Main Content

Communications Toolbox

Design and simulate the physical layer of communications systems

Communications Toolbox™ provides algorithms and apps for the analysis, design, end-to-end simulation, and verification of communications systems. Toolbox algorithms including channel coding, modulation, MIMO, and OFDM enable you to compose and simulate a physical layer model of your standard-based or custom-designed wireless communications system.

工具箱提供了一种波形发生器的应用,反对stellation and eye diagrams, bit-error-rate, and other analysis tools and scopes for validating your designs. These tools enable you to generate and analyze signals, visualize channel characteristics, and obtain performance metrics such as error vector magnitude (EVM). The toolbox includes SISO and MIMO statistical and spatial channel models. Channel profile options include Rayleigh, Rician, and WINNER II models. It also includes RF impairments, including RF nonlinearity and carrier offset and compensation algorithms, including carrier and symbol timing synchronizers. These algorithms enable you to realistically model link-level specifications and compensate for the effects of channel degradations.

Using Communications Toolbox with RF instruments or hardware support packages, you can connect your transmitter and receiver models to radio devices and verify your designs with over-the-air testing.

Get Started

Learn the basics of Communications Toolbox

PHY Components

Physical layer features including waveform generation, source coding, error control coding, modulation, MIMO, space-time coding, filtering, equalization, and synchronization

RF Component Modeling

Behavioral RF radio modeling and impairment correction

Propagation and Channel Models

Site and terrain visualization, propagation model specification (including Longley-Rice), signal strength, signal coverage maps, and static and fading channel models

Link-Level Simulation

Link-level communications systems simulation and analysis examples

System-Level Simulation

DLL, MAC sublayer, and LLC sublayer examples

Standards-Compliant Systems

System models compliant with various standards

Test and Measurement

Waveform generation, visualization, and performance analysis

Deep Learning in Wireless Systems

Use deep learning in wireless communications systems

Code Generation and Deployment

为桌面计算机生成独立的应用程序ters and embedded targets

Supported Hardware – Software-Defined Radio

Support for third-party software-defined radio hardware, such as Xilinx®, RTL-SDR, ADALM-PLUTO, and USRP™ radios