the syntax and mode arguments
are not specified, obj2mfile uses their default values.

Examples
Create a video input object.

 vidobj = videoinput('winvideo', 1, 'RGB24_640x480');

Configure several properties of the video input object.

vidobj.FramesPerTrigger = 100;
vidobj.FrameGrabInterval = 2;
vidobj.Tag = 'CAM1';

Retrieve the selected video source object associated with the video input object.

src = getselectedsource(vidobj);

Configure the properties of the video source object.

src.Contrast = 85;
src.Saturation = 125;

Save the video input object.

obj2mfile(vidobj, 'myvidobj.m', 'set', 'modified');

Delete the object and clear it from the workspace.

delete(vidobj);
clear vidobj;

18 Functions

18-64

Execute the M-file to recreate the object. Note that obj2mfile creates and configures the associated
video source object as well.

vidObj = myvidobj;

Version History
Introduced before R2006a

See Also
getselectedsource | imaqhelp | propinfo | set | videoinput

 obj2mfile

18-65

peekdata
Most recently acquired image data

Syntax
data = peekdata(obj,frames)

Description
data = peekdata(obj,frames) returns data containing the latest number of frames specified by
frames. If frames is greater than the number of frames currently acquired, all available frames are
returned with a warning message stating that the requested number of frames was not available. obj
must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object's ROIPosition property
W Image width, as specified in the object's ROIPosition property
B Number of color bands, as specified in the NumberOfBands property
F Number of frames returned

data is returned to the MATLAB workspace in its native data type using the color space specified by
the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the returned data. Use imaqmontage
to view multiple frames at once.

peekdata is a nonblocking function that immediately returns image frames and execution control to
the MATLAB workspace. Not all requested data might be returned.

Note peekdata provides a look at the data; it does not remove data from the memory buffer. The
object's FramesAvailable property value is not affected by the number of frames returned by
peekdata.

The behavior of peekdata depends on the settings of the Running and the Logging properties.

Running Logging Object State Result
On Off The object has been started but is

waiting for a trigger. (TriggerType is
set to 'manual' or 'hardware'). No
data has been acquired so none is
available.

peekdata returns a single frame of
data and issues a warning, if you
requested more than one frame.

On On The object has been started, a trigger
has executed, and the object is actively
acquiring data.

peekdata returns the n most recently
acquired frames of data. The frames are
not removed from the buffer.

18 Functions

18-66

Running Logging Object State Result
Off Off The object has stopped running because

it acquired the requested number of
frames or you called the stop function.

peekdata can be called once to return
the n most recently acquired frames of
data, assuming FramesAvailable is
greater than 0. Otherwise, peekdata
returns an error. The frames returned
are not removed from the memory
buffer.

The number of frames available to peekdata is determined by recalling the last frame returned by a
previous peekdata call, and the number of frames that were acquired since then.

peekdata can be used only after the start command is issued and while the object is running.
peekdata can also be called once after obj has stopped running.

Note The peekdata function does not return any data while running if in disk logging mode.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Version History
Introduced before R2006a

See Also
getdata | getsnapshot | imaqhelp | imaqmontage | propinfo | start

 peekdata

18-67

preview
Preview of live video data

Syntax
preview(obj)
preview(obj,himage)
himage = preview(...)

Description
preview(obj) creates a Video Preview window that displays live video data for video input object
obj. The window also displays the timestamp and video resolution of each frame, the current frame
rate, and the current status of obj. The Video Preview window displays the video data at 100%
magnification. The size of the preview image is determined by the value of the video input object
ROIPosition property.

Components of a Video Preview Window

The Video Preview window remains active until it is either stopped using stoppreview or closed
using closepreview. If you delete the object, by calling delete(obj), the Video Preview window
stops previewing and closes automatically.

18 Functions

18-68

preview(obj,himage) displays live video data for video input object obj in the image object
specified by the handle himage. preview scales the image data to fill the entire area of the image
object but does not modify the values of any image object properties. Use this syntax to preview video
data in a custom GUI of your own design (see Examples).

himage = preview(...) returns himage, a handle to the image object containing the previewed
data. To obtain a handle to the figure window containing the image object, use the ancestor
function. For more information about using image objects, see image. See the Custom Update
Function section for more information about the image object returned.

Notes
The behavior of the Video Preview window depends on the video input object's current state and
trigger configuration.

Object State Preview Window Behavior
Running=off Displays a live view of the image being acquired from the device, for all

trigger types. The image is updated to reflect changes made to
configurations of object properties. (The FrameGrabInterval property is
ignored until a trigger occurs.)

Running=on If TriggerType is set to immediate or manual, the Video Preview window
continues to update the image displayed.

If TriggerType is set to hardware, the Video Preview window stops
updating the image displayed until a trigger occurs.

Logging=on Video Preview window might drop some data frames, but this will not affect
the frames logged to memory or disk.

Note The Image Acquisition Toolbox Preview window supports the display of up to 16-bit image data.
The Preview window was designed to only show 8-bit data, but many cameras return 10-, 12-, 14-, or
16-bit data. The Preview window display supports these higher bit-depth cameras. However, larger
bit data is scaled to 8-bit for the purpose of displaying previewed data. To capture the image data in
the Preview window in its full bit depth for grayscale images, set the PreviewFullBitDepth
property to 'on'.

Custom Update Function
preview creates application-defined data for the image object, himage, assigning it the name
'UpdatePreviewWindowFcn' and setting its value to an empty array ([]). You can configure the
value of the 'UpdatePreviewWindowFcn' application data and retrieve its value using the MATLAB
setappdata and getappdata functions, respectively.

The 'UpdatePreviewWindowFcn' will not necessarily be called for every frame that is acquired. If
a new frame is acquired and the 'UpdatePreviewWindowFcn' for the previous frame has not yet
finished executing, no update will be generated for the new frame. If you need to execute a function
for every acquired frame, use the FramesAcquiredFcn instead.

You can use this function to define custom processing of the previewed image data. When preview
invokes the function handle you specify, it passes three arguments to your function:

 preview

18-69

• obj — The video input object being previewed
• event — An event structure containing image frame information. For more information, see

below.
• himage — A handle to the image object that is being updated

The event structure contains the following fields:

Field Description
Data Current image frame specified as an H-by-W-by-B matrix where H and W are

the image height and width, respectively, as specified in the ROIPosition
property, and B is the number of color bands, as specified in the
NumberOfBands property.

Resolution Character vector specifying current image width and height, as defined by the
ROIPosition property.

Status Character vector describing the current acquisition status of the video input
object.

Timestamp Character vector specifying the timestamp associated with the current image
frame.

FrameRate Character vector specifying the current frame rate of the video input object in
frames per second.

Examples
Create a customized GUI.

figure('Name', 'My Custom Preview Window');
uicontrol('String', 'Close', 'Callback', 'close(gcf)');

Create an image object for previewing.

vidRes = obj.VideoResolution;
nBands = obj.NumberOfBands;
hImage = image(zeros(vidRes(2), vidRes(1), nBands));
preview(obj, hImage);

For more information on customized GUIs, see “Previewing Data in Custom GUIs” on page 2-9.

Version History
Introduced before R2006a

See Also
ancestor | closepreview | image | imaqhelp | stoppreview

18 Functions

18-70

propinfo
Property characteristics for image acquisition objects

Syntax
out = propinfo(obj)
out = propinfo(obj,PropertyName)

Description
out = propinfo(obj) returns the structure out whose field names are the names of all the
properties supported by obj. obj must be a 1-by-1 image acquisition object. The value of each field is
a structure containing the fields shown below.

Field Name Description
Type Data type of the property. Possible values are 'any', 'callback',

'double', 'character vector', and 'struct'.
Constraint Type of constraint on the property value. Possible values are 'bounded',

'callback', 'enum', and 'none'.
ConstraintValue List of valid character vector values or a range of valid values.
DefaultValue Default value for the property.
ReadOnly Condition under which a property is read only:

• 'always' — Property cannot be configured.
• 'whileRunning' — Property cannot be configured while Running is

set to on.
• 'never' — Property can be configured at any time.

DeviceSpecific 1 if the property is device specific; otherwise, 0 (zero).

out = propinfo(obj,PropertyName) returns the structure out for the property specified by
PropertyName. If PropertyName is a cell array of character vectors, propinfo returns a structure
for each property, stored in a cell array.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Examples
Create the video input object vid.

vid = videoinput('winvideo',1);

Capture all property information for all properties.

 propinfo

18-71

out = propinfo(vid);

Access property information for a particular property.

out1 = propinfo(vid,'LoggingMode');

Version History
Introduced before R2006a

See Also
imaqhelp

18 Functions

18-72

save
Save image acquisition objects to MAT-file

Syntax
save filename
save filename obj1 obj2 ...
save(filename,obj1,obj2,...)

Description
save filename saves all variables in the MATLAB workspace to the MAT-file filename. If
filename does not include a file extension, save appends the .MAT extension to the filename.

save filename obj1 obj2 ... saves the specified image acquisition objects (obj1, obj2, etc.)
to the MAT-file filename.

save(filename,obj1,obj2,...) is the functional form of the command, where the file name and
image acquisition objects must be specified as character vectors. If no objects are specified, then all
variables existing in the MATLAB workspace are saved.

Note that any data associated with the image acquisition object is not stored in the MAT-file. To save
the data, bring it into the MATLAB workspace (using the getdata function), and then save the
variable to the MAT-file.

To return variables from the MAT-file to the MATLAB workspace, use the load command. Values for
read-only properties are restored to their default values upon loading. For example, the Running
property is restored to 'off'. Use the propinfo function to determine if a property is read only.

Examples
obj = videoinput('winvideo', 1);
obj.SelectedSourceName = 'input1'
save fname obj
obj.TriggerFcn = {'mycallback', 5};
save('fname1', 'obj')

Version History
Introduced before R2006a

See Also
imaqhelp | load | propinfo

 save

18-73

set
Configure or display image acquisition object properties

Syntax
set(obj)
prop_struct = set(obj)
set(obj,PropertyName)
prop_cell = set(obj,PropertyName)
set(obj,PropertyName,PropertyValue,...)
set(obj,S)
set(obj,PN,PV)

Description
set(obj) displays property names and any enumerated values for all configurable properties of
image acquisition object obj. obj must be a single image acquisition object.

prop_struct = set(obj) returns the property names and any enumerated values for all
configurable properties of image acquisition object obj. obj must be a single image acquisition
object. The return value prop_struct is a structure whose field names are the property names of
obj, and whose values are cell arrays of possible property values or empty cell arrays if the property
does not have a finite set of possible character vector values.

set(obj,PropertyName) displays the possible values for the specified property, PropertyName, of
image acquisition object obj. obj must be a single image acquisition object. Use the set(obj)
syntax to get a list of all the properties for a particular image acquisition object that can be set.

prop_cell = set(obj,PropertyName) returns the possible values for the specified property,
PropertyName, of image acquisition object obj. obj must be a single image acquisition object. The
returned array prop_cell is a cell array of possible values or an empty cell array if the property
does not have a finite set of possible character vector values.

set(obj,PropertyName,PropertyValue,...) configures the property specified by the character
vector PropertyName to the value specified by PropertyValue for image acquisition object obj.
You can specify multiple property name/property value pairs in a single statement. obj can be a
single image acquisition object or a vector of image acquisition objects, in which case set configures
the property values for all the image acquisition objects specified.

set(obj,S) configures the properties of obj with the values specified in S, where S is a structure
whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array of character vectors, PN, to the
corresponding values in the cell array PV, for the image acquisition object obj. PN must be a vector.
If obj is an array of image acquisition objects, PV can be an M-by-N cell array, where M is equal to
the length of the image acquisition object array and N is equal to the length of PN. In this case, each
image acquisition object is updated with a different set of values for the list of property names
contained in PN.

18 Functions

18-74

Note Parameter/value character vector pairs, structures, and parameter/value cell array pairs can be
used in the same call to set.

Examples
These examples illustrate the various ways to use the set function to set the values of image
acquisition object properties.

set(obj, 'FramesPerTrigger', 15, 'LoggingMode', 'disk');
set(obj, {'TimerFcn', 'TimerPeriod'}, {@imaqcallback, 25});
set(obj, 'Name', 'MyObject');
set(obj, 'SelectedSourceName')

Instead of using set to set individual property values, you should use dot notation. So for example,
instead of this:

set(vid, 'FramesPerTrigger', 100);

You should use this syntax:

vid.FramesPerTrigger = 100;

Version History
Introduced before R2006a

See Also
get | imaqfind | videoinput

 set

18-75

snapshot
Acquire single image frame from GigE Vision camera

Syntax
img = snapshot(g);
[img, ts] = snapshot(g);

Description
img = snapshot(g); acquires the current frame as a single image from the GigE Vision camera g
and assigns it to the variable img. If you call snapshot in a loop, then it returns a new frame each
time. The returned image is based on the Pixel Format of your camera. snapshot uses the camera’s
default resolution or another resolution that you specify using the Height and Width properties, if
available.

Note The snapshot function is for use only with the gigecam object. To acquire images using the
videoinput object, use the getsnapshot or getdata functions.

[img, ts] = snapshot(g); acquires the current frame as a single image from the GigE Vision
camera g and assigns it to the variable img, and assigns the timestamp to the variable ts.

Examples

Acquire One Image Frame from GigE Vision Camera

Use the snapshot function to acquire one image frame from a GigE Vision camera. You then show it
using a display function such as imshow or image.

Use the gigecamlist function to ensure that MATLAB is discovering your camera.

gigecamlist

ans =

 Model Manufacturer IPAddress SerialNumber
 ____________________ ___________________ _______________ ______________

 'MV1-D1312-80-G2-12' 'Photonofocus AG' '169.254.192.165' '022600017445'

Use the gigecam function to create the object and connect it to the camera.

g = gigecam

18 Functions

18-76

Preview the image from the camera.

preview(g)

The preview window displays live video stream from your camera. If you change a property while
previewing, then the preview dynamically updates, and the image reflects the property change.

Close the preview.

closePreview(g)

Acquire a single image from the camera using the snapshot function, and assign it to the variable
img.

img = snapshot(g);

Display the acquired image.

imshow(img)

Clean up by clearing the object.

clear g

Version History
Introduced in R2014b

See Also
gigecamlist | gigecam | commands | executeCommand

 snapshot

18-77

snapshot
Acquire single image frame from Matrox frame grabber

Syntax
img = snapshot(m);
[img, ts] = snapshot(m);

Description
img = snapshot(m); acquires the current frame as a single image from the Matrox frame grabber
m and assigns it to the variable img. If you call snapshot in a loop, then it returns a new frame each
time.

Note The snapshot function is for use only with the matroxcam object. To acquire images using the
videoinput object, use the getsnapshot or getdata functions.

[img, ts] = snapshot(m); acquires the current frame as a single image from the Matrox frame
grabber m and assigns it to the variable img, and assigns the timestamp to the variable ts.

Examples

Acquire One Image Frame from Matrox Frame Grabber

Use the snapshot function to acquire one image frame from a Matrox frame grabber. You then show
it using a display function such as imshow or image.

Use the matroxlist function to ensure that MATLAB is discovering your frame grabber.

matroxlist

ans =

 Solios XCL (digitizer 0)
 Solios XCL (digitizer 1)
 VIO (digitizer 0)

Use the matroxcam function to create the object and connect it to the frame grabber. If you want to
use the second frame grabber in the list, the Solios XCL at digitizer 1, use a 2 as the index number,
since it is the second board on the list. The second argument must be the name and path of your DCF
file, entered as a character vector.

m = matroxcam(2, 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf');

m =

Display Summary for matroxcam:

 DeviceName: 'Solios XCL (digitizer 1)'

18 Functions

18-78

 DCFName: 'C:\Drivers\Solios\dcf\XCL\Basler\A404K\mycam.dcf'
 FrameResolution: '1300 x 1080'
 Timeout: 10

The DCF file is specified so that the acquisition can use the properties you have set in your DCF file.

Preview the image from the frame grabber.

preview(m)

You can leave the Preview window open, or close it any time. To close the preview:

closePreview(m)

Acquire a single image from the frame grabber using the snapshot function, and assign it to the
variable img.

img = snapshot(m);

Display the acquired image.

imshow(img)

Clean up by clearing the object.

clear m

Note about Hardware Triggering: If your DCF file is configured for hardware triggering, then you
must provide the trigger to acquire images. To do that, call the snapshot function as you normally
would, as shown in this example, and then perform the hardware trigger to acquire the frame. When
you call the snapshot function with hardware triggering set, it will not timeout as it normally would.
Therefore, the MATLAB command-line will be blocked until you perform the hardware trigger.

Version History
Introduced in R2014b

See Also
matroxlist | matroxcam | preview | closepreview

Topics
“Connect to Matrox Frame Grabbers” on page 13-3
“Set Properties for Matrox Acquisition” on page 13-4
“Acquire Images from Matrox Frame Grabbers” on page 13-6
“Matrox Acquisition – matroxcam Object vs videoinput Object” on page 13-2

 snapshot

18-79

start
Obtain exclusive use of image acquisition device

Syntax
start(obj)

Description
start(obj) obtains exclusive use of the image acquisition device associated with the video input
object obj and locks the device's configuration. Starting an object is a necessary first step to acquire
image data, but it does not control when data is logged.

obj can either be a 1-by-1 video input object or an array of video input objects.

Data logging is controlled with the TriggerType property.

Trigger Type Logging Behavior
'hardware' Data logging occurs when the condition specified in the object's

TriggerCondition property is met via the TriggerSource.
'immediate' Data logging occurs immediately.
'manual' Data logging occurs when the trigger function is called.

Use the triggerconfig function to configure the object's trigger settings.

When an acquisition is started, obj performs the following operations:

1 Transfers the object's configuration to the associated hardware.
2 Executes the object's StartFcn callback.
3 Sets the object's Running property to 'On'.

If the object's StartFcn errors, the hardware is never started and the object's Running property
remains 'Off'.

The start event is recorded in the object's EventLog property.

An image acquisition object stops running when one of the following conditions is met:

• The stop function is issued.
• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are properties of the video
input object.

• A run-time error occurs.
• The object's Timeout value is reached.

18 Functions

18-80

Examples
The start function can be called by a video input object's event callback.

obj.StopFcn = {'start'};

Version History
Introduced before R2006a

See Also
imaqfind | imaqhelp | propinfo | stop | trigger | triggerconfig

 start

18-81

stop
Stop video input object

Syntax
stop(obj)

Description
stop(obj) halts an acquisition associated with the video input object obj. obj can be either a
single video input object or an array of video input objects.

The stop function

• Sets the object's Running property to 'Off'
• Sets the object's Logging property to 'Off', if needed
• Executes the object's StopFcn callback

An image acquisition object can also stop running under one of the following conditions:

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are properties of the video
input object.

• A run-time error occurs.
• The object's Timeout value is reached.

The stop event is recorded in the object's EventLog property.

Examples
The stop function can be called by a video input object's event callback.

obj.TimerFcn = {'stop'};

Version History
Introduced before R2006a

See Also
imaqfind | start | trigger | propinfo | videoinput

18 Functions

18-82

stoppreview
Stop previewing video data

Syntax
stoppreview(obj)

Description
stoppreview(obj) stops the previewing of video data from image acquisition object obj.

To restart previewing, call preview again.

Examples
Create a video input object and open a Video Preview window.

vid = videoinput('winvideo',1);
preview(vid)

Stop previewing video data.

stoppreview(vid);

Restart previewing.

preview(vid)

Version History
Introduced before R2006a

See Also
closepreview | preview

 stoppreview

18-83

trigger
Initiate data logging

Syntax
trigger(obj)

Description
trigger(obj) initiates data logging for the video input object obj. obj can be either a single video
input object or an array of video input objects.

The trigger function

• Executes the object's TriggerFcn callback
• Records the absolute time of the first trigger event in the object's InitialTriggerTime

property
• Configures the object's Logging property to 'On'

obj must be running and its TriggerType property must be set to 'manual'. To start an object
running, use the start function.

The trigger event is recorded in the object's EventLog property.

Examples
The trigger function can be called by a video input object's event callback.

obj.StartFcn = @trigger;

Version History
Introduced before R2006a

See Also
imaqfind | start | stop | videoinput

18 Functions

18-84

triggerconfig
Configure video input object trigger properties

Syntax
triggerconfig(obj,type)
triggerconfig(obj,type,condition)
triggerconfig(obj,type,condition,source)
config = triggerconfig(obj)
triggerconfig(obj,config)

Description
triggerconfig(obj,type) configures the value of the TriggerType property of the video input
object obj to the value specified by the character vector type. For a list of valid TriggerType
values, use triggerinfo(obj). type must specify a unique trigger configuration.

obj can be either a single video input object or an array of video input objects. If an error occurs, any
video input objects in the array that have already been configured are returned to their original
configurations.

triggerconfig(obj,type,condition) configures the values of the TriggerType and
TriggerCondition properties of the video input object obj to the values specified by the character
vectors type and condition. For a list of valid TriggerType and TriggerCondition values, use
triggerinfo(obj). type and condition must specify a unique trigger configuration.

triggerconfig(obj,type,condition,source) configures the values of the TriggerType,
TriggerCondition, and TriggerSource properties of the video input object obj to the values
specified by the character vectors type, condition, and source, respectively. For a list of valid
TriggerType, TriggerCondition, and TriggerSource values, use triggerinfo(obj).

config = triggerconfig(obj) returns a MATLAB structure config containing the object's
current trigger configuration. obj must be a 1-by-1 video input object. The field names of config are
TriggerType, TriggerCondition, and TriggerSource. Each field contains the current value of
the object's property.

triggerconfig(obj,config) configures the TriggerType, TriggerCondition, and
TriggerSource property values for video input object obj using config, a MATLAB structure with
field names TriggerType, TriggerCondition, and TriggerSource, each containing the desired
property value.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

 triggerconfig

18-85

Examples
Example 1

Construct a video input object.

vid = videoinput('winvideo', 1);

Configure trigger properties for the object.

triggerconfig(vid, 'manual')

Trigger the acquisition.

start(vid)
trigger(vid)

Remove video input object from memory.

delete(vid);

Example 2

This example uses a structure returned from triggerinfo to configure trigger parameters.

Create a video input object.

vid = videoinput('winvideo', 1);

Use triggerinfo to get all valid configurations for the trigger properties for the object.

config = triggerinfo(vid);

Pass one of the configurations to the triggerconfig function.

triggerconfig(vid,config(2));

Remove video input object from memory.

delete(vid);

Version History
Introduced before R2006a

See Also
imaqhelp | trigger | triggerinfo | videoinput

18 Functions

18-86

triggerinfo
Provide information about available trigger configurations

Syntax
triggerinfo(obj)
triggerinfo(obj,type)
config = triggerinfo(...)

Description
triggerinfo(obj) displays all available trigger configurations for the video input object obj. obj
can only be a 1-by-1 video input object.

triggerinfo(obj,type) displays the available trigger configurations for the specified
TriggerType, type, for the video input object obj. To get a list of valid type values for a particular
image acquisition object, use triggerinfo(obj).

config = triggerinfo(...) returns config, an array of MATLAB structures, containing all the
valid trigger configurations for the video input object obj. Each structure in the array contains these
fields:

Field Description
TriggerType Name of the trigger type
TriggerCondition Condition that must be met before executing a trigger
TriggerSource Hardware source used for triggering

You can pass one of the structures in config to the triggerconfig function to specify the trigger
configuration.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For
information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Examples
This example illustrates how to use the triggerinfo function to retrieve valid configurations of the
TriggerType, TriggerSource, and TriggerCondition properties.

1 Create a video input object.

vid = videoinput('winvideo');
2 Get information about the available trigger configurations for this object.

config = triggerinfo(vid)

 triggerinfo

18-87

config =

1x2 struct array with fields:
 TriggerType
 TriggerCondition
 TriggerSource

3 View one of the trigger configurations returned by triggerinfo.

config(1)

ans =

 TriggerType: 'immediate'
 TriggerCondition: 'none'
 TriggerSource: 'none'

Version History
Introduced before R2006a

See Also
imaqhelp | triggerconfig

18 Functions

18-88

videoinput
Create video input object

Description
A videoinput object represents a connection between MATLAB and a particular image acquisition
device.

Creation

Syntax
vid = videoinput(adaptor)
vid = videoinput(adaptor,deviceID)
vid = videoinput(adaptor,deviceID,format)
vid = videoinput(___ ,Name,Value)

Description

vid = videoinput(adaptor) creates a video input object vid. adaptor is a character vector that
specifies the name of the adaptor used to communicate with the device. Use imaqhwinfo to
determine the adaptors available on your system.

vid = videoinput(adaptor,deviceID) creates a video input object vid, where deviceID is a
numeric scalar value that identifies a particular device available through the specified adaptor,
adaptor. Use imaqhwinfo(adaptor) to determine the devices available through the specified
adaptor. If deviceID is not specified, the first available device ID is used. You can also use a device's
name in place of deviceID. If multiple devices have the same name, the first available device is
used.

vid = videoinput(adaptor,deviceID,format) creates a video input object vid, where
format is a character vector that specifies a particular video format supported by the device or the
full path of a device configuration file (also known as a camera file). To get a list of the formats
supported by a particular device, view the DeviceInfo structure for the device that is returned by
imaqhwinfo. Each DeviceInfo structure contains a SupportedFormats field. If format is not
specified, the device's default format is used. When the video input object is created, its
VideoFormat property contains the format name or device configuration file that you specify.

vid = videoinput(___ ,Name,Value) creates a video input object and sets additional properties
using one or more name-value arguments in addition to the input arguments in previous syntaxes. If
an invalid property name or property value is specified, the object is not created. Use tab-completion
to see a full list of properties that you can set for your adaptor using name-value arguments.

To view a complete list of video input object functions and properties, use imaqhelp.

 videoinput

18-89

Note The toolbox chooses the first available video source object as the selected source and specifies
this video source object's name in the object's SelectedSourceName property. Use
getselectedsource(obj) to access the video source object that is used for acquisition.

Properties
General Properties

BayerSensorAlignment — Sensor alignment for Bayer demosaicing
"grbg" (default) | "gbrg" | "rggb" | "bggr"

Sensor alignment for Bayer demosaicing, specified as "grbg", "gbrg", "rggb", or "bggr". If the
ReturnedColorSpace property is set to "bayer", then the Image Acquisition Toolbox will demosaic
Bayer patterns returned by the hardware. This color space setting interpolates Bayer pattern
encoded images into standard RGB images. If your camera uses Bayer filtering, the toolbox supports
the Bayer pattern and can return color if desired.

In order to perform the demosaicing, the toolbox needs to know the pixel alignment of the sensor.
This is the order of the red, green, and blue sensors and is normally specified by describing the four
pixels in the upper-left corner of the sensor. It is the band sensitivity alignment of the pixels as
interpreted by the camera's internal hardware. You must get this information from the camera's
documentation and then specify the value for the alignment, as described in the following table.

There are four possible sensor alignments.

Value Description
"gbrg" The 2-by-2 sensor alignment is

green blue
red green

"grbg" The 2-by-2 sensor alignment is

green red
blue green

"bggr" The 2-by-2 sensor alignment is

blue green
green red

"rggb" The 2-by-2 sensor alignment is

red green
green blue

The value of this property is only used if the ReturnedColorSpace property is set to "bayer".

For examples showing how to convert Bayer images, see “Converting Bayer Images” on page 7-15.
Data Types: char | string

DeviceID — Image acquisition device ID
1 (default) | nonnegative integer

This property is read-only.

18 Functions

18-90

Image acquisition device ID for the specified adaptor, specified as a nonnegative integer. This
property identifies the device represented by the video input object.

A device ID is a number, assigned by an adaptor, that uniquely identifies an image acquisition device.
The adaptor assigns the first device it detects the identifier 1, the second device it detects the
identifier 2, and so on.

You can specify the device ID as an input for the videoinput function when you create a video input
object. The object stores the value in the DeviceID property and also uses the value when
constructing the default value of the Name property.

To get a list of the IDs of the devices connected to your system, use the imaqhwinfo function,
specifying the name of a particular adaptor as an argument.
Data Types: double

FrameGrabInterval — How often to acquire frame from video stream
1 (default) | positive integer.

How often the video input object acquires a frame from the video stream, specified as a positive
integer. By default, objects acquire every frame in the video stream, but you can use this property to
specify other acquisition intervals.

Note Do not confuse the frame grab interval with the frame rate. The frame rate describes the rate
at which an image acquisition device provides frames, typically measured in seconds, such as 30
frames per second. The frame grab interval is measured in frames, not seconds. If a particular
device's frame rate is configurable, the video source object might include the frame rate as a device-
specific property.

For example, when you specify a FrameGrabInterval value of 3, the object acquires every third
frame from the video stream, as illustrated in this figure. The object acquires the first frame in the
video stream before applying the FrameGrabInterval.

You specify the source of the video stream in the SelectedSourceName property.
Data Types: double

FramesAcquired — Total number of frames acquired
0 (default) | nonnegative integer

 videoinput

18-91

This property is read-only.

Total number of frames that the object has acquired, regardless of how many frames have been
extracted from the memory buffer, specified as a nonnegative integer. The video input object
continuously updates the value of the FramesAcquired property as it acquires frames.

Note When you issue a start command, the video input object resets the value of the
FramesAcquired property to 0 (zero) and flushes the buffer.

To find out how many frames are available in the memory buffer, use the FramesAvailable
property.
Data Types: double

FramesAvailable — Number of frames available in memory buffer
0 (default) | nonnegative integer

This property is read-only.

Total number of frames that are available in the memory buffer, specified as a nonnegative integer.
When you extract data, the object reduces the value of the FramesAvailable property by the
appropriate number of frames. You use the getdata function to extract data and move it into the
MATLAB workspace.

Note When you issue a start command, the video input object resets the value of the
FramesAvailable property to 0 (zero) and flushes the buffer.

To view the total number of frames that have been acquired since the last start command, use the
FramesAcquired property.
Data Types: double

Name — Name of image acquisition object
character vector | string scalar

Name of the image acquisition object, specified as a character vector or string scalar.

The toolbox creates the default name by combining the values of the VideoFormat and DeviceID
properties with the adaptor name in this format: VideoFormat + '-' + adaptor name + '-' +
DeviceID

Data Types: char | string

NumberOfBands — Number of color bands in data to be acquired
positive integer

This property is read-only.

Number of color bands in the data to be acquired, specified as a positive integer. The toolbox defines
band as the third dimension in a 3-D array, as shown in this figure.

18 Functions

18-92

The value of the NumberOfBands property indicates the number of color bands in the data returned
by getsnapshot, getdata, and peekdata.
Data Types: double

PreviewFullBitDepth — Whether preview data is displayed in full bit depth
"off" (default) | "on"

Whether the image data in the Preview window is being displayed in full bit depth, specified as
"off" or "on".

Note The Image Acquisition Toolbox Preview window supports the display of up to 16-bit image data.
The Preview window was designed to only show 8-bit data, but many cameras return 10-, 12-, 14-, or
16-bit data. The Preview window display supports these higher bit-depth cameras. However, larger
bit data is scaled to 8-bit for the purpose of displaying previewed data. To capture the image data in
the Preview window in its full bit depth for grayscale images, set the PreviewFullBitDepth
property to 'on'.

If you set this property to "off", image data in the preview window is scaled down from its bit depth
to 8-bit. If you set this property to "on", the image data in the preview window is being captured in
its full bit depth.

This property can be set to "on" only when the value of the ReturnedColorspace property is set to
"grayscale" and for video formats higher than 8-bit depth.
Data Types: char | string

Previewing — Whether object is currently previewing data in separate window
"off" (default) | "on"

This property is read-only.

Whether the object is currently previewing data in a separate window, specified as "off" or "on".

The object sets the Previewing property to "on" when you call the preview function.

The object sets the Previewing property to "off" when you close the preview window using the
closepreview function or by clicking the Close button in the preview window title bar.
Data Types: char

ReturnedColorSpace — Color space used in MATLAB
"grayscale" | "rgb" | "YCbCr" | "bayer"

 videoinput

18-93

Color space you want the toolbox to use when it returns image data to the MATLAB workspace,
specified as "grayscale", "rgb", "YCbCr", or "bayer". This is only relevant when you are
accessing acquired image data with the getsnapshot, getdata, and peekdata functions.

This property can have any of the following values:

Value Description
"grayscale" MATLAB grayscale color space.
"rgb" MATLAB RGB color space.
"YCbCr" MATLAB YCbCr color space.

Note that YCbCr is often imprecisely referred to as YUV. (YUV is similar, but not
identical. They differ by the scaling factor applied to the result. YUV refers to a
particular scaling factor used in composite NTSC and PAL formats. In most
cases, you can specify the YCbCr color space for devices that support YUV.)

"bayer" Convert grayscale Bayer color patterns to RGB images. The bayer color space
option is only available if your camera's default returned color space is
grayscale.

To use the BayerSensorAlignment property, you must set the
ReturnedColorSpace property to bayer.

Note For some adaptors, such as GigE and GenTL, if you use a format that starts with Bayer (e.g.
BayerGB8_640x480), the raw Bayer pattern is automatically converted to color – the
ReturnedColorSpace is RGB. If you set the ReturnedColorSpace to "grayscale", you'll get the
raw pattern.

For an example showing how to determine the default color space and change the color space setting,
see “Specifying the Color Space” on page 7-14.
Data Types: char | string

ROIPosition — Region-of-interest (ROI) window
[0 0 width height] (default) | 1-by-4 element vector

Region-of-interest acquisition window, specified as a 1-by-4 element vector. The ROI defines the
actual size of the frame logged by the toolbox, measured with respect to the top left corner of an
image frame.

ROIPosition is specified as a 1-by-4 element vector [XOffset YOffset Width Height].

XOffset Position of the upper left corner of the ROI, measured in pixels.
YOffset Position of the upper left corner of the ROI, measured in pixels.
Width Width of the ROI, measured in pixels. The sum of XOffset and Width cannot

exceed the width specified in VideoResolution.
Height Height of the ROI, measured in pixels. The sum of YOffset and Height cannot

exceed the height specified in VideoResolution.

18 Functions

18-94

Note The Width does not include both end points as well as the width between the pixels. It includes
one end point, plus the width between pixels. For example, if you want to capture an ROI of pixels 20
through 30, including both end pixels 20 and 30, set an XOffset of 19 and a Width of 11. The same
rule applies to height.

In the figure shown above, the width of the captured ROI contains pixels 51 through 170, including
both end points, because the XOffset is set to 50 and the Width is set to 120.

Data Types: double

Running — Whether video input object is ready to acquire data
"off" (default) | "on"

This property is read-only.

Whether the video input object is ready to acquire data, specified as "off" or "on".

Along with the Logging property, Running reflects the state of a video input object. The Running
property indicates that the object is ready to acquire data, while the Logging property indicates that
the object is acquiring data.

The object sets the Running property to "on" when you issue the start command. When Running
is "on", you can acquire data from a video source.

The object sets the Running property to "off" when any of the following conditions is met:

• The specified number of frames has been acquired.
• A run-time error occurs.
• You issue the stop command.

When Running is "off", you cannot acquire image data. However, you can acquire one image frame
with the getsnapshot function.
Data Types: char

 videoinput

18-95

Timeout — Amount of time to wait for image data
10 (default) | positive integer

Amount of time in seconds that the getdata and getsnapshot functions wait for data to be
returned, specified as a positive integer. The Timeout property is only associated with these blocking
functions. If the specified time period expires, the functions return control to the MATLAB command
line.

A timeout is one of the conditions for stopping an acquisition. When a timeout occurs, and the object
is running, the MATLAB file function specified by ErrorFcn is called.

Note The Timeout property is not associated with hardware timeout conditions.

Data Types: double

UserData — Stored data to associate with image acquisition object
any type

Stored data that you want to associate with an image acquisition object, specified as any MATLAB
data type.

Note The object does not use the data in UserData directly. However, you can access the data by
referencing the property as you would a field in a MATLAB structure using dot notation.

VideoFormat — Video format or name of device configuration file
character vector

This property is read-only.

Video format used by the image acquisition device or the name of a device configuration file,
depending on which you specified when you created the object, specified as a character vector.

Image acquisition devices typically support multiple video formats. When you create a video input
object, you can specify the video format that you want the device to use. If you do not specify the
video format as an argument, the videoinput function uses the default format. Use the
imaqhwinfo function to determine which video formats a particular device supports and find out
which format is the default.

As an alternative, you can specify the name of a device configuration file, also known as a camera file
or digitizer configuration format (DCF) file. Some image acquisition devices use these files to store
device configuration information. The videoinput function can use this file to determine the video
format and other configuration information.

Use the imaqhwinfo function to determine if your device supports device configuration files.
Data Types: char

VideoResolution — Width and height of incoming video stream
[width height]

This property is read-only.

18 Functions

18-96

Width and height in pixels of the frames in the incoming video stream, specified as a two-element
vector [width height].

Note You specify the video resolution when you create the video input object, by passing in the video
format argument to the videoinput function. If you do not specify a video format, the videoinput
function uses the default video format. Use the imaqhwinfo function to determine which video
formats a particular device supports and find out which format is the default.

Data Types: double

Data Logging Properties

Logging — Whether object is currently logging data
"off" (default) | "on"

This property is read-only.

Whether video input object is currently logging data, specified as "off" or "on".

When a trigger occurs, the object sets the Logging property to "on" and logs data to memory, a disk
file, or both, depending on the value of the LoggingMode property.

The object sets the Logging property to "off" when it acquires the requested number of frames, an
error occurs, or you issue a stop command.

To acquire data when the object is running but not logging, use the peekdata function. The
peekdata function does not guarantee that all the requested image data is returned. To acquire all
the data without gaps, you must have the object log the data to memory or to a disk file.
Data Types: char

LoggingMode — Destination for acquired data
"memory" (default) | "disk" | "disk&memory"

Destination for acquired data, specified as "memory", "disk", or "disk&memory". This property
specifies where you want the video input object to store the acquired data. You can specify any of the
following values:

Value Description
"disk" Log acquired data to a disk file.
"disk&memory" Log acquired data to both a disk file and to a memory buffer.
"memory" Log acquired data to a memory buffer.

If you select "disk" or "disk&memory", you must specify the AVI file object used to access the disk
file as the value of the DiskLogger property.

Note When logging data to memory, you must extract the acquired data in a timely manner with the
getdata function to avoid using up all the memory that is available on your system.

Note The peekdata function does not return any data while running if in disk logging mode.

 videoinput

18-97

Data Types: char | string

DiskLogger — MATLAB VideoWriter file used to log data
[] (default) | VideoWriter object

MATLAB VideoWriter file used to log data, specified as a VideoWriter object. This property
specifies the VideoWriter file object used to log data when the LoggingMode property is set to
"disk" or "disk&memory".

For the best performance, logging to disk requires a MATLAB VideoWriter object, which is a
MATLAB object, not an Image Acquisition Toolbox object. After you create and configure a
VideoWriter object, you can specify it with the DiskLogger property.

A MATLAB VideoWriter object specifies the file name and other characteristics. For example, you
can use VideoWriter properties to specify the profile used for data compression and the desired
quality of the output. For complete information about the VideoWriter object and its properties, see
the VideoWriter.

Note Do not use the variable returned by the VideoWriter function to perform any operation on a
VideoWriter file while it is being used by a video input object for data logging. For example, do not
change any of the VideoWriter file properties, add frames, or close the object. Your changes could
conflict with the video input object.

After Logging and Running are off, it is possible that the DiskLogger might still be writing data to
disk. When the DiskLogger finishes writing data to disk, the value of the DiskLoggerFrameCount
property should equal the value of the FramesAcquired property. Do not close or modify the
DiskLogger until this condition is met.

For more information about logging image data using a VideoWriter file, see “Logging Image Data
to Disk” on page 6-32.

Note The peekdata function does not return any data while running if in disk logging mode.

DiskLoggerFrameCount — Number of frames written to disk
nonnegative integer

This property is read-only.

Number of frames written to disk, specified as any nonnegative integer. This property indicates the
current number of frames written to disk by the DiskLogger. This value is only updated when the
LoggingMode property is set to "disk" or "disk&memory".

After Logging and Running are off, it is possible that the DiskLogger might still be writing data to
disk. When the DiskLogger finishes writing data to disk, the value of the DiskLoggerFrameCount
property should equal the value of the FramesAcquired property. Do not close or modify the
DiskLogger until this condition is met.
Data Types: double

18 Functions

18-98

Event and Callback Properties

EventLog — Information about events
array of structures

This property is read-only.

Information about events, specified as an array of structures. Each structure in the array represents
one event. Events are recorded in the order in which they occur. The first EventLog structure
reflects the first event recorded, the second EventLog structure reflects the second event recorded,
and so on.

Each event log structure contains two fields: Type and Data.

The Type field stores a character array that identifies the event type. The Image Acquisition Toolbox
defines many different event types, listed in this table. Note that not all event types are logged.

Event Type Description Included in Log
Error Run-time error occurred. Run-time errors include

timeouts and hardware errors.
Yes

Frames Acquired The number of frames specified in the
FramesAcquiredFcnCount property has been
acquired.

No

Start Object was started by calling the start function. Yes
Stop Object stopped executing. Yes
Timer Timer expired. No
Trigger Trigger executed. Yes

The Data field stores information associated with the specific event. For example, all events return
the absolute time the event occurred in the AbsTime field. Other event-specific fields are included in
Data. For more information, see “Retrieving Event Information” on page 8-7.

EventLog can store a maximum of 1000 events. If this value is exceeded, then the most recent 1000
events are stored.
Data Types: struct

ErrorFcn — Callback function to execute when run-time error occurs
imaqcallback (default) | character vector | function handle | cell array

Callback function to execute when an error event occurs, specified as a character vector, function
handle, or cell array. A run-time error event is generated immediately after a run-time error occurs.

Run-time errors include hardware errors and timeouts. Run-time errors do not include configuration
errors such as setting an invalid property value.

Run-time error event information is stored in the EventLog property. You can retrieve any error
message with the Data.Message field of EventLog.

Note Callbacks, including ErrorFcn, are executed only when the video object is in a running state.
If you need to use the ErrorFcn callback for error handling during previewing, you must start the
video object before previewing. To do that without logging data, use a manual trigger.

 videoinput

18-99

Data Types: char | string | cell | function_handle

FramesAcquiredFcn — Callback function to execute when specified number of frames have
been acquired
[] (default) | character vector | function handle | cell array

Callback function to execute every time a predefined number of frames have been acquired, specified
as a character vector, function handle, or cell array.

A frames acquired event is generated immediately after the number of frames specified by the
FramesAcquiredFcnCount property is acquired from the selected video source. This event executes
the MATLAB file specified for FramesAcquiredFcn.

Use the FramesAcquiredFcn callback if you must access each frame that is acquired. If you do not
have this requirement, you might want to use the TimerFcn property.

Frames acquired event information is not stored in the EventLog property.
Data Types: char | string | cell | function_handle

FramesAcquiredFcnCount — Number of frames that must be acquired before frames
acquired event is generated
0 (default) | positive integer

Number of frames to acquire from the selected video source before a frames acquired event is
generated, specified as a positive integer.

The object generates a frames acquired event immediately after the number of frames specified by
FramesAcquiredFcnCount is acquired from the selected video source.
Data Types: double

StartFcn — Callback function to execute when start event occurs
[] (default) | character vector | function handle | cell array

Callback function to execute when a start event occurs, specified as a character vector, function
handle, or cell array. A start event occurs immediately after you issue the start command.

The StartFcn callback executes synchronously. The toolbox does not set the object's Running
property to "on" until the callback function finishes executing. If the callback function encounters an
error, the object never starts running.

Start event information is stored in the EventLog property.
Data Types: char | string | cell | function_handle

StopFcn — Callback function to execute when stop event occurs
[] (default) | character vector | function handle | cell array

Callback function to execute when a stop event occurs, specified as a character vector, function
handle, or cell array. A stop event occurs immediately after you issue the stop command.

The StopFcn callback executes synchronously. Under most circumstances, the image acquisition
object will be stopped and the Running property will be set to "off" by the time the MATLAB file
completes execution.

Stop event information is stored in the EventLog property.

18 Functions

18-100

Data Types: char | string | cell | function_handle

TimerFcn — Callback function to execute when timer event occurs
[] (default) | character vector | function handle | cell array

Callback function to execute when a timer event occurs, specified as a character vector, function
handle, or cell array. A timer event occurs when the time period specified by the TimerPeriod
property expires.

The toolbox measures time relative to when the object is started with the start function. Timer
events stop being generated when the image acquisition object stops running.

Note Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value you specify is too small.

Data Types: char | string | cell | function_handle

TimerPeriod — Number of seconds between timer events
1 (default) | positive value greater than 0.01

Amount of time, in seconds, that must pass before a timer event is triggered, specified as a positive
value greater than 0.01.

The toolbox measures time relative to when the object is started with the start function. Timer
events stop being generated when the image acquisition object stops running.

Note Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value you specify is too small.

Data Types: double

TriggerFcn — Callback function to execute when trigger event occurs
[] (default) | character vector | function handle | cell array

Callback function to execute when a trigger event occurs, specified as a character vector, function
handle, or cell array. The toolbox generates a trigger event when a trigger is executed based on the
configured TriggerType, and data logging is initiated.

Under most circumstances, the MATLAB file callback function is not guaranteed to complete
execution until sometime after the toolbox sets the Logging property to "on".

Trigger event information is stored in the EventLog property.
Data Types: char | string | cell | function_handle

Trigger Properties

TriggerType — Type of trigger used by video input object
"immediate" (default) | "hardware" | "manual"

This property is read-only.

 videoinput

18-101

Type of trigger used by the video input object, specified as "immediate", "hardware", or
"manual". Triggers initiate data acquisition.

You use the triggerconfig function to specify one of the following values for this property.

TriggerType Value Description
"hardware" (if available for
your device)

Trigger executes when a specified condition is met. You specify the
condition using the TriggerCondition property and you specify the
hardware source to monitor for the condition in the TriggerSource
property. You use the triggerconfig function to set the values of
these properties.

"immediate" Trigger executes immediately after you call the start function.
"manual" Trigger executes immediately after you call the trigger function.

Data Types: char

TriggerCondition — Required condition before trigger event occurs
character vector

This property is read-only.

Condition that must be met, via the TriggerSource, before a trigger event occurs, specified as a
character vector. The trigger conditions that you can specify depend on the value of the
TriggerType property.

TriggerType Value Conditions Available
"hardware" (if available for
your device)

Device-specific. For example, some Matrox hardware supports
conditions such as "risingEdge" and "fallingEdge". Use the
triggerinfo function to view a list of valid values to use with your
image acquisition hardware.

"immediate" "none"
"manual" "none"

You must use the triggerconfig function to set the value of this property.
Data Types: char

TriggerSource — Hardware source to monitor for trigger conditions
character vector

This property is read-only.

Hardware source the image acquisition object monitors for trigger conditions, specified as a
character vector. When the condition specified in the TriggerCondition property is met, the object
executes the trigger and starts acquiring data.

You use the triggerconfig function to specify this value. The value of the TriggerSource
property is device specific. You specify whatever mechanism a particular device uses to generate
triggers.

For example, for Matrox hardware, the TriggerSource property could have values such as "Port0"
or "Port1". Use the triggerinfo function to view a list of values that are valid for your image
acquisition device.

18 Functions

18-102

You must use the triggerconfig function to set the value of this property.

Note The TriggerSource property is only used when the TriggerType property is set to
"hardware".

Data Types: char

FramesPerTrigger — Number of frames to acquire per trigger using selected video source
10 (default) | positive integer

Number of frames the video input object acquires each time it executes a trigger using the selected
video source, specified as a positive integer.

When the value of the FramesPerTrigger property is set to Inf, the object keeps acquiring frames
until an error occurs or you issue a stop command.

Note When the FramesPerTrigger property is set to Inf, the object ignores the value of the
TriggerRepeat property.

Data Types: double

InitialTriggerTime — Absolute time of first trigger
[] (default) | MATLAB clock vector

This property is read-only.

Absolute time of the first trigger, returned as a MATLAB clock vector.

For all trigger types, InitialTriggerTime records the time when the Logging property is set to
"on".

To find the time when a subsequent trigger executed, view the Data.AbsTime field of the EventLog
property for the particular trigger.
Data Types: double

TriggerFrameDelay — Number of frames to skip before acquiring frames after trigger
occurs
0 (default) | integer

Number of frames to skip before acquiring frames after a trigger occurs, specified as an integer. The
object waits the specified number of frames after the trigger before starting to log frames.

In this figure, the TriggerFrameDelay is set to 5, so the object lets five frames pass before starting
to acquire frames. The number of frames captured is defined by the FramesPerTrigger property.

 videoinput

18-103

Data Types: double

TriggerRepeat — Number of additional times to execute trigger
0 (default) | nonnegative integer

Number of additional times you want the object to execute a trigger, specified as a nonnegative
integer. This table describes the behavior for several typical TriggerRepeat values.

Value Behavior
0 (default) Execute the trigger once when the trigger condition is met.
Any positive integer Execute the trigger the specified number of additional times when the

trigger condition is met.
Inf Keep executing the trigger every time the trigger condition is met until the

stop function is called or an error occurs.

To determine how many triggers have executed, check the value of the TriggersExecuted property.

Note If the FramesPerTrigger property is set to Inf, the object ignores the value of the
TriggerRepeat property.

Data Types: double

TriggersExecuted — Total number of executed triggers
0 (default) | nonnegative integer

This property is read-only.

Total number of triggers that the video input object has executed, specified as a nonnegative integer.
Data Types: double

Video Source Object Properties

Parent — Video input object that is parent of video source object
videoinput object

This property is read-only.

18 Functions

18-104

Video input object that is the parent of a video source object, specified as a videoinput object.

The parent of a video source object is defined as the video input object owning the video source
object.

Selected — Whether video source object will be used for acquisition
"off" (default) | "on"

This property is read-only.

Whether the video source object will be used for acquisition, specified as "off" or "on". You select a
video source object by specifying its name as the value of the video input object's
SelectedSourceName property. The video input object Source property is an array of all the video
source objects associated with the video input object.

If Selected is "on", the video source object is selected. If the value is "off", the video source
object is not selected.

A video source is defined to be a collection of one or more physical data sources that are treated as a
single entity. For example, hardware supporting multiple RGB sources, each of which is made up of
three physical connections (red, green, and blue), is treated as a single video source object.
Data Types: char

SourceName — Name of video source object
character vector

This property is read-only.

Name of a video source object, specified as a character vector.

SourceName is one of the values in the video input object's SelectedSourceName property.
Data Types: char

Tag — Descriptive text to associate with image acquisition object
character vector | string scalar

Descriptive text that you want to associate with an image acquisition object, specified as a character
vector or string scalar.

The Tag property can be useful when you are constructing programs that would otherwise need to
define the image acquisition object as a global variable, or pass the object as an argument between
callback routines.

You can use the value of the Tag property to search for particular image acquisition objects when
using the imaqfind function.
Data Types: char | string

Type — Type of image acquisition object
"videoinput" | "videosource"

This property is read-only.

Type of image acquisition object, specified as "videoinput" or "videosource". An image
acquisition object can be either one of two types:

 videoinput

18-105

• Video input object
• Video source object

Data Types: char

Acquisition Source Properties

SelectedSourceName — Name of currently selected video source
character vector

Name of the video source object from which the video input object acquires data, specified as a
character vector. By default, the video input object selects the first available video source object
stored in the Source property.

The toolbox defines a video source as one or more hardware inputs that are treated as a single entity.
For example, hardware supporting multiple RGB sources, each of which is made up of three physical
connections (red-green-blue), is treated as a single video source object.
Data Types: char | string

Source — Video source objects associated with video input object
video source object

This property is read-only.

Vector of video source objects that represent the physical data sources connected to a device. When a
video input object is created, the toolbox creates a vector of video source objects associated with the
video input object.

Each video source object created is provided a unique source name. You can use the source name to
select the desired acquisition source by configuring the SelectedSourceName property of the video
input object.

A video source object's name is stored in its SourceName property. If a video source object's
SourceName is equivalent to the video input object's SelectedSourceName, the video source
object's Selected property has a value of "on".

The video source object supports a set of common properties, such as SourceName. Each video
source object can also support device-specific properties that control characteristics of the physical
device such as brightness, hue, and saturation. Different image acquisition devices expose different
sets of properties.

A video source is defined to be a collection of one or more physical data sources that are treated as a
single entity. For example, hardware supporting multiple RGB sources, each of which is made up of
three physical connections (red-green-blue), is treated as a single video source object.

The Source property encapsulates one or more video sources. To reference a video source, you use a
numerical integer to index into the vector of video source objects.

GigE Properties

IgnoreDroppedFrames — Whether the acquisition continues when it encounters a dropped
frame
"off" (default) | "on"

Whether the acquisition continues when it encounters a dropped frame, specified as "off" or "on".

18 Functions

18-106

If this property is set to "off", the acquisition stops when it encounters a dropped frame. If this
property is set to "on", the acquisition continues by ignoring the dropped frames.

When this property is "on", keep track of the number of frames dropped while the acquisition is
running with the NumDroppedFrames property.

Note This property is only supported on videoinput objects using the gige adaptor and is not
supported on gigecam objects.

Data Types: char | string

NumDroppedFrames — Number of frames dropped while acquisition is running
0 (default) | nonnegative integer

This property is read-only.

Number of frames dropped while the acquisition is running if the IgnoreDroppedFrames property
is set to 'on', specified as a nonnegative integer.

This property does not keep track of the number of frames dropped while previewing.

Note This property is only supported on videoinput objects using the gige adaptor and is not
supported on gigecam objects.

Data Types: double

Object Functions
Configuration
get Return image acquisition object properties
set Configure or display image acquisition object properties

Execution
getselectedsource Return currently selected video source object
start Obtain exclusive use of image acquisition device
stop Stop video input object
wait Wait until image acquisition object stops running or logging

Trigger Functions
trigger Initiate data logging
triggerconfig Configure video input object trigger properties
triggerinfo Provide information about available trigger configurations

Data Functions
flushdata Remove data from memory buffer used to store acquired image frames
getdata Acquired image frames to MATLAB workspace
getsnapshot Immediately return single image frame
peekdata Most recently acquired image data

Tools

 videoinput

18-107

closepreview Close Video Preview window
imaqmontage Sequence of image frames as montage
preview Preview of live video data

General
delete Remove image acquisition object from memory
imaqfind Find image acquisition objects
imaqreset Disconnect and delete all image acquisition objects
isvalid Determine whether image acquisition object is associated with image acquisition device

Information and Help
imaqhelp Image acquisition object function and property help
imaqhwinfo Information about available image acquisition hardware
propinfo Property characteristics for image acquisition objects

Examples

Create Video Input Object

Construct a video input object.

obj = videoinput("matrox",1);

Select the source to use for acquisition.

obj.SelectedSourceName = "input1"

View the properties for the selected video source object.

src_obj = getselectedsource(obj);
get(src_obj)

Preview a stream of image frames.

preview(obj);

Acquire and display a single image frame.

frame = getsnapshot(obj);
image(frame);

Remove video input object from memory.

delete(obj);

Use VideoWriter

Create a video input object that accesses a GigE Vision image acquisition device and uses grayscale
format at 10 bits per pixel.

vidobj = videoinput("gige",1,"Mono10");

You can log acquired data to memory, to disk, or both. By default, data is logged to memory. To
change the logging mode to disk, configure the video input object's LoggingMode property.

18 Functions

18-108

vidobj.LoggingMode = "disk"

Create a VideoWriter object with the profile set to Motion JPEG 2000. Motion JPEG 2000 allows
writing the full 10 bits per pixel data to the file.

vidobj.DiskLogger = VideoWriter("logfile.mj2","Motion JPEG 2000")

Now that the video input object is configured for logging data to a Motion JPEG 2000 file, initiate the
acquisition.

start(vidobj)

Wait for the acquisition to finish.

wait(vidobj)

When logging large amounts of data to disk, disk writing occasionally lags behind the acquisition. To
determine whether all frames are written to disk, you can optionally use the
DiskLoggerFrameCount property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
 pause(.1)
end

You can verify that the FramesAcquired and DiskLoggerFrameCount properties have identical
values by using these commands and comparing the output.

vidobj.FramesAcquired
vidobj.DiskLoggerFrameCount

When the video input object is no longer needed, delete it and clear it from the workspace.

delete(vidobj)
clear vidobj

Version History
Introduced before R2006a

See Also

 videoinput

18-109

wait
Wait until image acquisition object stops running or logging

Syntax
wait(obj)
wait(obj,waittime)
wait(obj,waittime,state)

Description
wait(obj) blocks the MATLAB command line until the video input object obj stops running
(Running = 'off'). obj can be either a single video input object or an array of video input objects.
When obj is an array of objects, the wait function waits until all objects in the array stop running. If
obj is not running or is an invalid object, wait returns immediately. The wait function can be useful
when you want to guarantee that data is acquired before another task is performed.

wait(obj,waittime) blocks the MATLAB command line until the video input object or array of
objects obj stops running or until waittime seconds have expired, whichever comes first. By
default, waittime is set to the value of the object's Timeout property.

wait(obj,waittime,state) blocks the MATLAB command line until the video input object or
array of objects obj stops running or logging, or until waittime seconds have expired, whichever
comes first. state can be either of the following character vectors. The default value is enclosed in
braces ({}).

State Description
{'running'} Blocks until the value of the object's Running property is 'off'.
'logging' Blocks until the value of the object's Logging property is 'off'.

Note The video input object's stop event callback function (StopFcn) might not be called before this
function returns.

An image acquisition object stops running or logging when one of the following conditions is met:

• The stop function is issued.
• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are properties of the video
input object.

• A run-time error occurs.
• The object's Timeout value is reached.

Note To get a list of options you can use on a function, press the Tab key after entering a function on
the MATLAB command line. The list expands, and you can scroll to choose a property or value. For

18 Functions

18-110

information about using this advanced tab completion feature, see “Using Tab Completion for
Functions” on page 5-17.

Examples
Create a video input object.

vid = videoinput('winvideo');

Specify an acquisition that should take several seconds. The example sets the FramesPerTrigger
property to 300.

vid.FramesPerTrigger = 300;

Start the object. Because it is configured with an immediate trigger (the default), acquisition begins
when the object is started. The example calls the wait function after calling the start function.
Notice how wait blocks the MATLAB command line until the acquisition is complete.

start(vid), wait(vid);

Version History
Introduced before R2006a

See Also
imaqhelp | start | stop | trigger | propinfo

 wait

18-111

Properties

19

BayerSensorAlignment
Specify sensor alignment for Bayer demosaicing

Description
If the ReturnedColorSpace property is set to 'bayer', then the Image Acquisition Toolbox
software will demosaic Bayer patterns returned by the hardware. This color space setting will
interpolate Bayer pattern encoded images into standard RGB images. If your camera uses Bayer
filtering, the toolbox supports the Bayer pattern and can return color if desired.

In order to perform the demosaicing, the toolbox needs to know the pixel alignment of the sensor.
This is the order of the red, green, and blue sensors and is normally specified by describing the four
pixels in the upper-left corner of the sensor. It is the band sensitivity alignment of the pixels as
interpreted by the camera's internal hardware. You must get this information from the camera's
documentation and then specify the value for the alignment, as described in the following table.

There are four possible sensor alignments.

Value Description
'gbrg' The 2-by-2 sensor alignment is

green blue
red green

'grbg' The 2-by-2 sensor alignment is

green red
blue green

'bggr' The 2-by-2 sensor alignment is

blue green
green red

'rggb' The 2-by-2 sensor alignment is

red green
green blue

The value of this property is only used if the ReturnedColorSpace property is set to 'bayer'.

For examples showing how to convert Bayer images, see “Converting Bayer Images” on page 7-15.

Characteristics
Access Read/write
Data type Character vector
Values [{'grbg'} | 'gbrg' | 'rggb'| 'bggr']

19 Properties

19-2

See Also
Functions

getdata, getsnapshot, peekdata, videoinput

Properties

ReturnedColorSpace, VideoFormat

How To’s

“Specifying the Color Space” on page 7-14

“Converting Bayer Images” on page 7-15

 BayerSensorAlignment

19-3

DeviceID
Identify image acquisition device represented by video input object

Description
The DeviceID property identifies the device represented by the video input object.

A device ID is a number, assigned by an adaptor, that uniquely identifies an image acquisition device.
The adaptor assigns the first device it detects the identifier 1, the second device it detects the
identifier 2, and so on.

You must specify the device ID as an argument to the videoinput function when you create a video
input object. The object stores the value in the DeviceID property and also uses the value when
constructing the default value of the Name property.

To get a list of the IDs of the devices connected to your system, use the imaqhwinfo function,
specifying the name of a particular adaptor as an argument.

Characteristics
Access Read only
Data type double
Values Any nonnegative integer

Examples
Use the imaqhwinfo function to determine which adaptors are connected to devices on your system.

imaqhwinfo

ans =

 InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '7.4 (R2007a)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '2.1 (R2007a)'

Use the imaqhwinfo function again, specifying the name of the adaptor, to find out how many
devices are available through that adaptor. The imaqhwinfo function returns the device IDs for all
the devices in the DeviceIds field.

info = imaqhwinfo('winvideo')

info =

 AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '2.0 (R2006a+)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

19 Properties

19-4

See Also
Functions

imaqhwinfo, videoinput

Properties

Name

 DeviceID

19-5

DiskLogger
Specify MATLAB VideoWriter file used to log data

Description
The DiskLogger property specifies the VideoWriter file object used to log data when the
LoggingMode property is set to 'disk' or 'disk&memory'. For the best performance, VideoWriter
is the recommended file type.

VideoWriter File

For the best performance, logging to disk requires a MATLAB VideoWriter object, which is a
MATLAB object, not an Image Acquisition Toolbox object. After you create and configure a
VideoWriter object, you provide it to the DiskLogger property.

A MATLAB VideoWriter object specifies the file name and other characteristics. For example, you can
use VideoWriter properties to specify the profile used for data compression and the desired quality of
the output. For complete information about the VideoWriter object and its properties, see the
VideoWriter documentation.

Note Do not use the variable returned by the VideoWriter function to perform any operation on a
VideoWriter file while it is being used by a video input object for data logging. For example, do not
change any of the VideoWriter file properties, add frames, or close the object. Your changes could
conflict with the video input object.

After Logging and Running are off, it is possible that the DiskLogger might still be writing data to
disk. When the DiskLogger finishes writing data to disk, the value of the DiskLoggerFrameCount
property should equal the value of the FramesAcquired property. Do not close or modify the
DiskLogger until this condition is met.

For more information about logging image data using a VideoWriter file, see “Logging Image Data to
Disk” on page 6-32.

Note The peekdata function does not return any data while running if in disk logging mode.

Characteristics
Access Read only while running
Data type VideoWriter object
Values The default value is [].

Examples
Using VideoWriter

19 Properties

19-6

Create a video input object that accesses a GigE Vision image acquisition device and uses grayscale
format at 10 bits per pixel.

vidobj = videoinput('gige', 1, 'Mono10');

You can log acquired data to memory, to disk, or both. By default, data is logged to memory. To
change the logging mode to disk, configure the video input object's LoggingMode property.

vidobj.LoggingMode = 'disk'

Create a VideoWriter object with the profile set to Motion JPEG 2000. Motion JPEG 2000 allows
writing the full 10 bits per pixel data to the file.

vidobj.DiskLogger = VideoWriter('logfile.mj2', 'Motion JPEG 2000')

Now that the video input object is configured for logging data to a Motion JPEG 2000 file, initiate the
acquisition.

start(vidobj)

Wait for the acquisition to finish.

wait(vidobj)

When logging large amounts of data to disk, disk writing occasionally lags behind the acquisition. To
determine whether all frames are written to disk, you can optionally use the
DiskLoggerFrameCount property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
 pause(.1)
end

You can verify that the FramesAcquired and DiskLoggerFrameCount properties have identical
values by using these commands and comparing the output.

vidobj.FramesAcquired
vidobj.DiskLoggerFrameCount

When the video input object is no longer needed, delete it and clear it from the workspace.

delete(vidobj)
clear vidobj

See Also
Functions

videoinput

Properties

DiskLoggerFrameCount, Logging, LoggingMode

 DiskLogger

19-7

DiskLoggerFrameCount
Specify number of frames written to disk

Description
The DiskLoggerFrameCount property indicates the current number of frames written to disk by the
DiskLogger. This value is only updated when the LoggingMode property is set to 'disk' or
'disk&memory'.

After Logging and Running are off, it is possible that the DiskLogger might still be writing data to
disk. When the DiskLogger finishes writing data to disk, the value of the DiskLoggerFrameCount
property should equal the value of the FramesAcquired property. Do not close or modify the
DiskLogger until this condition is met.

Characteristics
Access Read only
Data type double
Values Any nonnegative integer

See Also
Functions

videoinput

Properties

DiskLogger, FramesAcquired, Logging, Running

19 Properties

19-8

ErrorFcn
Specify callback function to execute when run-time error occurs

Description
The ErrorFcn property specifies the function to execute when an error event occurs. A run-time
error event is generated immediately after a run-time error occurs.

Run-time errors include hardware errors and timeouts. Run-time errors do not include configuration
errors such as setting an invalid property value.

Run-time error event information is stored in the EventLog property. You can retrieve any error
message with the Data.Message field of EventLog.

Note Callbacks, including ErrorFcn, are executed only when the video object is in a running state.
If you need to use the ErrorFcn callback for error handling during previewing, you must start the
video object before previewing. To do that without logging data, use a manual trigger.

Characteristics
Access Read only while running
Data type Character vector, function handle, or cell array
Values imaqcallback is the default callback function.

See Also
Properties

EventLog, Timeout

 ErrorFcn

19-9

EventLog
Store information about events

Description
The EventLog property is an array of structures that stores information about events. Each structure
in the array represents one event. Events are recorded in the order in which they occur. The first
EventLog structure reflects the first event recorded, the second EventLog structure reflects the
second event recorded, and so on.

Each event log structure contains two fields: Type and Data.

The Type field stores a character array that identifies the event type. The Image Acquisition Toolbox
software defines many different event types, listed in this table. Note that not all event types are
logged.

Event Type Description Included in Log
Error Run-time error occurred. Run-time errors include

timeouts and hardware errors.
Yes

Frames Acquired The number of frames specified in the
FramesAcquiredFcnCount property has been
acquired.

No

Start Object was started by calling the start function. Yes
Stop Object stopped executing. Yes
Timer Timer expired. No
Trigger Trigger executed. Yes

The Data field stores information associated with the specific event. For example, all events return
the absolute time the event occurred in the AbsTime field. Other event-specific fields are included in
Data. For more information, see “Retrieving Event Information” on page 8-7.

EventLog can store a maximum of 1000 events. If this value is exceeded, then the most recent 1000
events are stored.

Characteristics
Access Read only
Data type Structure array
Values Default is empty structure array.

Examples
Create a video input object.

vid = videoinput('winvideo');

19 Properties

19-10

Start the object.

start(vid)

View the event log to see which events occurred.

elog = vid.EventLog;

{elog.Type}

ans =
 'Start' 'Trigger' 'Stop'

View the data associated with a trigger event.

elog(2).Data
ans =

 AbsTime: [2003 2 11 17 22 18.9740]
 FrameNumber: 0
 RelativeFrame: 0
 TriggerIndex: 1

See Also
Properties

Logging

 EventLog

19-11

FrameGrabInterval
Specify how often to acquire frame from video stream

Description
The FrameGrabInterval property specifies how often the video input object acquires a frame from
the video stream. By default, objects acquire every frame in the video stream, but you can use this
property to specify other acquisition intervals.

Note Do not confuse the frame grab interval with the frame rate. The frame rate describes the rate
at which an image acquisition device provides frames, typically measured in seconds, such as 30
frames per second. The frame grab interval is measured in frames, not seconds. If a particular
device's frame rate is configurable, the video source object might include the frame rate as a device-
specific property.

For example, when you specify a FrameGrabInterval value of 3, the object acquires every third
frame from the video stream, as illustrated in this figure. The object acquires the first frame in the
video stream before applying the FrameGrabInterval.

You specify the source of the video stream in the SelectedSourceName property.

Characteristics
Access Read only while running
Data type double
Values Any positive integer. The default value is 1 (acquire every frame).

See Also
Functions

videoinput

19 Properties

19-12

Properties

SelectedSourceName

 FrameGrabInterval

19-13

FramesAcquired
Indicate total number of frames acquired

Description
The FramesAcquired property indicates the total number of frames that the object has acquired,
regardless of how many frames have been extracted from the memory buffer. The video input object
continuously updates the value of the FramesAcquired property as it acquires frames.

Note When you issue a start command, the video input object resets the value of the
FramesAcquired property to 0 (zero) and flushes the buffer.

To find out how many frames are available in the memory buffer, use the FramesAvailable
property.

Characteristics
Access Read only
Data type double
Values Any nonnegative integer. The default value is 0 (zero).

See Also
Functions

start

Properties

FramesAvailable, FramesAcquiredFcn, FramesAcquiredFcnCount

19 Properties

19-14

FramesAcquiredFcn
Specify MATLAB file executed when specified number of frames have been acquired

Description
The FramesAcquiredFcn specifies the MATLAB file function to execute every time a predefined
number of frames have been acquired.

A frames acquired event is generated immediately after the number of frames specified by the
FramesAcquiredFcnCount property is acquired from the selected video source. This event executes
the MATLAB file specified for FramesAcquiredFcn.

Use the FramesAcquiredFcn callback if you must access each frame that is acquired. If you do not
have this requirement, you might want to use the TimerFcn property.

Frames acquired event information is not stored in the EventLog property.

Characteristics
Access Read/write
Data type Character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Properties

EventLog, FramesAcquiredFcnCount, TimerFcn

 FramesAcquiredFcn

19-15

FramesAcquiredFcnCount
Specify number of frames that must be acquired before frames acquired event is generated

Description
The FramesAcquiredFcnCount property specifies the number of frames to acquire from the
selected video source before a frames acquired event is generated.

The object generates a frames acquired event immediately after the number of frames specified by
FramesAcquiredFcnCount is acquired from the selected video source.

Characteristics
Access Read only while running
Data type double
Values Any positive integer. The default value is 0 (zero).

See Also
Properties

FramesAcquiredFcn

19 Properties

19-16

FramesAvailable
Indicate number of frames available in memory buffer

Description
The FramesAvailable property indicates the total number of frames that are available in the
memory buffer. When you extract data, the object reduces the value of the FramesAvailable
property by the appropriate number of frames. You use the getdata function to extract data and
move it into the MATLAB workspace.

Note When you issue a start command, the video input object resets the value of the
FramesAvailable property to 0 (zero) and flushes the buffer.

To view the total number of frames that have been acquired since the last start command, use the
FramesAcquired property.

Characteristics
Access Read only
Data type double
Values Any nonnegative integer. The default value is 0 (zero).

See Also
Functions

getdata, start

Properties

FramesAcquired

 FramesAvailable

19-17

FramesPerTrigger
Specify number of frames to acquire per trigger using selected video source

Description
The FramesPerTrigger property specifies the number of frames the video input object acquires
each time it executes a trigger using the selected video source.

When the value of the FramesPerTrigger property is set to Inf, the object keeps acquiring frames
until an error occurs or you issue a stop command.

Note When the FramesPerTrigger property is set to Inf, the object ignores the value of the
TriggerRepeat property.

Characteristics
Access Read only while running
Data type double
Values Any positive integer. The default value is 10.

See Also
Functions

stop

Properties

TriggerRepeat

19 Properties

19-18

IgnoreDroppedFrames
Continue acquiring frames when acquisition drops a frame

Description

Note This property is only supported on videoinput objects using the gige adaptor and is not
supported on gigecam objects.

The IgnoreDroppedFrames property indicates whether the acquisition continues when it
encounters a dropped frame.

If this property is set to 'off', the acquisition stops when it encounters a dropped frame. If this
property is set to 'on', the acquisition continues by ignoring the dropped frames.

When this property is 'on', keep track of the number of frames dropped while the acquisition is
running with the NumDroppedFrames property.

Characteristics
Default value is enclosed in braces ({}).

Access Read/write
Data type Character vector
Values [{'off'} | 'on']

See Also
NumDroppedFrames

 IgnoreDroppedFrames

19-19

InitialTriggerTime
Record absolute time of first trigger

Description
The InitialTriggerTime property records the absolute time of the first trigger. The absolute time
is recorded as a MATLAB clock vector.

For all trigger types, InitialTriggerTime records the time when the Logging property is set to
'on'.

To find the time when a subsequent trigger executed, view the Data.AbsTime field of the EventLog
property for the particular trigger.

Characteristics
Access Read only
Data type Six-element vector of doubles (MATLAB clock vector)
Values The default value is [].

Examples
Create an image acquisition object, vid, for a USB-based webcam.

vid = videoinput('winvideo',1);

Start the object. Because the TriggerType property is set to 'immediate' by default, the trigger
executes immediately. The object records the time of the initial trigger.

start(vid)

abstime = vid.InitialTriggerTime

abstime =

 1.0e+003 *

 1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

Convert the clock vector into an integer form for display.

t = fix(abstime);

sprintf('%d:%d:%d', t(4),t(5),t(6))

ans =

13:26:20

19 Properties

19-20

See Also
Functions

getdata

Properties

EventLog, Logging, TriggerType

 InitialTriggerTime

19-21

Logging
Indicate whether object is currently logging data

Description
The Logging property indicates whether the video input object is currently logging data.

When a trigger occurs, the object sets the Logging property to 'on' and logs data to memory, a disk
file, or both, depending on the value of the LoggingMode property.

The object sets the Logging property to 'off' when it acquires the requested number of frames, an
error occurs, or you issue a stop command.

To acquire data when the object is running but not logging, use the peekdata function. Note,
however, that the peekdata function does not guarantee that all the requested image data is
returned. To acquire all the data without gaps, you must have the object log the data to memory or to
a disk file.

Characteristics
Default value is enclosed in braces ({}).

Access Read only
Data type Character vector
Values [{'off'} | 'on']

See Also
Functions

getdata, islogging, peekdata, stop, trigger

Properties

LoggingMode, Running

19 Properties

19-22

LoggingMode
Specify destination for acquired data

Description
The LoggingMode property specifies where you want the video input object to store the acquired
data. You can specify any of the following values:

Value Description
'disk' Log acquired data to a disk file.
'disk&memory' Log acquired data to both a disk file and to a memory buffer.
'memory' Log acquired data to a memory buffer.

If you select 'disk' or 'disk&memory', you must specify the AVI file object used to access the disk
file as the value of the DiskLogger property.

Note When logging data to memory, you must extract the acquired data in a timely manner with the
getdata function to avoid using up all the memory that is available on your system.

Note The peekdata function does not return any data while running if in disk logging mode.

Characteristics
Access Read only while running
Data type Character vector
Values ['disk' | 'disk&memory' | {'memory'}]

Default value is enclosed in braces ({}).

See Also
Functions

getdata

Properties

DiskLogger, Logging

 LoggingMode

19-23

Name
Specify name of image acquisition object

Description
The Name property specifies a descriptive name for the image acquisition object.

Characteristics
Access Read/write
Data type Character vector
Values Any character vector. The toolbox creates the default name by combining the

values of the VideoFormat and DeviceID properties with the adaptor name in
this format:
VideoFormat + '-' + adaptor name + '-' + DeviceID

Examples
Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the Name property.

vid.Name

ans =

 RGB555_128x96-winvideo-1

See Also
Functions

videoinput

Properties

DeviceID, VideoFormat

19 Properties

19-24

NumberOfBands
Indicate number of color bands in data to be acquired

Description
The NumberOfBands property indicates the number of color bands in the data to be acquired. The
toolbox defines band as the third dimension in a 3-D array, as shown in this figure.

The value of the NumberOfBands property indicates the number of color bands in the data returned
by getsnapshot, getdata, and peekdata.

Characteristics
Access Read only
Data type double
Values Any positive integer. The default value is defined at object creation time based on

the video format.

Examples
Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the NumberOfBands property.

vid.NumberOfBands

ans =

 3

If you retrieve the value of the VideoFormat property, you can see that the video data is in RGB
format.

vid.VideoFormat

ans =

RGB24_320x240

 NumberOfBands

19-25

See Also
Functions

getdata, getsnapshot, peekdata

19 Properties

19-26

NumDroppedFrames
Number of frames dropped while acquisition is running

Description

Note This property is only supported on videoinput objects using the gige adaptor and is not
supported on gigecam objects.

The NumDroppedFrames property indicates the number of frames dropped while the acquisition is
running if the IgnoreDroppedFrames property is set to 'on'.

This property does not keep track of the number of frames dropped while previewing.

Characteristics
Access Read only
Data type double
Values Any nonnegative integer. The default value is 0 (zero).

See Also
IgnoreDroppedFrames

 NumDroppedFrames

19-27

Parent
Identify video input object that is parent of video source object

Description
The Parent property identifies the video input object that is the parent of a video source object.

The parent of a video source object is defined as the video input object owning the video source
object.

Characteristics
Access Read only
Data type Video input object
Values Defined at object creation time

See Also
Functions

videoinput

19 Properties

19-28

PreviewFullBitDepth
Configure preview data to display in full bit depth

Description
The PreviewFullBitDepth property indicates whether the image data in the Preview window is
being displayed in full bit depth.

Note The Image Acquisition Toolbox Preview window supports the display of up to 16-bit image data.
The Preview window was designed to only show 8-bit data, but many cameras return 10-, 12-, 14-, or
16-bit data. The Preview window display supports these higher bit-depth cameras. However, larger
bit data is scaled to 8-bit for the purpose of displaying previewed data. To capture the image data in
the Preview window in its full bit depth for grayscale images, set the PreviewFullBitDepth
property to 'on'.

If you set this property to 'off', image data in the preview window is scaled down from its bit depth
to 8-bit. If you set this property to 'on', the image data in the preview window is being captured in
its full bit depth.

This property can be set to 'on' only when the value of the ReturnedColorspace property is set to
'grayscale' and for video formats higher than 8-bit depth.

Characteristics
Default value is enclosed in braces ({}).

Access Read/write
Data type Character vector
Values [{'off'} | 'on']

See Also
preview | ReturnedColorSpace

 PreviewFullBitDepth

19-29

Previewing
Indicate whether object is currently previewing data in separate window

Description
The Previewing property indicates whether the object is currently previewing data in a separate
window.

The object sets the Previewing property to 'on' when you call the preview function.

The object sets the Previewing property to 'off' when you close the preview window using the
closepreview function or by clicking the Close button in the preview window title bar.

Characteristics
Default value is enclosed in braces ({}).

Access Read only
Data type Character vector
Values [{'off'} | 'on']

See Also
Functions

closepreview, preview

19 Properties

19-30

ReturnedColorSpace
Specify color space used in MATLAB

Description
The ReturnedColorSpace property specifies the color space you want the toolbox to use when it
returns image data to the MATLAB workspace. This is only relevant when you are accessing acquired
image data with the getsnapshot, getdata, and peekdata functions.

This property can have any of the following values:

Value Description
'grayscale' MATLAB grayscale color space.
'rgb' MATLAB RGB color space.
'YCbCr' MATLAB YCbCr color space.

Note that YCbCr is often imprecisely referred to as YUV. (YUV is similar, but not
identical. They differ by the scaling factor applied to the result. YUV refers to a
particular scaling factor used in composite NTSC and PAL formats. In most
cases, you can specify the YCbCr color space for devices that support YUV.)

'bayer' Convert grayscale Bayer color patterns to RGB images. The bayer color space
option is only available if your camera's default returned color space is
grayscale.

To use the BayerSensorAlignment property, you must set the
ReturnedColorSpace property to bayer.

Note For some adaptors, such as GigE and GenTL, if you use a format that starts with Bayer, e.g.
BayerGB8_640x480, we automatically convert the raw Bayer pattern to color – the
ReturnedColorSpace is RGB. If you set the ReturnedColorSpace to 'grayscale', you'll get the
raw pattern.

For an example showing how to determine the default color space and change the color space setting,
see “Specifying the Color Space” on page 7-14.

Characteristics
Access Read/write
Data type Character vector
Values Defined at object creation time and depends on the video format selected

 ReturnedColorSpace

19-31

See Also
Functions

getdata, getsnapshot, peekdata, videoinput

Properties

BayerSensorAlignment, VideoFormat

How To’s

“Specifying the Color Space” on page 7-14

19 Properties

19-32

ROIPosition
Specify region-of-interest (ROI) window

Description
The ROIPosition property specifies the region-of-interest acquisition window. The ROI defines the
actual size of the frame logged by the toolbox, measured with respect to the top left corner of an
image frame.

ROIPosition is specified as a 1-by-4 element vector

[XOffset YOffset Width Height]

where

XOffset Position of the upper left corner of the ROI, measured in pixels.
YOffset Position of the upper left corner of the ROI, measured in pixels.
Width Width of the ROI, measured in pixels. The sum of XOffset and Width cannot

exceed the width specified in VideoResolution.
Height Height of the ROI, measured in pixels. The sum of YOffset and Height cannot

exceed the height specified in VideoResolution.

Note The Width does not include both end points as well as the width between the pixels. It includes
one end point, plus the width between pixels. For example, if you want to capture an ROI of pixels 20
through 30, including both end pixels 20 and 30, set an XOffset of 19 and a Width of 11. The same
rule applies to height.

In the figure shown above, the width of the captured ROI contains pixels 51 through 170, including
both end points, because the XOffset is set to 50 and the Width is set to 120.

Characteristics
Access Read only while running

 ROIPosition

19-33

Data type 1-by-4 element vector of doubles
Values Default is [0 0 width height] where width and height are determined

by VideoResolution.

See Also
Properties

VideoResolution

19 Properties

19-34

Running
Indicate whether video input object is ready to acquire data

Description
The Running property indicates if the video input object is ready to acquire data.

Along with the Logging property, Running reflects the state of a video input object. The Running
property indicates that the object is ready to acquire data, while the Logging property indicates that
the object is acquiring data.

The object sets the Running property to 'on' when you issue the start command. When Running
is 'on', you can acquire data from a video source.

The object sets the Running property to 'off' when any of the following conditions is met:

• The specified number of frames has been acquired.
• A run-time error occurs.
• You issue the stop command.

When Running is 'off', you cannot acquire image data. However, you can acquire one image frame
with the getsnapshot function.

Characteristics
Default value is enclosed in braces ({}).

Access Read only
Data type Character vector
Values [{'off'} | 'on']

See Also
Properties

getsnapshot, start, stop

Properties

Logging

 Running

19-35

Selected
Indicate whether video source object will be used for acquisition

Description
The Selected property indicates if the video source object will be used for acquisition. You select a
video source object by specifying its name as the value of the video input object's
SelectedSourceName property. The video input object Source property is an array of all the video
source objects associated with the video input object.

If Selected is 'on', the video source object is selected. If the value is 'off', the video source
object is not selected.

A video source is defined to be a collection of one or more physical data sources that are treated as a
single entity. For example, hardware supporting multiple RGB sources, each of which is made up of
three physical connections (red, green, and blue), is treated as a single video source object.

Characteristics
Default value is enclosed in braces ({}).

Access Read only
Data type Character vector
Values [{'off'} | 'on']

Examples
Create an image acquisition object.

vid = videoinput('winvideo');

Determine the currently selected video source object.

vid.SelectedSourceName

ans =

input1

Retrieve the currently selected video source object.

src = getselectedsource(vid);

View its Name and Selected properties.

src.SourceName

ans =

input1

19 Properties

19-36

src.Selected

ans =

on

See Also
Functions

getselectedsource

Properties

SelectedSourceName

 Selected

19-37

SelectedSourceName
Specify name of currently selected video source

Description
The SelectedSourceName property specifies the name of the video source object from which the
video input object acquires data. The name is specified as a character vector. By default, the video
input object selects the first available video source object stored in the Source property.

The toolbox defines a video source as one or more hardware inputs that are treated as a single entity.
For example, hardware supporting multiple RGB sources, each of which is made up of three physical
connections (red-green-blue), is treated as a single video source object.

Characteristics
Access Read only while running
Data type Character vector
Values The video input object assigns a name to each video source object it creates.

Names are defined at object creation time and are vendor specific.

By default, the toolbox uses the first available source name.

Examples
To see a list of all available sources, create a video input object.

vid = videoinput('matrox');

View a list of all available video source objects.

src_names = vid.SelectedSourceName;

See Also
Functions

set

Properties

Source

19 Properties

19-38

Source
Indicate video source objects associated with video input object

Description
The Source property is a vector of video source objects that represent the physical data sources
connected to a device. When a video input object is created, the toolbox creates a vector of video
source objects associated with the video input object.

Each video source object created is provided a unique source name. You can use the source name to
select the desired acquisition source by configuring the SelectedSourceName property of the video
input object.

A video source object's name is stored in its SourceName property. If a video source object's
SourceName is equivalent to the video input object's SelectedSourceName, the video source
object's Selected property has a value of 'on'.

The video source object supports a set of common properties, such as SourceName. Each video
source object can also support device-specific properties that control characteristics of the physical
device such as brightness, hue, and saturation. Different image acquisition devices expose different
sets of properties.

A video source is defined to be a collection of one or more physical data sources that are treated as a
single entity. For example, hardware supporting multiple RGB sources, each of which is made up of
three physical connections (red-green-blue), is treated as a single video source object.

The Source property encapsulates one or more video sources. To reference a video source, you use a
numerical integer to index into the vector of video source objects.

Characteristics
Access Read only
Data type Vector of video source objects
Values Defined at object creation time

Examples
Create an image acquisition object.

vid = videoinput('matrox');

To access all the video source objects associated with a video input object, use the Source property
of the video input object. (To view only the currently selected video source object, use the
getselectedsource function.)

sources = vid.Source;
src = sources(1);

To view the properties of the video source object src, use the get function.

 Source

19-39

get(src)
 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = CH1
 Tag =
 Type = videosource

 Device Specific Properties:
 InputFilter = lowpass
 UserOutputBit3 = off
 UserOutputBit4 = off
 XScaleFactor = 1
 YScaleFactor = 1

See Also
Functions

videoinput, getselectedsource

Properties

SelectedSourceName

19 Properties

19-40

SourceName
Indicate name of video source object

Description
The SourceName property indicates the name of a video source object.

SourceName is one of the values in the video input object's SelectedSourceName property.

Characteristics
Access Read only
Data type Character vector
Values Defined at object creation time

See Also
Functions

getselectedsource

Properties

SelectedSourceName, Source

 SourceName

19-41

StartFcn
Specify MATLAB file executed when start event occurs

Description
The StartFcn property specifies the MATLAB file function to execute when a start event occurs. A
start event occurs immediately after you issue the start command.

The StartFcn callback executes synchronously. The toolbox does not set the object's Running
property to 'on' until the callback function finishes executing. If the callback function encounters an
error, the object never starts running.

Start event information is stored in the EventLog property.

Characteristics
Access Read/write
Data type Character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Properties

EventLog, Running

19 Properties

19-42

StopFcn
Specify MATLAB file executed when stop event occurs

Description
The StopFcn property specifies the MATLAB file function to execute when a stop event occurs. A
stop event occurs immediately after you issue the stop command.

The StopFcn callback executes synchronously. Under most circumstances, the image acquisition
object will be stopped and the Running property will be set to 'off' by the time the MATLAB file
completes execution.

Stop event information is stored in the EventLog property.

Characteristics
Access Read/write
Data type Character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Properties

EventLog, Running

 StopFcn

19-43

Tag
Specify descriptive text to associate with image acquisition object

Description
The Tag property specifies any descriptive text that you want to associate with an image acquisition
object.

The Tag property can be useful when you are constructing programs that would otherwise need to
define the image acquisition object as a global variable, or pass the object as an argument between
callback routines.

You can use the value of the Tag property to search for particular image acquisition objects when
using the imaqfind function.

Characteristics
Access Read/Write
Data type Character vector
Values Any character vector

See Also
Functions

imaqfind

19 Properties

19-44

Timeout
Specify how long to wait for image data

Description
The Timeout property specifies the amount of time (in seconds) that the getdata and getsnapshot
functions wait for data to be returned. The Timeout property is only associated with these blocking
functions. If the specified time period expires, the functions return control to the MATLAB command
line.

A timeout is one of the conditions for stopping an acquisition. When a timeout occurs, and the object
is running, the MATLAB file function specified by ErrorFcn is called.

Note The Timeout property is not associated with hardware timeout conditions.

Characteristics
Access Read only while running
Data type double
Values Any positive integer. The default value is 10 seconds.

See Also
Functions

getdata, getsnapshot

Properties

EventLog, ErrorFcn

 Timeout

19-45

TimerFcn
Specify MATLAB file callback function to execute when timer event occurs

Description
The TimerFcn property specifies the MATLAB file callback function to execute when a timer event
occurs. A timer event occurs when the time period specified by the TimerPeriod property expires.

The toolbox measures time relative to when the object is started with the start function. Timer
events stop being generated when the image acquisition object stops running.

Note Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value you specify is too small.

Characteristics
Access Read/write
Data type Character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Functions

start, stop

Properties

TimerPeriod

19 Properties

19-46

TimerPeriod
Specify number of seconds between timer events

Description
The TimerPeriod property specifies the amount of time, in seconds, that must pass before a timer
event is triggered.

The toolbox measures time relative to when the object is started with the start function. Timer
events stop being generated when the image acquisition object stops running.

Note Some timer events might not be processed if your system is significantly slowed or if the
TimerPeriod value you specify is too small.

Characteristics
Access Read only while running
Data type double
Values Any positive value. The minimum value is 0.01 seconds. The default value is 1

(second).

See Also
Functions

start, stop

Properties

EventLog, TimerFcn

 TimerPeriod

19-47

TriggerCondition
Indicate required condition before trigger event occurs

Description
The TriggerCondition property indicates the condition that must be met, via the TriggerSource,
before a trigger event occurs. The trigger conditions that you can specify depend on the value of the
TriggerType property.

TriggerType Value Conditions Available
'hardware'
(if available for your device)

Device-specific.
For example, some Matrox hardware supports conditions such as
'risingEdge' and 'fallingEdge'. Use the triggerinfo
function to view a list of valid values to use with your image
acquisition hardware.

'immediate' 'none'
'manual' 'none'

You must use the triggerconfig function to set the value of this property.

Characteristics
Access Read only. Use the triggerconfig function to set the value of this property.
Data type Character vector
Values Device specific. Use the triggerinfo function to view a list of valid values to

use with your image acquisition hardware.

See Also
Functions

trigger, triggerconfig, triggerinfo

Properties

TriggerSource, TriggerType

19 Properties

19-48

TriggerFcn
Specify MATLAB file callback function to execute when trigger event occurs

Description
The TriggerFcn property specifies the MATLAB file callback function to execute when a trigger
event occurs. The toolbox generates a trigger event when a trigger is executed based on the
configured TriggerType, and data logging is initiated.

Under most circumstances, the MATLAB file callback function is not guaranteed to complete
execution until sometime after the toolbox sets the Logging property to 'on'.

Trigger event information is stored in the EventLog property.

Characteristics
Access Read/write
Data type Character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Functions

trigger

Properties

EventLog, Logging

 TriggerFcn

19-49

TriggerFrameDelay
Specify number of frames to skip before acquiring frames after trigger occurs

Description
The TriggerFrameDelay property specifies the number of frames to skip before acquiring frames
after a trigger occurs. The object waits the specified number of frames after the trigger before
starting to log frames.

In this figure, the TriggerFrameDelay is set to 5, so the object lets five frames pass before starting
to acquire frames. The number of frames captured is defined by the FramesPerTrigger property.

Characteristics
Access Read only while running
Data type double
Values Any integer. The default value is 0 (zero).

See Also
Functions

trigger

Properties

FramesPerTrigger

19 Properties

19-50

TriggerRepeat
Specify number of additional times to execute trigger

Description
The TriggerRepeat property specifies the number of additional times you want the object to
execute a trigger. This table describes the behavior for several typical TriggerRepeat values.

Value Behavior
0 (default) Execute the trigger once when the trigger condition is met.
Any positive integer Execute the trigger the specified number of additional times when the

trigger condition is met.
Inf Keep executing the trigger every time the trigger condition is met until the

stop function is called or an error occurs.

To determine how many triggers have executed, check the value of the TriggersExecuted property.

Note If the FramesPerTrigger property is set to Inf, the object ignores the value of the
TriggerRepeat property.

Characteristics
Access Read only while running
Data type double
Values Any nonnegative integer. The default value is 0 (zero).

See Also
Functions

stop, trigger

Properties

FramesPerTrigger, TriggersExecuted, TriggerType

 TriggerRepeat

19-51

TriggersExecuted
Indicate total number of executed triggers

Description
The TriggersExecuted property indicates the total number of triggers that the video input object
has executed.

Characteristics
Access Read only
Data type double
Values Any nonnegative integer. The default value is 0 (zero).

See Also
Functions

trigger

Properties

EventLog

19 Properties

19-52

TriggerSource
Indicate hardware source to monitor for trigger conditions

Description
The TriggerSource property indicates the hardware source the image acquisition object monitors
for trigger conditions. When the condition specified in the TriggerCondition property is met, the
object executes the trigger and starts acquiring data.

You use the triggerconfig function to specify this value. The value of the TriggerSource
property is device specific. You specify whatever mechanism a particular device uses to generate
triggers.

For example, for Matrox hardware, the TriggerSource property could have values such as 'Port0'
or 'Port1'. Use the triggerinfo function to view a list of values that are valid for your image
acquisition device.

You must use the triggerconfig function to set the value of this property.

Note The TriggerSource property is only used when the TriggerType property is set to
'hardware'.

Characteristics
Access Read only. Use the triggerconfig function to set the value of this property.
Data type Character vector
Values Device-specific. Use the triggerinfo function to get a list of valid values.

See Also
Functions

trigger, triggerconfig, triggerinfo

Properties

TriggerCondition, TriggerType

 TriggerSource

19-53

TriggerType
Indicate type of trigger used by video input object

Description
The TriggerType property indicates the type of trigger used by the video input object. Triggers
initiate data acquisition.

You use the triggerconfig function to specify one of the following values for this property.

Trigger Type Description
'hardware'
(if available for your device)

Trigger executes when a specified condition is met. You specify the
condition using the TriggerCondition property and you specify the
hardware source to monitor for the condition in the TriggerSource
property. You use the triggerconfig function to set the values of
these properties.

'immediate' Trigger executes immediately after you call the start function.
'manual' Trigger executes immediately after you call the trigger function.

Characteristics
Default value is enclosed in braces ({}).

Access Read only. Use the triggerconfig function to set the value of this
property.

Data type Character vector
Values ['hardware' | {'immediate'} | 'manual']

The 'hardware' option is only included for devices that support
hardware triggers.

See Also
Functions

trigger, triggerconfig, triggerinfo

Properties

TriggerCondition, TriggerSource

19 Properties

19-54

Type
Identify type of image acquisition object

Description
The Type property identifies the type of image acquisition object. An image acquisition object can be
either one of two types:

• Video input object
• Video source object

Characteristics
Access Read only
Data type Character vector
Values ['videoinput' | 'videosource'] Defined at object creation time

Examples
vid = videoinput('winvideo',1)

vid.Type

ans =

videoinput

This example gets the type of a video source object.

src = getselectedsource(vid);
src.Type
ans =
 videosource

See Also
Functions

getselectedsource, videoinput

 Type

19-55

UserData
Store data to associate with image acquisition object

Description
The UserData property specifies any data that you want to associate with an image acquisition
object.

Note The object does not use the data in UserData directly. However, you can access the data by
referencing the property as you would a field in a MATLAB structure using dot notation.

Characteristics
Access Read/Write
Data type Any
Values User-defined

See Also
Functions

get

19 Properties

19-56

VideoFormat
Specify video format or name of device configuration file

Description
The VideoFormat property specifies the video format used by the image acquisition device or the
name of a device configuration file, depending on which you specified when you created the object
using the videoinput function.

Image acquisition devices typically support multiple video formats. When you create a video input
object, you can specify the video format that you want the device to use. If you do not specify the
video format as an argument, the videoinput function uses the default format. Use the
imaqhwinfo function to determine which video formats a particular device supports and find out
which format is the default.

As an alternative, you can specify the name of a device configuration file, also known as a camera file
or digitizer configuration format (DCF) file. Some image acquisition devices use these files to store
device configuration information. The videoinput function can use this file to determine the video
format and other configuration information.

Use the imaqhwinfo function to determine if your device supports device configuration files.

Characteristics
Access Read only
Data type Character vector
Values Device-specific. The example describes how to get a list of all the formats

supported by a particular image acquisition device.

Examples
To determine the video formats supported by a device, check the SupportedFormats field in the
device information structure returned by imaqhwinfo.

info = imaqhwinfo('winvideo')

info =

 AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '2.1 (R2007a)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

info.DeviceInfo

ans =

 DefaultFormat: 'RGB555_128x96'
 DeviceFileSupported: 0

 VideoFormat

19-57

 DeviceName: 'IBM PC Camera'
 DeviceID: 1
 VideoInputConstructor: 'videoinput('winvideo', 1)'
 VideoDeviceConstructor: 'imaq.VideoDevice('winvideo', 1)'
 SupportedFormats: {1x34 cell}

See Also
Functions

imaqhwinfo, videoinput

19 Properties

19-58

VideoResolution
Indicate width and height of incoming video stream

Description
The VideoResolution property is a two-element vector indicating the width and height in pixels of
the frames in the incoming video stream. VideoResolution is specified as

[Width Height]

Note You specify the video resolution when you create the video input object, by passing in the video
format argument to the videoinput function. If you do not specify a video format, the videoinput
function uses the default video format. Use the imaqhwinfo function to determine which video
formats a particular device supports and find out which format is the default.

Characteristics
Access Read only
Data type Vector of doubles
Values Defined by video format

See Also
Functions

imaqhwinfo, videoinput

Properties

ROIPosition, VideoFormat

 VideoResolution

19-59

Blocks

20

From Video Device
Capture live image data from image acquisition device
Library: Image Acquisition Toolbox

Description

The From Video Device block lets you capture image and video data streams from image acquisition
devices, such as cameras and frame grabbers, in order to bring the image data into a Simulink model.
The block also lets you configure and preview the acquisition directly from Simulink.

The From Video Device block opens, initializes, configures, and controls an acquisition device. The
block opens, initializes, and configures only once, at the start of the model execution. While the Read
All Frames option is selected, the block queues incoming image frames in a FIFO (first in, first out)
buffer and delivers one image frame for each simulation time step. If the buffer underflows, the block
waits for up to 10 seconds until a new frame is in the buffer.

The block has no input ports. You can configure the block to have either one output port or three
output ports corresponding to the uncompressed color bands red, green, and blue or Y, Cb, and Cr.
For more information about configuring the output ports, see the “Output” on page 20-2 section.

For an example of how to use this block, see “Save Video Data to a File” on page 9-6.

Other Supported Features

• The From Video Device block supports the use of Simulink Accelerator mode. This feature speeds
up the execution of Simulink models.

• The From Video Device block supports the use of model referencing. This feature lets your model
include other Simulink models as modular components.

• The From Video Device block supports the use of “Code Generation” on page 20-7 along with
the packNGo function to group required source code and dependent shared libraries.

Ports
Output

Port_1 — Video output signal
m-by-n-by-3 matrix

Video output signal, specified as an m-by-n-by-3 matrix, where m represents the height of the video
image and n represents the width of the video image.
Dependencies

• To enable this port, set Ports mode to One multidimensional signal.
• To specify the output video signal data type for this port, set Data type.

Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

20 Blocks

20-2

R, G, B — RGB video output signal
m-by-n matrix

RGB video output signal, specified as an m-by-n matrix, where m represents the height of the video
image and n represents the width of the video image. R, G, and B are separate output ports that each
have the same dimensions.
Dependencies

• To enable this port, set Output color space to rgb and Ports mode to Separate color
signals.

• To specify the output video signal data type for this port, set Data type.

Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

Y, Cb, Cr — YCbCr video output signal
m-by-n matrix

YCbCr video output signal, specified as an m-by-n matrix, where m represents the height of the video
image and n represents the width of the video image. Y, Cb, and Cr are separate output ports that
each have the same dimensions.
Dependencies

• To enable this port, set Output color space to YCbCr and Ports mode to Separate color
signals.

• To specify the output video signal data type for this port, set Data type.

Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
The following fields appear in the Block Parameters dialog box. If your selected device does not
support a feature, it will not appear in the dialog box.

Device — Image acquisition device
available devices

The image acquisition device to which you want to connect. The items in the list vary, depending on
which devices you have connected to your system. All video capture devices supported by Image
Acquisition Toolbox software are supported by the block.

Video format — Video formats supported by device
available video formats

Shows the video formats supported by the selected device. This list varies with each device. If your
device supports the use of camera files, From camera file is one of the choices in the list.
Dependencies

• To enable the Camera file parameter, set Video format to From camera file. This option only
appears if your selected device supports camera raw image files. Enter the camera file path and
file name, or use the Browse button to locate it.

Video source — Video input sources supported by device
available video input sources

 From Video Device

20-3

Available input sources for the specified device and format. Click the Edit properties... button to
open the Property Inspector and edit the source properties.

Edit properties... — Video source properties
button

Open the Property Inspector to edit video source device-specific properties, such as brightness and
contrast. The properties that are listed vary by device. Properties that can be edited are indicated by
a pencil icon or a drop-down list in the table. Properties that are grayed out cannot be edited. When
you close the Property Inspector, your edits are saved.

Enable hardware triggering — Hardware-triggered acquisition
off (default) | on

This option only appears if the selected device supports hardware triggering. Select the check box to
enable hardware triggering. After you enable triggering, you can select the Trigger configuration.
Dependencies

• To enable the Trigger configuration parameter, select the Enable hardware triggering
parameter. This option only appears if the selected device supports hardware triggering. The
configuration choices are listed by trigger source/trigger condition. For example, TTL/
fallingEdge means that TTL is the trigger source and the falling edge of the signal is the
condition that triggers the hardware.

ROI position — Region of interest in video image
[0, 0, maximum height, maximum width] (default) | [row, column, height, width]

Use this field to input a row vector that specifies the region of acquisition in the video image. The
format is [row, column, height, width]. The default values for row and column are 0. The default
values for height and width are set to the maximum allowable value, indicated by the resolution of the
video format. Change the values in this field only if you do not want to capture the full image size.

Output color space — Video output color space
rgb (default) | grayscale | YCbCr | bayer

Use this field to select the color space for devices that support color. If your device supports Bayer
sensor alignment, bayer is also available.
Dependencies

• To enable the Bayer sensor alignment parameter, set Output color space to bayer. This
option is only available if your device supports Bayer sensor alignment. Use this to set the 2-by-2
pixel alignment of the Bayer sensor. Possible sensor alignment options are grbg (default), gbrg,
rggb, and bggr.

Preview... — Preview of live video data
button

Preview the video image. Clicking this button opens the Video Preview window. While preview is
running the image adjusts to changes you make in the parameter dialog box. Use the Video Preview
window to set up your image acquisition in the way you want it to be acquired by the block when you
run the model.

Block sample time — Block sampling rate
1/30 (default) | numeric

20 Blocks

20-4

Specify the sample time of the block during the simulation. The sample time is the rate at which the
block is executed during simulation.

Note The block sample time does not set the frame rate on the device that is used in simulation. The
frame rate is determined by the video format specified (standard format or from a camera file). Some
devices even list frame rate as a device-specific source property. Frame rate is not related to the
Block sample time option in the dialog. The block sample time defines the rate at which the block
executes during simulation time.

Ports mode — Type of video output signal
One multidimensional signal | Separate color signals

This option appears only if your device supports using either one output port or multiple output ports
for the color bands. Use this option to specify either a single output port for all color spaces, or one
port for each band (for example, R, G, and B). When you select One multidimensional signal,
the output signal is combined into one line consisting of signal information for all color signals. Select
Separate color signals if you want to use three ports corresponding to the uncompressed red,
green, and blue color bands. Note that some devices use YCbCr for the separate color signals.

Note The block acquires data in the default ReturnedColorSpace setting for the specified device
and format.

Data type — Video output data type
single (default) | double | int8 | uint8 | int16 | uint16 | int32 | uint32

The image data type when the block outputs frames. This data type indicates how image frames are
returned from the block to Simulink. This option supports all MATLAB numeric data types.

Read All Frames — All available image frames captured
off (default) | on

Select to capture all available image frames. If you do not select this option, the block takes the latest
snapshot of one frame, which is equivalent to using the getsnapshot function in the toolbox. If you
select this option, the block queues incoming image frames in a FIFO (first in, first out) buffer. The
block still gives you one frame, the oldest from the buffer, every timestep and ensures that no frames
are lost. This option is equivalent to using the getdata function in the toolbox.

Kinect for Windows

Metadata Output Ports — Kinect for Windows output ports

This option only appears if:

• You use a Kinect for Windows camera
• You select Kinect Depth Sensor as Device, and
• You select Depth Source as Video source.

Use this option to return skeleton information in Simulink during simulation and code generation. You
can output metadata information in normal, accelerator, and deployed simulation modes. Each
metadata item in the Selected Metadata list becomes an output port on the block.

 From Video Device

20-5

The All Metadata section lists the metadata that is associated with the Kinect depth sensor.

This section is only visible when a Kinect depth sensor is selected. The All Metadata list shows the
available metadata. The Selected Metadata list shows which metadata items are returned to
Simulink. This is empty by default. To use a metadata item, add it from the All Metadata to the
Selected Metadata list by selecting it in the All Metadata list and clicking the Add button (blue
arrow icon). The Remove button (red X icon) removes an item from the Selected Metadata list. You
can also use the Move up and Move down buttons to change the order of items in the Selected
Metadata list. You can select multiple items at once.

20 Blocks

20-6

You can see in the example above that three metadata items have been put in the Selected
Metadata list. When you click Apply, output ports are created on the block for these metadata, as
shown here. The first port is the depth frame.

For descriptions and information on these metadata fields and using Kinect for Windows with the
Image Acquisition Toolbox, see “Acquiring Image and Skeletal Data Using Kinect” on page 12-7.

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

See “Code Generation with From Video Device Block” on page 9-4.

See Also
Topics
“Save Video Data to a File” on page 9-6
“Acquiring Image and Skeletal Data Using Kinect” on page 12-7

 From Video Device

20-7

	Getting Started
	Image Acquisition Toolbox Product Description
	Product Overview
	Introduction
	Installation and Configuration Notes
	The Image Processing Toolbox Software Required to Use the Image Acquisition Toolbox Software
	Related Products
	Supported Hardware

	Image Acquisition Tool (GUI)
	Getting Started Doing Image Acquisition Programmatically
	Overview
	Step 1: Install Your Image Acquisition Device
	Step 2: Retrieve Hardware Information
	Step 3: Create a Video Input Object
	Step 4: Preview the Video Stream (Optional)
	Step 5: Configure Object Properties (Optional)
	Step 6: Acquire Image Data
	Step 7: Clean Up

	Introduction
	Toolbox Components Overview
	Introduction
	Toolbox Components
	The Image Acquisition Explorer App
	Supported Devices

	Setting Up Image Acquisition Hardware
	Introduction
	Setting Up Frame Grabbers
	Setting Up Generic Windows Video Acquisition Devices
	Setting Up DCAM Devices
	Resetting Your Image Acquisition Hardware
	A Note About Frame Rates and Processing Speed

	Preview Live Data from Image Acquisition Device
	Introduction
	Opening a Video Preview Window
	Stopping the Preview Video Stream
	Closing a Video Preview Window
	Previewing Data in Custom GUIs
	Performing Custom Processing of Previewed Data

	Using the Image Acquisition Explorer
	Image Acquisition Explorer Overview
	Open the App
	Parts of the App

	Get Started with Image Acquisition Explorer
	Select Your Device and Configure Format in Image Acquisition Explorer
	Select Device
	Configure Device Format
	Use Camera File

	Set Acquisition Parameters in Image Acquisition Explorer
	Acquisition Parameters Panels
	Set Region of Interest
	Set Device-Specific Parameters
	Set Up Hardware Triggering

	Log Data in Image Acquisition Explorer
	Log Data to Workspace
	Log Data to File

	Preview and Acquire Data in Image Acquisition Explorer
	Set Up Preview for Acquisition
	Capture Image Snapshot
	Record Video

	Export Code from Image Acquisition Explorer
	Connect and Configure
	Generate Snapshot Script
	Generate Record Script
	Clean Up

	Visualize and Analyze Data from Image Acquisition Explorer
	Saving Image Acquisition Tool Configurations
	Exporting Image Acquisition Tool Hardware Configurations to MATLAB
	Getting Started with the Image Acquisition Tool

	Image Acquisition Support Packages
	Image Acquisition Support Packages for Hardware Adaptors
	Installing the Support Packages for Image Acquisition Toolbox Adaptors
	Install the MATLAB Support Package for USB Webcams

	Connecting to Hardware
	Getting Hardware Information
	Getting Hardware Information
	Determining the Device Adaptor Name
	Determining the Device ID
	Determining Supported Video Formats

	Creating Image Acquisition Objects
	Types of Objects
	Video Input Objects
	Video Source Objects
	Creating a Video Input Object
	Specifying the Video Format
	Specifying the Selected Video Source Object
	Getting Information About a Video Input Object

	Configuring Image Acquisition Object Properties
	About Image Acquisition Object Properties
	Viewing the Values of Object Properties
	Viewing the Value of a Particular Property
	Getting Information About Object Properties
	Setting the Value of an Object Property

	Using Tab Completion for Functions
	Use Advanced Property Support in the GigE Vision and GenICam GenTL Interfaces
	Advanced Property Support
	Change Properties While the Acquisition Is Running
	Dynamic Accessibility and Readability
	Dynamic Constraints
	Grouped Selector Properties

	Use Advanced Property Support with Point Grey Camera
	Change Properties While the Acquisition Is Running
	Update Property Constraints Dynamically

	Starting and Stopping a Video Input Object
	Deleting Image Acquisition Objects
	Saving Image Acquisition Objects
	Using the save Command
	Using the obj2mfile Command

	Image Acquisition Toolbox Properties

	Acquiring Image Data
	Acquiring Image Data
	Data Logging
	Overview
	Trigger Properties

	Setting the Values of Trigger Properties
	About Trigger Properties
	Specifying Trigger Type, Source, and Condition

	Specifying the Trigger Type
	Comparison of Trigger Types
	Using an Immediate Trigger
	Using a Manual Trigger
	Using a Hardware Trigger
	Setting DCAM-Specific Trigger Modes

	Controlling Logging Parameters
	Data Logging
	Specifying Logging Mode
	Specifying the Number of Frames to Log
	Determining How Much Data Has Been Logged
	Determining How Many Frames Are Available
	Delaying Data Logging After a Trigger
	Specifying Multiple Triggers

	Waiting for an Acquisition to Finish
	Using the wait Function
	Blocking the Command Line Until an Acquisition Completes

	Managing Memory Usage
	Freeing Memory

	Logging Image Data to Disk
	Formats for Logging Data to Disk
	Logging Data to Disk Using VideoWriter

	Working with Acquired Image Data
	Image Acquisition Overview
	Bringing Image Data into the MATLAB Workspace
	Overview
	Moving Multiple Frames into the Workspace
	Viewing Frames in the Memory Buffer
	Bringing a Single Frame into the Workspace

	Working with Image Data in MATLAB Workspace
	Understanding Image Data
	Determining the Dimensions of Image Data
	Determining the Data Type of Image Frames
	Viewing Acquired Data

	Specifying the Color Space
	Specifying the Color Space
	Converting Bayer Images

	Retrieving Timing Information
	Introduction
	Determining When a Trigger Executed
	Determining When a Frame Was Acquired
	Determining the Frame Delay Duration

	Using Events and Callbacks
	Using Events and Callbacks
	Using the Default Callback Function
	Event Types
	Retrieving Event Information
	Introduction
	Event Structures
	Accessing Data in the Event Log

	Creating and Executing Callback Functions
	Introduction
	Creating Callback Functions
	Specifying Callback Functions
	Viewing a Sample Frame

	Using the From Video Device Block in Simulink
	Open Image Acquisition Toolbox Block Library
	From the Command Line
	From the Simulink Library Browser

	Code Generation with From Video Device Block
	Code Generation Workflow
	Code Generation with Simulink Coder
	Shared Library Dependencies

	Save Video Data to a File
	Step 1: Create a New Model
	Step 2: Open the Image Acquisition Toolbox Library
	Step 3: Drag the From Video Device Block into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify From Video Device Block Parameter Values
	Step 7: Run the Simulation

	Configuring GigE Vision Devices
	Types of Setups
	Network Hardware Configuration Notes
	Network Adaptor Configuration Notes
	Windows Configuration
	Linux Configuration
	Mac Configuration

	Software Configuration
	Setting Preferences
	Troubleshooting

	Using the GigE Vision Interface
	GigE Vision Acquisition: gigecam Object vs. videoinput Object
	Connect to GigE Vision Cameras
	Set Properties for GigE Acquisition
	Property Display
	Set GigE Properties
	Use GigE Commands

	Acquire Images from GigE Vision Cameras
	Create the gigecam Object
	Acquire One Image Frame from a GigE Camera

	Using the Kinect for Windows Adaptor
	Important Information About the Kinect Adaptor
	Data Streams Returned by the Kinect
	Detecting the Kinect Devices
	Acquiring Image and Skeletal Data Using Kinect
	Acquiring from Color and Depth Devices Simultaneously
	Using Skeleton Viewer for Kinect Skeletal Data
	Installing the Kinect for Windows Sensor Support Package

	Using the Matrox Interface
	Matrox Acquisition – matroxcam Object vs videoinput Object
	Connect to Matrox Frame Grabbers
	Set Properties for Matrox Acquisition
	Acquire Images from Matrox Frame Grabbers
	Create the matroxcam Object
	Acquire One Image Frame from a Matrox Frame Grabber

	Using the VideoDevice System Object
	VideoDevice System Object Overview
	Creating the VideoDevice System Object
	Using VideoDevice System Object to Acquire Frames
	Kinect for Windows Metadata

	Using Properties on a VideoDevice System Object
	Code Generation with VideoDevice System Object
	Using the codegen Function
	Shared Library Dependencies
	Usage Rules for System Objects in Generated MATLAB Code
	Limitations on Using System Objects in Generated MATLAB Code

	Adding Support for Additional Hardware
	Support for Additional Hardware

	Troubleshooting
	Troubleshooting Overview
	DALSA Sapera Hardware
	Troubleshooting DALSA Sapera Devices
	Determining the Driver Version for DALSA Sapera Devices

	DCAM IEEE 1394 (FireWire) Hardware on Windows
	Troubleshooting DCAM IEEE 1394 Hardware on Windows
	Manually Installing the CMU DCAM Driver on Windows
	Running the CMU Camera Demo Application on Windows

	Matrox Hardware
	Troubleshooting Matrox Devices
	Determining the Driver Version for Matrox Devices

	National Instruments Hardware
	Troubleshooting National Instruments Devices
	Determining the Driver Version for National Instruments Devices

	Point Grey Hardware
	Device Discovery
	Troubleshooting Point Grey Devices
	Determining the Driver Version for Point Grey Devices

	Kinect for Windows Hardware
	GigE Vision Hardware
	Troubleshooting GigE Vision Devices on Windows
	Troubleshooting GigE Vision Devices on Linux
	Troubleshooting GigE Vision Devices on macOS

	GenICam GenTL Hardware
	Device Discovery

	Windows Video Hardware
	Troubleshooting Windows Video Devices

	Linux Video Hardware
	Device Discovery for Linux Video Devices

	Linux DCAM IEEE 1394 Hardware
	Troubleshooting Linux DCAM Devices

	Macintosh Video Hardware
	Troubleshooting Macintosh Video Devices

	Macintosh DCAM IEEE 1394 Hardware
	Troubleshooting Macintosh DCAM Devices

	Video Preview Window Troubleshooting
	Contacting MathWorks and Using the imaqsupport Function

	Image Acquisition Toolbox Examples
	Identifying Available Devices
	Accessing Devices and Video Sources
	Working with Properties
	Managing Video Input Objects
	Logging Data to Memory
	Logging Data to Disk
	Working with Triggers
	Acquiring a Single Image in a Loop
	Configuring Callback Properties
	Viewing Events
	Alpha Blending Streamed Image Pairs
	Alpha Blending Streamed Image Pairs
	Averaging Images Over Time
	Calculating the Length of a Pendulum in Motion
	Color-Based Segmentation of Fabric Using the L*a*b Color Space
	Determining the Rate of Acquisition
	Laser Tracking
	Logging Data at Constant Intervals
	Video Display with Live Histogram
	Live Motion Detection Using Optical Flow
	Synchronizing Two NI Frame Grabbers
	Synchronizing an NI Frame Grabber and Data Acquisition Card
	Using the Kinect for Windows V1 from Image Acquisition Toolbox
	Creating Time-Lapse Video Using a Noncontiguous Acquisition
	Creating Time-Lapse Video Using Timer Events
	Creating Time-Lapse Video Using Postprocessed Data
	Barcode Recognition Using Live Video Acquisition
	Live Image Acquisition and Histogram Display
	Edge Detection on Live Video Stream
	Acquire Images Using Parallel Workers

	Functions
	Image Acquisition Explorer
	Image Acquisition Tool
	clear
	closepreview
	commands
	delete
	disp
	executeCommand
	flushdata
	get
	getdata
	getselectedsource
	getsnapshot
	gigecam
	gigecamlist
	imaqfind
	imaqhelp
	imaqhwinfo
	imaqmontage
	imaqregister
	imaqreset
	imaq.VideoDevice
	islogging
	isrunning
	isvalid
	load
	matroxcam
	matroxlist
	obj2mfile
	peekdata
	preview
	propinfo
	save
	set
	snapshot
	snapshot
	start
	stop
	stoppreview
	trigger
	triggerconfig
	triggerinfo
	videoinput
	wait

	Properties
	BayerSensorAlignment
	DeviceID
	DiskLogger
	DiskLoggerFrameCount
	ErrorFcn
	EventLog
	FrameGrabInterval
	FramesAcquired
	FramesAcquiredFcn
	FramesAcquiredFcnCount
	FramesAvailable
	FramesPerTrigger
	IgnoreDroppedFrames
	InitialTriggerTime
	Logging
	LoggingMode
	Name
	NumberOfBands
	NumDroppedFrames
	Parent
	PreviewFullBitDepth
	Previewing
	ReturnedColorSpace
	ROIPosition
	Running
	Selected
	SelectedSourceName
	Source
	SourceName
	StartFcn
	StopFcn
	Tag
	Timeout
	TimerFcn
	TimerPeriod
	TriggerCondition
	TriggerFcn
	TriggerFrameDelay
	TriggerRepeat
	TriggersExecuted
	TriggerSource
	TriggerType
	Type
	UserData
	VideoFormat
	VideoResolution

	Blocks
	From Video Device

