主要内容

癌症检测

这个例子展示了如何训练神经网络,利用蛋白质图谱上的质谱数据来检测癌症。

介绍

血清蛋白质组学诊断可用于区分有疾病和无疾病患者的样本。使用表面增强激光解吸和电离(SELDI)蛋白质谱生成谱图。这项技术有可能改善癌症病理的临床诊断测试。

问题:癌症检测

目标是建立一个分类器,可以从质谱数据中区分癌症患者和对照组患者。

本例中遵循的方法是选择一组可用于使用分类器区分癌症患者和对照组患者的测量值或“特征”。这些特征是特定质量/电荷值下的离子强度水平。

格式化数据

本例中使用的数据,在文件中提供卵巢癌数据集.mat,来自FDA-NCI临床蛋白质组学项目数据库。有关该数据集的详细描述,请参见[1]和[2]。

创建数据文件OvarianCancerQAQCdataset.mat按照下面的步骤使用顺序和并行计算的光谱批处理(生物信息学工具箱).新文件包含变量Y,MZ,玻璃钢

中的每列Y表示从患者身上获取的测量值。有216Y代表216病人,从中121卵巢癌患者和95是正常的病人。

每行Y表示特定质量电荷值下的离子强度水平,如中所示MZ. 有15000中的质量电荷值MZ每一行Y表示患者在特定质量-电荷值下的离子强度水平。

的变量玻璃钢保存这些样本中哪些代表癌症患者,哪些代表正常患者的索引信息。

排名关键特性

该任务是一个典型的分类问题,特征的数量远远大于观测的数量,但单个特征就可以实现正确的分类。因此,我们的目标是找到一个分类器,它能够适当地学习如何加权多个特征,同时产生一个不过度拟合的广义映射。

寻找重要特征的一种简单方法是假设每个M/Z值是独立的,并计算双向t检验。rankfeatures返回最重要M/Z值的索引,例如,按测试统计的绝对值排序的100个索引。

加载OvarianCancerQAQCdataset.mat等级特征使用rankfeatures(生物信息学工具箱)选择100个排名最高的度量值作为输入x

印第安纳州= rankfeatures (Y, grp,“标准”,的tt,“数量指数”, 100);: x = Y(印第安纳州);

确定目标T对于以下两个类别:

双(t = strcmp (“癌症”,grp);t=[t;1-t];

上面列出的脚本和示例中的预处理步骤旨在演示一组具有代表性的可能的预处理和特性选择过程。使用不同的步骤或参数可以得到不同的甚至可能更好的结果。

[x,t]=卵巢癌数据集;whosxT
名称大小字节类属性t 2x216 3456 double x 100x216 172800 double

中的每列x代表216个不同病人中的一个。

每行x表示每名患者100个特定质量电荷值之一的离子强度水平。

的变量T有两行,其中216个值分别为[1;0],表示癌症患者,或[0;1]表示正常患者。

基于前馈神经网络的分类

现在您已经确定了一些重要的特征,您可以使用这些信息对癌症和正常样本进行分类。

由于神经网络是用随机初始权值初始化的,所以每次运行示例后,训练网络后的结果都会略有不同。为了避免这种随机性,随机种子被设置为每次都复制相同的结果。然而,对于您自己的应用程序来说,设置随机种子并不是必需的。

setdemorandstream (672880951)

建立并训练了一个由5个隐层神经元组成的1隐层前馈神经网络。输入和目标样本自动划分为训练集、验证集和测试集。该训练集用于网络教学。只要网络继续改进验证集,培训就会继续进行。测试集提供了对网络精度的独立测量。

输入和输出的大小为0,因为网络尚未配置为匹配输入和目标数据。此配置在训练网络时发生。

网= patternnet (5);视图(净)

现在网络已经准备好接受训练了。这些样本被自动划分为训练集、验证集和测试集。训练集用于网络教学。只要网络在验证集上继续改进,训练就会继续进行。测试集提供了一个独立的网络准确性度量。

神经网络训练工具显示正在训练的网络和用于训练的算法。它还显示培训期间的培训状态,并以绿色突出显示停止培训的标准。

底部的按钮打开有用的绘图,可以在训练期间和训练后打开。算法名称和绘图按钮旁边的链接打开这些主题的文档。

(净,tr) =火车(净,x, t);

要查看在训练过程中网络的性能如何提高,可以单击训练工具中的“性能”按钮,或使用plotperform功能。

性能是用均方误差来衡量的,并在对数尺度上显示。随着网络的训练,它迅速下降。

显示每个培训、验证和测试集的性能。

plotperform (tr)

图性能(plotperform)包含一个轴对象。标题为“最佳验证性能”的axes对象在epoch 33处为0.035332,包含6个类型为line的对象。这些对象代表Train, Validation, Test, Best。

经过训练的神经网络现在可以使用我们从主数据集中划分的测试样本进行测试。测试数据没有以任何方式用于训练,因此提供了一个“样本外”数据集来测试网络。这提供了使用真实世界数据测试网络时的性能估计。

网络输出的范围是0-1。将输出设置为1和0,分别表示癌症或正常患者。

testX = x (:, tr.testInd);testT = t (:, tr.testInd);暴躁的=净(testX);testClasses = testy> 0.5
测试类=2x32逻辑阵列0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

衡量神经网络对数据拟合程度的一个指标是混淆图。

混淆矩阵显示正确和错误分类的百分比。正确的分类是矩阵对角线上的绿色方块。红色方块表示错误的分类。

如果网络是准确的,那么红色方块中的百分比就很小,表明很少有错误分类。

如果网络不准确,那么你可以尝试长时间的训练,或者训练一个有更多隐藏神经元的网络。

绘图混乱(testT,testY)

地物混淆(plotconfusion)包含一个轴对象。具有标题混淆矩阵的轴对象包含29个面片、文本、线类型的对象。

下面是正确和错误分类的总体百分比。

[c,cm]=混淆(testT,testY);fprintf('正确分类百分比:%f%%\n', 100 * (1 - c));
正确分类百分比:90.625000%
fprintf('百分比错误分类:%f%%\n', 100 * c);
分类错误百分比:9.375000%

另一个衡量神经网络有多好的拟合数据是接收机操作特征图。这张图显示了当输出的阈值从0到1变化时,假阳性和真阳性率之间的关系。

越往左和越往上,越少的假阳性需要被接受,以获得较高的真阳性率。最好的分类器有一条线从左下角,到左上角,到右上角,或接近它。

1级表示癌症患者,2级表示正常患者。

plotroc (testT暴躁的)

图接收器工作特性(plotroc)包含一个轴对象。标题为ROC的axis对象包含4个类型为line的对象。这些对象代表类1,类2。

这个例子演示了如何使用神经网络作为癌症检测的分类器。为了提高分类器的性能,还可以尝试使用主成分分析等技术来降低用于神经网络训练的数据的维数。

参考文献

[1] T.P.Conrads等人,“卵巢检测的高分辨率血清蛋白质组学特征”,内分泌相关癌症,2004年11月,第163-178页。

[2] E.F. Petricoin等,“血清蛋白质组学模式用于鉴别卵巢癌”,《柳叶刀》,359(9306),2002,第572-577页。