Modeling General-Equilibrium Macroeconomic Stress Scenarios in MATLAB

Jaromír Beneš International Monetary Fund

MATLAB Computational Finance Conference May 2015

Macroprudential Policy...Is What?

- Narrow versus broader scope
- Broad policy objectives
 - Minimize incidence of balance sheet crises
 - Limit disruptions to key financial services
- Key elements in macroprudential analysis
 - Tail-risk distress scenarios
 - Feedback between balance sheets and real economy
 - Possibility of severe nonlinearities
- Models to support macroprudential policy

Plan of Presentation

POLICYMAKING PERSPECTIVE

Macroprudential Policy Exercise

Assess risks

Design macro(-economic/-financial) stress scenario(s)

- Slow-burn (low-frequency) shocks and risks
- Unlikely yet plausible scenarios with large impact

Evaluate impact of scenario(s)

- Resilience of sectoral balance sheets
- Feedback between financial and real

Communicate with policy makers

Consider possible policy responses

Communicate to public

Regular Financial Stability Reports

General Equilibrium Model Framework

Role of General Equilibrium Models

- Integrate all pieces of information
- Balance sheet consistency across sectors and time
- Facilitate internal communication (explicit assumptions, most critical assumptions)
- Make process accountable
- Make external communication transparent, credible
- Model-based scenario analysis, not accurate probabilistic predictions

Limitations...

- Fundamental uncertainty
- Nonlinear feedback
- Corridor stability
- Estimation and backtesting difficult in crisis modeling
 - Distress episodes are few and far apart
 - Each has a different cause
 - Need to evaluate international evidence

Common variety of macro models not well-suited

MODELING PERSPECTIVE

Macro Model with Credit Risk

Real economy

- Relatively standard (DSGE) structure
- Monetary economy
- Optimizing agents with finite (short) planning horizons
- Mixed expectations

Financial sector

- Credit risk on loan books
- Asymptotic single factor risk model
- Advanced IRB to model regulatory capital constraints

Structure of Model

Demand for Deposits

Individual Bank Loans

Bank Capital Regulation

$$\frac{E_t^i}{L_t^i} \ge I - \frac{R_{L,t}^i}{R_t} \left[I - \lambda h_t^i \left(q \right) \right]$$

Exports and imports

PROGRAMMING PERSPECTIVE

IRIS Toolbox

60+ classes, 30+ packages, 2,300+ functions www.iris-toolbox.com

Structural modeling (DSGE)

MV time series analysis

Time series and database management

Reporting Documentation

Model Related Classes and Packages

Building Model Equations

- Two types of equations
 - Behavioral rules
 - Stock-flow and other identities
- Behavioral rules
 - Optimizing principles
 - Rules of thumb
 - Empirical equations
- Stock-flow identities
 - Logical structure of the model

Transactions Flow Matrix

Market clearing

		Households	Producers	Exporters	Banks	Central Bank	Rest of world	Σ
	Consumption	-PC×C	PC×C					0
	Wage bill	W×N	-W×NY	-W×NX				0
	Imports		-PM×MY	-PM×MX			PM×M	0
	Exports			PX×X			$-PX \times X$	0
	Distrib surplus producers	п	-П					0
	Distrib surplus banks				-Г		Γ	0
Ş	Distrib surplus CB	Ω				-Ω		0
Transaction flows	Deposit interest	$RD(0) \times D(0)$			$-RD(0) \times D(0)$			0
ction	Loan interest	$-RL(0)\times L(0)$			<i>RL</i> (0)× <i>L</i> (0)			0
ansa	Loan loss	L(0)[1+RL(0)]×UL			$-L(0)[I+RL(0)]\times UL$			0
Ļ	CB liquidity surplus interest				$R(0)\times B(0)$	$-R(0)\times B(0)$		0
	Net foreign liabs interest				$-RF(0)\times F(0)$		$RF(0) \times F(0)$	0
	Net acquisition of housing	-PH×∆H						0
	Chng in deposits Chng in loans Chng in CB liquidity surplus	- △D			ΔD			0
	Chngin loans	ΔL			$-\Delta L$			0
	문 Chng in CB liquidity surplus				- △B	ΔΒ		0
`	Chng in foreign liabs				ΔF		- ∆ F	0
	Σ	0	0	0	0	0	0	

Budget constraints

Net Worth Matrix

Delegated agents

VH0	0				Rest of world
	0	0	VB(0)	<i>VC</i> (0)	VR(0)
PH×∆H					
ΔD			- ∆D		
$-\Delta L$			ΔL		
			ΔΒ	- ΔB	
			– ∆ <i>F</i>		ΔF
ΔPH×H(0)					
					J×F(0)
VΗ	0	0	VB	VC	VR
	ΔD -ΔL ΔPH×H(0)	ΔD -ΔL ΔPH×H(0)	ΔD ΔL ΔPH×H(0)	$\begin{array}{c c} \Delta D & -\Delta D \\ -\Delta L & \Delta L \\ \Delta B \\ -\Delta F \end{array}$ $\begin{array}{c c} \Delta PH \times H(0) & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c} \Delta D & -\Delta D \\ -\Delta L & \Delta L \\ \Delta B & -\Delta B \\ -\Delta F \end{array}$ $\begin{array}{c c} \Delta PH \times H(0) & & & & & & & & & \\ \end{array}$

Laws of motion for net worth (equity)

Stock-Flow Builder


```
%% Agents (Sectors)
                          %% Ownership and Delegation
households = Agent();
                           households.Ownership
                                                  = [ centralBank ];
producers = Agent();
                                                  = [ producers, exporters ];
exporters
           = Agent();
                           households.Delegates
centralBank = Agent();
banks
           = Agent();
                           restOfWorld.Ownership
                                                  = [ banks ];
restOfWorld = Agent();
```

%% Flows consumption = FlowLike.Goods(); labor = FlowLike.Goods(); imports = FlowLike.Goods(); exports = FlowLike.Goods();

```
%% Link Agents and Flows
households.Debits = [ consumption ];
households.Credits = [ labor ];

producers.Debits = [ labor, imports ];
exporters.Debits = [ labor, imports ];
exporters.Debits = [ labor, imports ];
exporters.Credits = [ exports ];
restOfWorld.Debits = [ exports ];
restOfWorld.Credits = [ imports ];
```

Stock-Flow Builder


```
housing = StockLike.Physical();
deposits = StockLike.SafeDeposit();
loans = StockLike.RiskyLoan();
netLiquidity = StockLike.SafeDeposit();
netForeign = StockLike.SafeDeposit();
```

%% Link Agents and Stocks

```
households.Assets = [ housing, deposits ];
households.Liabilities = [ loans ];
banks.Assets = [ loans, netLiquidity ];
banks.Liabilities = [ deposits, netForeign ];
restOfWorld.Assets = [ netForeign ];
```

```
%% Economy
x = Economy();
x.addAgent( household, 'Hh' );
x.addAgent( producer, 'Pr' );
x.addAgent( exporter, 'Ex' );
x.addAgent( centralBank, 'Cb' );
x.addAgent( banks, 'Bk' );
x.addAgent( restOfWorld, 'Rw' );
\hat{x}.addFlow( consumption, 'C' );
x.addFlow( labor, 'N' );
x.addFlow( exports, 'X' );
x.addFlow( imports, 'M' );
x.addStock( housing, 'H' );
x.addStock( deposits, 'D' );
x.addStock( loans, 'L' );
x.addStock( netLiquidity, 'B' );
x.addStock( netForeign, 'F' );
x.build( );
```

Stock-Flow Builder

classdef Stock < handle</pre>


```
properties
    HasPrice % true: Volume*Price, false: Value
    HasCashFlow % true: Next period CF prop to Value, false: No CF
    HasLoss % true: Loss on value and CF, false: No loss
    HasDeprec % true: Depreciation of volume, false: No depreciation
end
methods
   function This = Stock( HasPrice, HasCashFlow, HasLoss, HasDeprec )
       This.HasPrice = HasPrice;
       This.HasCashFlow = HasCashFlow;
       This.HasLoss = HasLoss;
       This.HasDeprec = HasDeprec;
    end
            classdef StockLike < Stock</pre>
                enumeration
                                ( HasPrice, HasCashFlow, HasLoss, HasDeprec )
                    SafeDeposit (false,
                                           true,
                                                        false, false)
                    RiskyLoan
                               (false, true,
                                                       true, false)
                    Physical
                                (true,
                                         true,
                                                        false, true )
                    Share
                                (true,
                                                        false,
                                                                true )
                                           true,
                end
                                                                      26
                methods
```

Behavioral Equations (Regexp Parser)


```
!substitutions
    UU := (bet*((1-chiv)/(Ve - chiv*V))^sgmc);
    N0 := (n*&NY);
    RR := (1 / [R/RL / (lmb*normpdf(log(Je)/varsgm)/varsgm) - 1]);
!transition_equations
% Households
%-----
    1 = ((C-chic*&C)/(1-chic))^sgmc * Lmb * PC *(1 + dc*Phi) ...
        !! 1 = C \cdot sgmc * Lmb * PC * (1 + dc*Phi);
    R\{-1\}*D\{-1\} - (RL\{-1\}-1+the)*L\{-1\} + The - DA = dc*PC*C + dh*PH*KH;
    Phi = RL/(R+Psi) + Psi - 1;
    %$UU$*(R+Psi)/dPCe = Lmb*PC;
    Lmb*Phi = ...
        $UU$*a*(ups-1) * (V/L) * (L/DA)^ups ...
        * ((RL-1+the)*exp(EEPDU)/R)^(ups-1);
    $UU$*RL*(1+$RR$)/dPCe =# Lmb*PC*(1+Phi-Psi);
```

SIMULATION EXPERIMENT

House Price Bubble and Burst

House Price Bubble and Burst

- Irrational expectations
 - Sequence of shocks
- Burst of the bubble
 - Unexpected event
 - House prices go down to "fundamentals"
 - Painful deleveraging in both real and financial sector
- Re-simulate with loan-to-value caps
 - Inequality constraint in households decision
 - Complementary slackness translated into min(...)