关于航空航天坐标系

基本坐标系概念

坐标系统可以让你跟踪飞行器或航天器在空间中的位置和方向。Aerospace Blockset™坐标系统基于大地测量学、天文学和物理学的这些基本概念。

定义

blockset使用右撇子(右)笛卡尔坐标系统。右手法则建立了x-y-z坐标轴序列。

一个惯性坐标系是一个非加速运动参考系。在惯性系中,牛顿第二定律成立:力=质量x加速度。松散地说,加速度的定义是相对于遥远的宇宙,惯性系通常被认为是相对于恒星不加速的。由于地球和恒星相对彼此移动得很慢,这个假设是一个非常精确的近似值。

严格地定义,惯性系是所有系中的一个相对于另一个不加速的系。非惯性系是任何相对于惯性系加速的系。它的加速度,通常,包括平移和旋转的分量,导致pseudoforcespseudogravity,以及科里奥利离心力).

这个方块模型模拟了地球的形状大地水准面)是一种特殊类型的椭球体,具有两个相等的较长的轴线(定义赤道平面)和稍短的第三个(地极的)对称轴。赤道是赤道面与地球表面的交点。地极是地球表面和地极轴的交点。一般来说,地球的地极轴和自转轴并不相同。

纬度与赤道平行。经度与地极轴平行。的零经度本初子午线穿过英格兰的格林威治。

近似值

该块集在定义相对于地球的坐标系时作出三个标准近似。

  • 地球表面或大地水准面是一个扁球体,由其较长的赤道轴和较短的地理极轴定义。实际上,地球相对于标准大地水准面有轻微的变形。

  • 地球自转轴和赤道面垂直,因此自转轴和地球极轴相同。事实上,这些轴略微错位,赤道平面随着地球自转而摆动。这种影响在大多数应用中可以忽略不计。

  • 唯一的非惯性效应在地球固定坐标是由于地球绕它的轴旋转。这是一个旋转的,地心的系统。块集忽略了地球围绕太阳的加速度,太阳在银河系中的加速度,以及银河系在宇宙中的加速度。在大多数应用中,只有地球自转才重要。

    对于发射到深空(如地月系统外)的航天器来说,这种近似必须改变,日心说系统是首选。

相对于其他行星的运动

区块集使用标准WGS-84大地水准面来模拟地球。您可以更改赤道轴长度、展平和旋转速率。

您可以表示航天器相对于任何天体的运动,通过改变椭球体的大小、扁平化和旋转速率,椭球体很好地近似于椭球体。如果天体是向西旋转(逆行),使旋转速率为负。

建模坐标系

建模飞机和航天器是最简单的,如果你使用固定在身体本身的坐标系。在飞机的情况下,前进的方向被风的存在所改变,并且飞机在空气中的运动与它相对于地面的运动是不一样的。

看到运动方程有关块集如何实现体和风坐标的进一步细节。

身体坐标

非惯性体坐标系在原点和方向上都固定于运动的飞行器。工艺假定是刚性的。

身体坐标轴的方向固定在身体的形状中。

  • x-轴点通过飞行器的鼻子。

  • y-轴指向x-轴(面向飞行员的视图方向),垂直于x设在。

  • z-轴指向通过底部的船,垂直于xy平面,并满足RH规则。

平移自由度

平移是通过沿着这些轴移动距离来定义的xyz从原点。

转动自由度

旋转由欧拉角定义PR或Φ,Θ,ψ。它们是:

P或Φ 卷的x-轴心
或Θ 向周围投球y-轴心
R或Ψ 横冲直撞z-轴心

除非另有说明,默认情况下,软件使用ZYX旋转顺序为欧拉角。

风坐标

非惯性风坐标系的原点固定在刚性飞行器上。坐标系统的方向定义相对于飞行器的速度V

风坐标轴的方向由速度确定V

  • x轴指向的方向V

  • y-轴指向x-轴(面向的方向V),垂直于x设在。

  • z-垂直于轴的轴点xy以满足RH规则x-及y-斧头。

平移自由度

平移是通过沿着这些轴移动距离来定义的xyz从原点。

转动自由度

旋转由欧拉角Φ,γ,χ定义:

Φ 绕岸角x-轴心
γ 飞行路径y-轴心
χ 绕航向角z-轴心

除非另有说明,默认情况下,软件使用ZYX旋转顺序为欧拉角。

导航坐标系

建模航空航天轨道需要定位和定位飞行器或航天器相对于旋转的地球。导航坐标是根据地球的中心和表面定义的。

地心纬度和大地纬度

地心纬度λ在地球表面上的定义是地球中心到表面点的半径向量与赤道平面的夹角。

大地纬度地球表面上的µ由表面法向量n和赤道平面所对的角度定义。

NED坐标

东北下(NED)系统是一种非惯性系统,其原点固定在飞行器或航天器的重心上。它的轴线沿着地球表面所定义的大地测量方向。

  • x轴指向北方,平行于大地水准面,在极方向。

  • y-轴沿纬度曲线指向平行于大地水准面的东部。

  • z-轴线指向下,朝向地球表面,与地表外法线反平行n

    飞行在一个固定的高度意味着飞行在一个固定的高度z在地球表面之上。

ECI坐标

地心惯性(ECI)系统是不旋转的。对于大多数应用,假设这个坐标系是惯性的,尽管春分和赤道平面随时间移动得非常小。当赤道和春分点定义在一个特定的纪元(例如J2000)时,ECI系统被认为是高精度轨道计算的真正惯性系统。使用ECI坐标系统的特定实现的航空航天功能和块在其文档中提供了该信息。ECI系统原点固定在地球的中心(见图)。

  • x轴指向春分(白羊座的第一点♈)。

  • y-轴指向该轴以东90度x轴在赤道平面上。

  • z轴指向地球旋转轴向北。

地心坐标

ECEF坐标

地球中心,地球固定(ECEF)系统是非惯性的,并随地球旋转。它的原点固定在地球的中心(见上图)。

  • x’轴指向地球赤道面和格林威治子午线的交点。

  • y轴指向东方90度x'轴在赤道平面上。

  • z'轴沿着地球旋转轴指向北。

显示坐标系统

一些显示工具可用于航空航天块集产品。每个都有一个用于渲染运动的特定坐标系统。

MATLAB图形坐标

轴线外观(MATLAB)的更多信息®图形坐标轴。

MATLAB Graphics使用此默认坐标轴方向:

  • x-轴指向屏幕外。

  • y-axis指向右边。

  • z设在点。

FlightGear坐标

FlightGear是一个开源的第三方飞行模拟器,它的接口由模块集支持。万博1manbetx

飞行齿轮坐标系形成一个特殊的身体固定系统,从标准身体坐标系旋转左右y轴-180度:

  • x-轴朝向车辆后部是正的。

  • y-轴正向车辆的右侧。

  • z轴是正向向上的,例如,车轮通常有最低z值。

AC3D坐标

AC3D是一款低成本、广泛使用的几何编辑器https://www.inivis.com/.其固定体坐标由三个标准体坐标轴反求而成:

  • x-轴朝向车辆后部是正的。

  • y轴是正向向上的,例如,车轮通常有最低y值。

  • z-轴在车辆的正左边。

工具书类

[1]大气和空间飞行器坐标系推荐规程, R-004-1992, ANSI/AIAA, 1992年2月。

R. M.罗杰斯组合导航系统中的应用数学,AIAA,弗吉尼亚州莱斯顿,2000年。

[3]索贝尔,D。经度, Walker & Company,纽约,1995。

[4]史蒂文斯,B. L.和F. L.刘易斯,飞机控制与仿真,第二版。飞机控制与仿真,威利国际科学,纽约,2003年。

W. T.汤姆逊空间动力学概论,John Wiley & Sons,纽约,1961/Dover Publications, Mineola,纽约,1986。

外部网站