主要内容

估算中功率谱万博1manbetx

时域信号的功率谱(PS)是基于有限数据集的信号中包含的功率在频率上的分布。信号的频域表示通常比时域表示更容易分析。许多信号处理应用,如噪声消除和系统识别,都是基于信号的特定频率修改。功率谱估计的目的是从一个序列的时间样本中估计信号的功率谱。根据对信号的了解,估计技术可以包括参数或非参数方法,并可以基于时域或频域分析。例如,一种常见的参数技术包括将观测值拟合到自回归模型中。一种常见的非参数技术是周期图。采用傅立叶变换方法进行功率谱估计,如韦尔奇法和滤波器组法。对于长度相对较小的信号,滤波器组方法产生的频谱估计具有更高的分辨率,更准确的噪声底噪声,峰值比Welch方法更精确,且频谱泄漏低或没有。这些优势是以增加的计算量和较慢的跟踪速度为代价的。 For more details on these methods, see光谱分析.您还可以使用其他技术,如最大熵法。

在仿真万博1manbetx软件®,您可以执行实时频谱分析的动态信号使用频谱分析仪块。您可以在频谱分析仪中查看频谱数据。为了获得用于进一步处理的最后光谱数据,创建一个SpectrumAnalyzerConfiguration对象,并运行getSpectrumData函数。或者,你可以用谱估计块的dspspect3库来计算功率谱,并且数组的阴谋块来查看光谱。

用频谱分析仪估算功率谱

通过“功率谱”,可以查看信号的功率谱频谱分析仪块。PS是实时计算的,并随输入信号的变化和器件特性的变化而变化频谱分析仪块。你可以改变输入信号的动态,并实时观察这些变化对信号频谱的影响。

该模型ex_psd_sa输入一个有噪声的正弦波信号频谱分析仪块。正弦波信号是两个正弦波的和:一个频率为5000赫兹,另一个频率为10000赫兹。输入处的噪声为高斯分布,均值为零,标准差为0.01。

打开并检查模型

要打开模型,输入ex_psd_sa在MATLAB®命令提示符。

下面是模型中块的设置。

参数的变化 积木的用途
正弦波1
  • 频率到5000年

  • 样品时间到1/44100

  • 样品每帧到1024年

频率为5000hz的正弦信号

正弦波2
  • 频率到10000年

  • 相抵消(rad)到10

  • 样品时间到1/44100

  • 样品每帧到1024年

频率为10000hz的正弦信号

随机源
  • 源类型高斯

  • 方差1的军医

  • 样品时间到1/44100

  • 样品每帧到1024年

随机源块生成具有通过块对话框指定属性的随机噪声信号
添加 符号列表+++ 添加块给输入信号增加随机噪声
频谱分析仪

单击光谱设置图标.右边出现一个窗格。

  • 主要选项窗格中,在类型中,选择权力.下方法中,选择滤波器组

  • 跟踪选项窗格中,清除双边频谱复选框。这只显示了光谱的实半部分。

  • 如果需要,选择Max-hold跟踪Min-hold跟踪复选框。

单击配置属性图标并设置Y-limits(最小)作为-100Y-limits(最大)作为40

频谱分析仪块显示信号的功率谱密度

播放模式。打开频谱分析仪块来查看正弦波信号的功率谱。有两个频率为5000赫兹和10000赫兹的音调,它们对应于输入端的两个频率。

RBW时,分辨率带宽是频谱分析仪能分辨的最小频率带宽。默认情况下,RBW(赫兹)被设置为汽车.在汽车RBW是频率跨度与1024的比值。在双边谱中,这个值是F年代/ 1024但从单方面的角度来看,事实的确如此(F年代/ 2) / 1024.频谱分析仪ex_psd_sa配置为显示单侧频谱。因此,RBW是(44100/2)/1024或21.53 Hz。

利用这个RBW的值,计算一次光谱更新所使用的输入样本的数量由N样品= Fs / RBW,即44100/21.53或2048。

在此模式下计算的RBW具有良好的频率分辨率。

为了区分显示器上的两个频率,两个频率之间的距离必须至少为RBW。在本例中,两个峰值之间的距离为5000hz,大于RBW。因此,你可以清楚地看到山峰。将第二个正弦波的频率从10000hz改为5015hz。这两个频率之间的差值小于RBW

放大后,你可以看到峰值是无法区分的。

要提高频率分辨率,就要降低频率RBW为1hz,并运行模拟。

在放大时,两个相隔15赫兹的峰值现在可以区分了

当频率分辨率增大时,时间分辨率减小。要在频率分辨率和时间分辨率之间保持良好的平衡,就要改变频率分辨率RBW(赫兹)汽车

改变输入信号

当在仿真过程中改变输入信号的动态时,信号的功率谱也会实时发生变化。在模拟运行时,更改频率正弦波18000并点击应用.频谱分析仪输出的第二个音调移到8000 Hz,你可以实时看到变化。

更改频谱分析仪设置

中更改设置时频谱分析仪块,可以实时看到对光谱数据的影响。

模型运行时,在跟踪的选项窗格频谱分析仪块,改变规模日志.PS现在以对数规模显示。

有关如何频谱分析仪设置会影响功率谱数据,请参阅“算法”部分频谱分析仪块引用页面。

转换单位之间的功率

频谱分析仪提供三个单位来指定功率谱密度:瓦特/赫兹dBm /赫兹,瓦分贝/赫兹.对应的功率单位为美国瓦茨dBm,瓦分贝.对于电气工程应用,您也可以查看信号的RMS在Vrms伏特分贝.缺省情况下,spectrum类型为权力dBm

将瓦特功率转换为dBW和dBm

权力瓦分贝是由:

P d B W 10 日志 10 p o w e r n w 一个 t t / 1 w 一个 t t )

权力dBm是由:

P d B 10 日志 10 p o w e r n w 一个 t t / 1 l l w 一个 t t )

对于振幅为1v的正弦波信号,其单侧频谱的功率为美国瓦茨是由:

P W 一个 t t 年代 一个 2 / 2 P W 一个 t t 年代 1 / 2

在这个例子中,这个功率等于0.5 W。对应的dBm功率为:

P d B 10 日志 10 p o w e r n w 一个 t t / 1 l l w 一个 t t ) P d B 10 日志 10 0.5 / 10 3. )

这里的功率等于26.9897 dBm。要用峰值查找器确认此值,请单击工具>测量>峰仪

对于白噪声信号,所有频率的频谱都是平坦的。本例中的频谱分析仪在[0 Fs/2]范围内显示单侧频谱。对于方差为1e-4的白噪声信号,单位带宽功率(Punitbandwidth)是1的军医。白噪声的总功率美国瓦茨在整个频率范围内为:

P w h t e n o 年代 e P u n t b 一个 n d w d t h n u b e r o f f r e u e n c y b n 年代 P w h t e n o 年代 e 10 4 ) F 年代 / 2 R B W ) P w h t e n o 年代 e 10 4 ) 22050 21.53 )

频率箱的数量是总带宽与RBW的比值。对于单侧频谱,总带宽是采样率的一半。本例中RBW为21.53 Hz。有了这些值,白噪声的总功率就进来了美国瓦茨0.1024 W。在dBm中,白噪声的功率可以用10 * log10 (0.1024/10 ^ 3),等于20.103 dBm。

将功率转换为dBFS

如果将光谱单位设置为dBFS并设置满量程(FullScaleSource)汽车,权力dBFS计算为:

P d B F 年代 20. 日志 10 P w 一个 t t 年代 / F u l l _ 年代 c 一个 l e )

地点:

  • P美国瓦茨功率的单位是瓦吗

  • 对于双精度和浮点数信号,Full_Scale为输入信号的最大值。

  • 对于定点或整数信号,Full_Scale是可表示的最大值。

如果您指定一个手动满量程(集FullScaleSource财产),在dBFS是由:

P F 年代 20. 日志 10 P w 一个 t t 年代 / F 年代 )

在哪里FS表格中是否规定了全部比例系数全尺度的财产。

对于振幅为1v的正弦波信号,其单侧频谱的功率为美国瓦茨是由:

P W 一个 t t 年代 一个 2 / 2 P W 一个 t t 年代 1 / 2

在这个例子中,这个功率等于0.5 W,正弦波的最大输入信号是1v。dBFS中相应的幂为:

P F 年代 20. 日志 10 1 / 2 / 1 )

这里,幂等于-3.0103。要在频谱分析仪中确认此值,请运行以下命令:

Fs = 1000;%采样频率sinef = dsp.SineWave('SampleRate',Fs,'SamplesPerFrame',100);范围= dsp.SpectrumAnalyzer(“SampleRate”,Fs,…'SpectrumUnits','dBFS','PlotAsTwoSidedSpectrum',false) %% for ii = 1:10万xsin = sinef();范围(xsine)结束
然后,单击工具>测量>峰仪

将dBm中的Power转换为vrm中的RMS

权力dBm是由:

P d B 10 日志 10 p o w e r n w 一个 t t / 1 l l w 一个 t t )

电压的有效值是:

V r 年代 10 P d B / 20. 10 3.

从前面的例子,PdBm= 26.9897 dBm。Vrms是计算

V r 年代 10 26.9897 / 20. 0.001

等于0.7071。

确认此值:

  1. 改变类型RMS

  2. 点击打开峰值查找器工具>测量>峰仪

估计功率谱使用谱估计

或者,您可以使用谱估计块的dspspect3图书馆。您可以获得频谱估计器的输出,并存储数据以作进一步处理。

取代频谱分析仪块在ex_psd_sa谱估计块,后跟数组的阴谋块。要查看模型,输入ex_psd_estimatorblock在MATLAB命令提示符中。此外,要在MATLAB中访问谱估计数据,需要连接到工作空间(万博1manbetx模型)块的输出谱估计块。的设置更改如下谱估计块和数组的阴谋块。

参数的变化 积木的用途
谱估计

  • 频率分辨率的方法频带数

  • 频率范围片面的

用滤波器组方法计算输入信号的功率谱。
数组的阴谋

点击视图

  • 选择风格.在样式窗口中,选择情节类型作为楼梯

  • 选择配置属性.在“配置属性”窗口中,在主要选项卡,设置样本增量作为44.1/1024.在显示选项卡中,改变X-label频率(赫兹)Y-label权力(dBm).有关详细信息,请参见“转换”一节x-axis表示频率'。此外,设置Y-limits(最小)-100Y-limits(最大)40

显示功率谱数据。

频谱显示在数组的阴谋块与光谱中所见相似频谱分析仪块在ex_psd_sa

滤波器组方法产生的峰值具有非常小的频谱泄漏。

转换x-轴表示频率

默认情况下,数组的阴谋块绘制PS数据与每帧样本数量的关系。x轴上的点数等于输入帧的长度。频谱分析仪绘制关于频率的PS数据。对于单侧频谱,频率在[0 Fs/2]范围内变化。对于双边频谱,频率在[-Fs/2 Fs/2]范围内变化。将x从基于采样到基于频率的数组图的-轴,执行以下操作:

  • 点击配置属性图标.在主要选项卡,设置样本增量Fs / FrameLength

  • 对于单侧频谱,集合x0

  • 对于双边光谱,集合x- f / 2

在这个例子中,频谱是片面的,因此样本增量x44100/10240,分别。指定输入的频率千赫,设置样本增量44.1/1024

现场处理

输出谱估计块包含光谱数据,可用于进一步处理。可以实时处理数据,也可以使用到工作空间块。本例将光谱数据写入工作区变量估计

相关的话题